
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

484 | P a g e  

www.ijacsa.thesai.org 

A Novel Framework for Semi-supervised Multiple-

label Image Classification using Multi-stage CNN and 

Visual Attention Mechanism 

Joseph James S
*
, Lakshmi C

 

Department of Computational Intelligence, Faculty of Engineering and Technology, SRM Institute of Science and Technology, 

Kattankulathur, Chennai, Tamil Nadu, India 

 

 
Abstract—To train deep neural networks effectively, a lot of 

labeled data is typically needed. However, real-time applications 

make it difficult and expensive to acquire high-quality labels for 

the data because it takes skill and knowledge to accurately 

annotate multiple label images. In order to enhance classification 

performance, it is also crucial to extract image features from all 

potential objects of various sizes as well as the relationships 

between labels of numerous label images. The current 

approaches fall short in their ability to map the label 

dependencies and effectively classify the labels. They also 

perform poor to label the unlabeled images when small amount 

of labeled images available for classification. In order to solve 

these issues, we suggest a new framework for semi-supervised 

multiple object label classification using multi-stage 

Convolutional neural networks with visual attention 

(MSCNN)and GCN for label co-occurrence  embedding(LCE) 

(MSCNN-LCE-MIC), which combines GCN and attention 

mechanism to concurrently capture local and global label 

dependencies throughout the entire image classification process. 

Four main modules make up MSCNN-LCE-MIC: (1) improved 

multi-label propagation method for labeling largely available 

unlabeled image; (2) a feature extraction module using multi-

stage CNN with visual attention mechanism that focuses on the 

connections between labels and target regions to extract accurate 

features from each input image; (3) a label co-existence learning 

that applies GCN to discover the associations between different 

items to create embeddings of label co-occurrence; and (4) an 

integrated multi-modal fusion module. Numerous tests on MS-

COCO and PASCAL VOC2007 show that MSCNN-LCE-MIC 

significantly improves classification efficiency on mAP 84.3% 

and 95.8% respectively when compared to the most recent 

existing methods. 

Keywords—Semi-supervised; visual attention; multi-label; 

image classification; label propagation  

I. INTRODUCTION 

Multiple labels image classification has lately sparked a lot 
of interest in areas such as human attribution recognition, 
music mood categorization, and multi-object recognition. 
Multi-label image categorization, as compared to single-label 
image recognition, turns into a useful and difficult job that 
necessitates a deeper comprehension of the image objects 
because images from real world application always encompass 
numerous objects that contain extensive semantic information. 
Numerous of noteworthy works have been suggested to 
investigate the semantic connections between different labels 

and accomplish successful classification of multiple label 
images. There are two major groups into which these 
strategies fit. In contrast to the former which focuses on 
learning the regional correlations between target labels and 
true labels, the latter uses a (GCN) [1] to acquire the overall 
label relationships among different objects. This multi-label 
image, as seen in Fig. 1, is typical in real life and primarily 
includes three objects: "person," "tennis ball," and "tennis 
rocket." Each of these objects is annotated based on the target 
regions that have been highlighted in the image rather than 
other areas of it. 

Wang et al. [2] and others [3, 4, 5] coupled recurrent 
neural network (RNN) and convolution neural network (CNN) 
to mutually describe the image label significance and label 
relationships, but they failed to take into account of the 
geographic setting of images. The main limitation of these 
techniques is that they ignore the intricate topology structure 
that exists between objects. This encourages study into 
methods for identifying and examining the label dependency 
in different approaches. 

To directly model label dependencies, some methods built 
around RNN [2] or stochastic graph models [6, 7] have been 
suggested. The first approach views the multiple label 
problem of classification as a systematic reasoning problem 
that might have scaling issues due to its high computational 
complexity. Another work uses attention mechanisms to 
tacitly model the label correlations [8]. The global 
associations between labels that must be derived from 
information drawn from visuals other than the one being 
studied are still being ignored. Instead, they consider 
correlations between observed areas of an image, also referred 
to as regional associations. To address this issue, Zhu et al. [9] 
propose the Spatial Regularization Network (SRN), which 
learns an attention map for each label by using image-level 
supervisions and focused on the associated image region for 
every label. To update the complete network, however, they 
employ a subpar multi-step training workflow. Despite the 
fact that these methods [10] analyze label relationships with 
mechanisms of attention, they only take into account a small 
amount of local association among various target regions that 
show in a single image and ignore association of the labels 
distribution on every one of the training images. 
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Fig. 1. Multiple label images. 

Fig. 1 shows that if two things are semantically associated 
in the real world, they are more probable to appear together in 
an image compared to when they are not. The ML-GCN 
architecture developed by Chen et al. [11] records the global 
label correlations on all training examples by employing GCN 
to generate label relationship embedding using the label 
statistics. It has been suggested that A-GCN [12] represent the 
label correlations in reference to ML-GCN by developing a 
method for label network construction. However, these two 
approaches use the dot product (DP) to finish the fusion of 
label co-occurrence embeddings and image features, severely 
impeding model convergence and multiple label image 
categorization performance improvement. In this work, we 
suggest a new multi-staged CNN with a visual attention 
mechanism to extract features and produce better feature 
representations from the training images. This method 
captures the local and global label dependency and speeds up 
model convergence. We use a more effective label 
propagation technique to label the unlabeled images and multi 
modal factorized bilinear pooling (MFB) [13] as an element of 
fusion. Then, we suggest an innovative semi-supervised 
multiple label classification of images model with an attention 
mechanism in order to successfully integrate visual 
characteristics and label co-occurrence embeddings (referred 
to as MSCNN-LCE-MIC). MSCNN-LCE-MIC is composed 
of four fundamental modules: cross-modal fusing with MFB; 
learning by label co-occurrence embedding with GCN; and 
feature extraction with multi-staged CNN, attention 
mechanisms, and improved label propagation techniques. 

In the first module, we use CNN inspired by VGG-16 to 
learn the features of the images by creating a feature map for 
each label with multi-stage CNN, a visual attention 
mechanism and an improved label propagation technique to 
obtain the labels for unlabelled images. All labels are 
transformed into word vectors in the second module before 
being used as inputs to GCN