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Abstract—Hand movement classification based on Electromyo-
graphy (EMG) signals has been extensively investigated in the
past decades as a promising approach used for controlling
upper prosthetics or robotics. Topological data analysis is a
relatively new and increasingly popular tool in data science
that uses mathematical techniques from topology to analyze and
understand complex data sets. This paper proposes a method
for classifying hand movements based on EMG signals using
topological features crafted with the tools of TDA. The main
findings of this work on hand movement EMG classification are
as follows: (1) topological features are effective in classifying EMG
signals and outperform other time domain features tested in the
experiments; (2) the 0-th Betti numbers are more effective than
the 1-st Betti numbers; (3) Betti amplitude is a more stable and
powerful feature than other topological features discussed in this
paper. Additionally, Betti curves were used to visualize topological
patterns for hand movement EMG.
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I. INTRODUCTION

Electromyography (EMG) is a bioelectrical signal gener-
ated by muscle cells, providing valuable information about
muscle activity that can be used to recognize hand move-
ments [1]. Over the past few decades, various techniques have
been developed to discriminate hand movements from EMG
signals [2], [3], [4], [5], and most follow a unified analysis
pipeline that involves preprocessing, feature extraction, and
classification. Feature extraction involves transforming raw
data into a feature vector that is later fed into a classifier. The
dimension of the feature vector is usually much smaller than
the raw data, which helps to reduce redundant data and prevent
learning from the curse of dimensionality [6], thus accelerating
learning speed and generalization steps. Therefore, choosing
the right features has a significant impact on classification
performance.

Previous studies have evaluated the ability of various
EMG features to recognize hand movements, which can be
categorized into time and frequency domains. Time-domain
features analyze EMG signals over time, and common ones
include mean absolute value (MAV) and root mean square
(RMS) [7]. Frequency-domain analysis involves measurements
that describe specific aspects of the signal’s frequency spec-
trum, with mean frequency and median frequency being two
useful features [8]. In addition, there are also end-to-end
learning models that try to learn a feature representation of
raw signals instead of using hand-crafted features [9], [10].
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These models map the initial input to the final outputs directly,
making it difficult to classify features into a particular domain.

In this work, we introduce a new type of feature for
hand movement classification called topological features. The
primary method used in this study to extract topological
features falls in the field of topological data analysis (TDA).
TDA is an approach that extracts topological features and
describes the geometric shapes of datasets using techniques
from topology [11], [12], [13]. Topological invariants are
flexible and independent of metrics and coordinates, which
allows us to compare EMG data collected from various
wearing manners of EMG sensors. Additionally, topological
invariants characterize the overall features of datasets, making
topology-based solutions less sensitive to noise and enabling
the identification of EMG signal shapes despite countless
deformations [14]. For a point set in a Euclidean space, we
can obtain a filtration of simplicial complexes as the spatial
scale changes. The filtration of simplicial complexes provides a
multi-scale perspective to understand data. The most common
constructions of the filtration of simplicial complexes are
the Vietoris-Rips complex and the Čech complex [15], [16].
Persistent homology is proposed to measure the topological
features of data that persist across all scales. Since topological
features are detected over a wide range of spatial scales, it
is more likely to find true patterns of shape behind the data
rather than noise.

TDA has found applications across diverse fields, such
as material science [17], [18], biomolecules [19], [20], on-
cology [21], sensor networks [22], and data science [23].
Numerous TDA-based methods have been proposed for time
series analysis [24], [25], [26]. For example, Pereira and
de Mello developed a time series clustering approach using
topological features computed by persistent homology [27].
Khasawneh and Munch tracked the stability of stochastic
dynamical systems with TDA [28]. Gidea and Katz detected
market crashes with financial time series analysis using topo-
logical features [29]. Emrani et al. applied TDA for wheeze
detection in breathing sounds [30]. TDA has also been em-
ployed in ECG signal analysis, with Ignacio et al. identifying
Atrial Fibrillation using topological features [31] and Dlugas
detecting arrhythmias with topological methods [32].

This study presents a novel and effective method for
visualizing and recognizing hand movement EMG signals and
provides guidance for selecting hyper-parameters. The main
innovations of this work are as follows. First, our approach
does not rely on a specific embedding dimension and delay
to transform time series signals into point clouds for analy-
sis. Instead, we explored various combinations of embedding
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dimensions and delays to determine the optimal values and
understand the relationship between classification accuracy
and the embedding parameters. Secondly, a wide range of
topological features (Wasserstein amplitude, Betti amplitude,
landscape amplitude, and persistent entropy) were considered
from the perspective of entropy and amplitude to classify
EMG signals. The topological features derived from different
dimensions of homology groups were considered separately
and jointly. Finally, we pioneered the use of Betti curves
to visualize the topological structure of EMG signals. Betti
amplitude can be used as a metric to evaluate the difficulty in
distinguishing two hand movements using EMG signals.

To the best of our knowledge, this is the first work that
employs topological features for classifying hand movements
based on EMG signals. Our experimental results show that
the proposed topological features achieve higher accuracy than
other time-domain features for EMG signal classification. The
main contributions of this study are: (1) The information
conveyed by the 0-th Betti numbers is found to be more
effective than that conveyed by the 1-st Betti numbers in
classifying EMG signals. Combining the 0-th and 1-st Betti
numbers does not result in higher classification accuracy, but
instead yields a lower accuracy than using only the 0-th Betti
numbers. (2) Among the four topological features explored,
Betti amplitude, which is the L2-metric between Betti curves,
is stable and effective in classifying EMG signals, with its
accuracy almost unaffected by the embedding dimension and
embedding delay. (3) Inspired by the effectiveness of the 0-th
Betti numbers in classifying EMG signals, we visualized EMG
signals of 53 types of hand movements using 0-th Betti curves
and clearly observed differences in the topological structure.

The rest of this paper is organized as follows: Section II
introduces the general approach for classifying EMG signals
using topological features, along with related concepts and
tools. Section III delves into the experimental aspects, address-
ing topics such as hyperparameter selection, topological feature
selection, and the effectiveness of topological features. Finally,
Section IV summarizes the study and highlights potential
directions for future research.

II. METHODS

This section will begin with a review of the fundamental
concepts and methods of TDA that are relevant to this work.
It will cover the concepts of simplex, simplicial complex, and
persistent homology. Additionally, it will introduce the notion
of a persistence diagram, which is one type of representation
used in persistent homology. The latter part of this section
will focus on the pipeline used to classify EMG signals. The
pipeline involves transforming the time-series EMG signal into
a metric space, followed by converting the metric space into
a topological space. From this topological space, topological
features are extracted and fed into classifiers.

A. Homology and Persistent Homology

The triangle is known to be one of the simplest geometric
shapes in the plane, and we can combine triangles into a more
complex shape. The simplex can be viewed as a generalization
of the notion of the triangle in any dimension. Specifically, a
p-simplex is a p-dimensional polytope which is the convex

hull of its p + 1 geometrically independent vertices in the
Euclidean space Rn. For example, a 0-simplex is a point, a
1-simplex is a line segment, a 2-simplex is a triangle, a 3-
simplex means a tetrahedron, etc. A simplicial complex K in
the Euclidean space is a collection of simplices such that (1)
each face of a simplex of K is a simplex; (2) the intersection
of any two simplices of K is either empty or a common face
of them. Simplicial complexes provide discrete representations
for topological spaces.

Homology is one of the essential topological invariants for
describing the intrinsic properties of spaces. In this work, we
focus on the simplicial homology on simplicial complexes. Let
K be a simplicial complex. Let F be a field. Denote Cp(K;F)
the F-linear space genenrated by the p-simplices of K. Then
C∗(K;F) is a chain complex with the boundary operator ∂p :
Cp(K;F) → Cp−1(K;F) given by

∂p[v0, v1, . . . , vp] =

p∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vp], p ≥ 1

for any simplex [v0, v1, . . . , vp] of K, where v̂i means omission
of the term vi. For p = 0, we denote ∂0 = 0. Then the p-th
homology group of K is defined by

Hp(K;F) :=
ker ∂p

Im ∂p+1
, p ≥ 0.

The homology groups reflect the topological features of sim-
plicial complexes. The 0-dimensional homology group detects
the connected components of simplicial complexes, the 1-
dimensional homology group detects the loops while higher
dimensional homology groups detect higher dimensional voids
or cavities. In essence, homology detects “holes” in a simpli-
cial complex. Betti number, defined by βp = dimHp(K;F) is
the usual topological invariant to describe the information of
“holes”. The advantage of using Betti number to represent the
topology pattern of data is that it is more intrinsic and more
resistant to noise.

Persistent homology is the central method to detect the
topological features and describe the geometric shapes of high-
dimensional data in topological data analysis. The persistence
is intended to focus on the multi-scale information of data
sets. We build the persistent homology on data sets by a
filtration of simplicial complexes. Given a collection of points
in Euclidean space Rn, the Vietoris-Rips complex Rϵ is the
abstract simplicial complex whose p-simplices are the sets of
p + 1 points which are pairwise within distance ϵ [15]. The
Vietoris-Rips complex is the most frequently used filtration of
complexes constructed from a point set. Let K be a simplicial
complex equipped with a real-valued function f : K → R.
Then we have a filtration of simplicial complex {Kϵ}ϵ given
by Kϵ = {σ ∈ K|f(σ) ≤ ϵ}. The (a, b)-persistent homology
of K with respect to f is defined by

Ha,b
p (K;F) := Im(Ha

p (K;F) → Hb
p(K;F)), p ≥ 0.

The (a, b)-persistent Betti number is given by βa,b
p =

dimHa,b
p (K;F). There are two typical representations of

persistent Betti numbers, the barcode, and the persistence
diagram. The barcode and the persistence provide the visual-
ization of the persistent homology. See Fig. 1 as an example.
Consider a collection of points in a Euclidean plane Rn. We
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Fig. 1. A nested sequence of simplicial complexes as the radius increases.

obtain a filtration of simplicial complexes as the parameter
ϵ grows. When ϵ = 0, the Vietoris-Rips complex R0 is the
simplicial complex of discrete points. By setting the sample
points as the circle center and setting the scale parameter ϵ as
the radius of a circle, the filtration of simplicial complexes can
be constructed as follows: if two circles have an intersection,
then add a line segment between the two points (ϵ = 1). If
three circles have intersections with each other, then add a
triangle among the three points (ϵ = 2). Thus simplices are
added to the complex step by step, which generates a nested
sequence of simplicial complexes as the radius increases.
As the scale parameter grows, some generators come into
existence at some parameters while some generators disappear
at some parameters. The parameter that a generator α appear is
called the birth time of α, and the parameter that α disappears
is called the death time. The (birth, death) pairs are plotted
in a diagram called persistence diagram. Persistence diagram
provides a concise description of the topological changes over
all scale parameters.

B. Topological Features

Although persistence diagrams are useful descriptors of
data, they may not be suitable as input data for most machine
learning models due to the absence of a natural linear structure.
However, this limitation has been addressed through vectoriz-
ing persistence diagrams or using kernel methods. In this study,
we extract four types of topological features by vectorizing
persistence diagrams. These features have been successfully
employed in other work for time series analysis. The four
features can be categorized into two groups: entropy and am-
plitude. Entropy refers to persistent entropy, while amplitude
includes Wasserstein amplitude, landscape amplitude, and Betti
amplitude. The followings are the details of the topological
features.

(a) Persistent entropy: Persistent entropy is defined as the
Shannon entropy of the persistence diagram. In general,
the lower the persistent entropy is, the simpler the shape
of the data will be. Let D be a persistence diagram
and α = (bα, dα) be a point in the diagram. Then, the
persistent entropy of D is defined as:

E(D) := −
∑
α∈D

pα log pα (1)

where

pα =
dα − bα∑

α∈D(dα − bα)
(2)

(b) Amplitude: The main idea behind amplitude is to partition
a diagram into sub-diagrams based on homology dimen-
sion, and use a metric to measure the distance of each
sub-diagram (or the derivative of each sub-diagram) with
respect to the diagonal diagram. The diagonal diagram
consists of only the diagonal line. Wasserstein ampli-
tude computes the p-Wasserstein distance between sub-
diagrams and the diagonal diagram, and it is defined as:

Aw =

√
2

2

∑
α∈D

((dα − bα)
p)

1
p (3)

Landscape amplitude computes the Lp distance between
persistence landscapes derived from sub-diagrams and the
persistence landscape derived from the diagonal diagram.
Betti amplitude, on the other hand, computes the Lp

distance between Betti curves derived from sub-diagrams
and Betti curve derived from the diagonal diagram.
Persistence landscapes and Betti curves are two other
representations of topological signatures. In this study,
we only consider the case of p = 2.
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C. Time Delay Embedding

To compute persistent homology and extract topological
features from the 1-dimensional time series EMG signals, they
must first be represented in the form of a point cloud. This
can be achieved using the method of time delay embedding,
also known as Taken’s embedding. Given a 1-dimensional time
series X(t), its time delay embedding can be described as a
sequence of vectors in the following form:

Xi = [X(ti), X(ti + τ), ..., X(ti + (d− 1)τ)] ∈ Rd (4)

where d is the embedding dimension and τ is the time
delay. Each vector is treated as a point in a d-dimensional
Euclidean space, and all vectors together constitute a point
cloud. There are two main parameters that need to be set in
time delay embedding: embedding dimension and time delay.
The embedding dimension determines the dimension of the
Euclidean space. A higher dimension means more information
is embedded in one single point, but it is harder to find patterns
from these points in a higher space. The embedding delay
determines how long a term of memory is embedded in one
single point. A longer term of memory means longer memory,
but the resulting data points lose the short-term memory and
local features. The selection of embedding dimension and
delay determines the topology of the embedded point clouds
and thus affects the classification results.

In most cases, EMG signals are collected from multiple
electrodes, making them multivariate time series. To apply time
delay embedding on multivariate signals, it is applied to each
channel separately, and each channel of an EMG sequence
corresponds to a point cloud. In our proposed method, we use
the same embedding dimension and time delay for all channels.
Considering a window of an n-channel EMG signal with the
shape of (m × n), where m is the length of the window, we
obtain n point clouds.

III. EXPERIMENTS

A. Dataset and Preprocessing Policy

The EMG dataset employed in our experiments is a
publicly accessible dataset called NinaPro DB5 [33], which
records muscle activity using two Thalmic Myo armbands.
Each Myo armband is equipped with 8 electrodes, yielding
a total of 16 channels of EMG signals collected. The dataset
comprises 6 repetitions of 53 distinct movements (including
rest) performed by 10 intact subjects. The Thalmic Myo
already incorporates a 50 Hz notch filter, eliminating the need
for additional filtering [34].

Before feeding the EMG signals into classification models,
data preprocessing is necessary. To compare the results of our
proposed method with other benchmarks, we must maintain
consistency in data preprocessing. Thus, we followed the exact
procedure outlined in [34]. This process involves dividing each
detected repetition into 200-sample windows with an overlap
of 100 samples. Subsequently, each window is labeled with
its corresponding movement number. For training and testing
dataset splitting, repetitions 1, 3, 4, and 6 were used for train-
ing, while repetitions 2 and 5 were designated for validation.
Classification was performed on all 53 movements (including

rest). It is important to note that the rest movement’s sample
size is significantly larger than that of other movements, so
it was reduced to avoid dataset imbalance. Python served as
the programming language for conducting the experiment. We
employed various Python packages, including Risper [35] for
computing persistent homology and scikit-learn for building
classifiers.

B. Selecting the Best Embedding Delay and Dimension

As outlined in Section II-C, we employed time delay
embedding to transform time-series EMG signals into point
clouds in Euclidean space. Time delay embedding involves
two primary parameters: embedding dimension and delay.
The selection of these parameters defines the topology of
the embedded point clouds, which in turn influences the
classification accuracy. To determine the optimal values for
embedding dimension and delay in EMG classification, we
generated point clouds for each channel by applying the same
dimension and delay parameters, ranging from 2 to 10 and 1
to 9, respectively.

Subsequently, we calculated persistent homology on these
point clouds and extracted persistence diagrams. The 0-th
and 1-st Betti numbers were utilized to detect the number
of connected components and the number of independent
loops of simplicial complexes. This approach was chosen as
computing higher-dimensional Betti numbers can be highly
complex. Persistent entropy was then extracted as a feature
descriptor from the persistence diagram. For a single chan-
nel, persistent entropy is a 2-dimensional vector in a plane,
with coordinates corresponding to the 0 and 1-dimensional
homology groups. As illustrated in Fig. 2, the two hypotheses
being compared are labeled as H0 and H1. The dataset used in
this experiment contained recordings from 16 channels. When
persistent entropy was computed for each channel, both H0

and H1 were produced, each 16-dimensional. Concatenating
H0 and H1 resulted in a single 32-dimensional feature vector.

The EMG data was classified using persistent entropy of
H0, H1, and their concatenation. Each feature was input into
a random forest classifier separately. The classifiers’ perfor-
mance was then evaluated to identify which feature yielded
the best results. Fig. 2 displays the classification outcomes.
The heatmap reveals the following findings: (1) The persistent
entropy of H1 does not contribute any valuable information
for EMG signal classification and exhibits poor performance.
(2) Concatenating H0 and H1 does not significantly enhance
classification accuracy. The highest classification accuracy
achieved in our experiment was 71.86%, obtained with an
embedding delay of 1 and a dimension of 6.

The optimal combination of embedding delay and dimen-
sion discovered in our previous experiment using persistent
entropy and the random forest classifier may not be entirely
convincing. Moreover, while the highest accuracy was attained
at dimension 6, it is unclear whether this dimension is sig-
nificantly better than dimensions 5 or 4, as the classification
accuracies are only marginally different. To gain further in-
sight into the effect of embedding delay and dimension on
classification performance, we conducted a second experiment.
Similar to the first experiment, we transformed the raw time-
series data into point clouds for each channel using dimension
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Fig. 2. Accuracy heatmap for various combinations of embedding delay and dimension.

and delay parameters selected from the range of 2 to 10 and
1 to 9, respectively, and computed persistent homology on
these point clouds. We then extracted four types of topological
features, namely persistent entropy, Wasserstein amplitude,
landscape amplitude, and Betti amplitude. For each type of
feature, we considered both H0, H1, and their concatenation.
These features were then fed into both SVM and random forest
classifiers for further analysis.

To explore the impact of embedding dimension on classifi-
cation accuracy, we first calculated the mean accuracy for each
embedding dimension across all delays and plotted the mean
accuracy curve in Fig. 3. In the legend of the first subfigure,
“entropy h0 rf” denotes using persistent entropy of H0 with
a random forest classifier, while “entropy rf” denotes using
the concatenation of persistent entropy of H0 and H1 with a
random forest classifier.

The figure reveals that: (1) The topological features of
H1 provide no meaningful information for EMG signal clas-
sification and perform poorly, consistent with the conclusion
of the first experiment. The classification accuracy using the
topological features of H0 does not show a decreasing trend
with any classifier, and even continues to increase beyond
a dimension of 10 in the case of persistent entropy and
Wasserstein amplitude. (2) Concatenating topological features
of H0 and H1 generally does not result in a positive effect.
The accuracy curve initially exhibits a rising trend, reaches a
peak, and then declines. This occurs because H1 carries less
information and negatively impacts the concatenation of H0

and H1. (3) Classification using Betti amplitude of H0 proves
effective and stable across all dimensions, while landscape
amplitude is not a useful feature, as the landscape amplitude
of H0, H1, and their concatenation did not yield acceptable
accuracy.

To examine the effect of embedding delay on classification
accuracy, we calculated the mean accuracy for each delay
across all dimensions and plotted the results in Fig. 4. Our
analysis reveals that: (1) For EMG signals, the classification
accuracy using any topological feature (except landscape am-
plitude, which is not effective) of H0 remains stable across
all delays, indicating that embedding delay has only a minor
influence on EMG signal classification. (2) When using the
concatenation of topological features of H0 and H1, accuracy
decreases as delays increase. This can be attributed to the
limited usefulness of the information carried by H1, which

can negatively impact H0. However, classification using Betti
amplitude of H0 remains stable across all delays.

Fig. 3 shows that the accuracy using topological features
of H0 has a trend of increasing even beyond a dimension of
10. To further investigate this trend, we examined dimensions
ranging from 2 to 20, with an embedding delay of 1, as
delay has only a minor influence on classification results. The
classification results, shown in Fig. 5, reveal that: (1) Betti
amplitude remains stable even at higher dimensions, without
any significant decrease in accuracy. (2) For persistent entropy
and Wasserstein amplitude, the increasing trend becomes less
pronounced after dimension 10, and their accuracy converges
to a maximum value around dimension 12. (3) The highest
classification accuracy achieved is 73.93%, using Betti ampli-
tude of H0 at an embedding dimension of 3 and an embedding
delay of 1 with SVM.

In summary, choosing the appropriate delay and dimension
in time delay embedding and using Betti amplitude of H0 as
a topological feature can significantly enhance the accuracy of
EMG signal classification. The main findings of the experi-
ments are as follows:

(a) As the embedding dimension increases, the accuracy
improves, eventually converging to a specific value. Delay
has only minor effects on movement classification accu-
racy, so it can be simply set to 1. An exception is the
case of Betti amplitude, where the classification model
using Betti amplitude is robust to changes in dimension
and delay. The optimal choices for delay and dimension
for Betti amplitude are 1 and 3, respectively.

(b) H0 contains more meaningful information than H1 for
EMG hand movement classification, regardless of the
topological feature used. Combining the topological fea-
tures of H0 and H1 has negative effects on H0 and does
not enhance accuracy.

(c) Betti amplitude of H0 is the most effective and stable
topological feature for classifying EMG signals, as it is
robust to changes in dimension and delay and achieves
the highest accuracy. Persistent entropy and Wasserstein
amplitude are also good choices but require appropriate
selection of embedding dimension and delay. Landscape
amplitude is not an effective feature for EMG classifica-
tion.
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Fig. 3. The mean of the accuracy in each embedding dimension across all delays.
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Fig. 4. The mean of the accuracy in each embedding delay across all dimensions.
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Fig. 5. The classification accuracy with embedding dimensions ranged from 2 to 20.
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TABLE I. CLASSIFICATION ACCURACY USING TOPOLOGICAL FEATURES AND OTHER TIME DOMAIN FEATURES

Features Classifier Mean accuracy Peak accuracy
Persistent entropy 73.02 73.12
Wasserstein amplitude 70.49 70.76
Landscape amplitude 56.32 56.51

Topological features

Betti amplitude 73.50 73.93
RMS (Root mean square) 70.36 70.63

Time domain features
TD (Time Domain Statistics)

SVM

68.19 68.48
Persistent entropy 71.51 71.69
Wasserstein amplitude 71.69 72.07
Landscape amplitude 64.35 64.57

Topological features

Betti amplitude 71.37 71.77
RMS (Root mean square) 71.26 71.60

Time domain features
TD (Time Domain Statistics)

Random forest

69.85 70.19
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Fig. 6. Betti curves of one sample randomly selected from each of three types of hand movements, respectively.

C. Compare to Other Time-domain Features

To evaluate the performance of topological features relative
to other feature types, we conducted an additional experiment
using two time-domain features: Root Mean Square (RMS)
and Time Domain Statistics (TS). RMS computes the root-
mean-square value for each channel and constructs a 16-
dimensional feature vector. In contrast, TS incorporates the
mean absolute value, number of zeros, number of slope
changes, and waveform length calculated from each channel
[36]. We separately fed these two feature types, as well as
the topological features with embedding delay and dimension
determined based on the findings from previous experiments,
into Support Vector Machines (SVM) and Random Forest for
movement classification. We repeated the training process 10
times and recorded the classification accuracies. The mean and
peak accuracy are displayed in Table I. Our results indicate
that topological features, with the exception of landscape
amplitude, outperform RMS and TS. Notably, the SVM model
employing persistent entropy or Betti amplitude achieved a
high accuracy of over 73%.

D. Visualize EMG Signals using Betti Curves

As previously mentioned, Betti amplitude is recognized
for its robustness to changes in dimension and delay, and it
has demonstrated the highest classification accuracy among
other topological and time-domain features. This suggests that
Betti amplitude may be better equipped to reveal the topology
of EMG signals. However, Betti curve encodes even more
topological information than Betti amplitude, as Betti ampli-

tude calculates only the L2 distance between Betti curves. As
a result, Betti curve can effectively differentiate topological
patterns of distinct hand movements. This has inspired us to
employ Betti curve for visualizing the topological patterns of
various hand movements. For instance, we have plotted Betti
curves of randomly selected samples from three types of hand
movements in Fig. 6. It is important to note that only the
0-th Betti number, which counts the connected components
in the topological space, is displayed in the figure, as we
have demonstrated that only the information of H0 is effective
in classifying EMG signals. The figure clearly illustrates the
distinct patterns of Betti curves in each channel for different
hand movements.

To gain a broader understanding of the topological patterns
for a specific type of hand movement, we calculated the
average Betti curve by taking the arithmetic mean of Betti
curves from all samples within that particular type of hand
movement. This offers a more accurate representation of the
general topological patterns for a given movement. By visu-
alizing the average Betti curves of various hand movements
in a single figure, we can easily observe the clear differences
in topological patterns among different movements. This is
demonstrated in Fig. 7, where the curve labeled “0” represents
the “rest” movement, which is the fastest curve that drops
to 0. This suggests that the topological space of “rest” has
minimal topological complexity. Defining a distance metric on
the average Betti curve could potentially aid in measuring the
difficulty of discriminating a movement from EMG signals.
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Fig. 7. The average Betti curves calculated for each of the 53 hand
movements based on all training samples.

IV. CONCLUSIONS

The goal of this study was to determine whether topological
features could enhance the accuracy of EMG signal classi-
fication for hand movements and contribute a methodology
to the analysis of bio-electrical signals. The main findings
of this study are as follows: (1) Topological features can
effectively classify EMG signals, achieving the highest classi-
fication accuracy of 73.93%, outperforming the other tested
time-domain features by nearly 2% in the experiment. (2)
Topological features of H0 prove more effective than those of
H1. In general, higher embedding dimensions lead to increased
accuracy, while embedding delay has a smaller impact on
classification accuracy. (3) Among the four tested topological
features, Betti amplitude is the most stable, and we have
introduced Betti curves for visualizing the shape of hand
movement EMG signals. Future research will explore whether
these findings can be applied to other types of bio-electrical
signals.

ACKNOWLEDGMENT

This research was funded by Scientific Research Founda-
tion of Chongqing University of Technology and supported by
the Science and Technology Research Program of Chongqing
Municipal Education Commission (No. KJQN202101108).

REFERENCES

[1] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, “Techniques of emg
signal analysis: detection, processing, classification and applications,”
Biological procedures online, vol. 8, pp. 11–35, 2006.

[2] C. Sapsanis, G. Georgoulas, and A. Tzes, “Emg based classification
of basic hand movements based on time-frequency features,” in 21st
Mediterranean conference on control and automation. IEEE, 2013,
pp. 716–722.

[3] M. A. Aceves-Fernandez, J. Ramos-Arreguin, E. Gorrostieta-Hurtado,
J. Pedraza-Ortega et al., “Methodology proposal of emg hand movement
classification based on cross recurrence plots,” Computational and
mathematical methods in medicine, vol. 2019, 2019.

[4] O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka, “A human-assisting
manipulator teleoperated by emg signals and arm motions,” IEEE
transactions on robotics and automation, vol. 19, no. 2, pp. 210–222,
2003.

[5] N. Rabin, M. Kahlon, S. Malayev, and A. Ratnovsky, “Classification
of human hand movements based on emg signals using nonlinear
dimensionality reduction and data fusion techniques,” Expert Systems
with Applications, vol. 149, p. 113281, 2020.
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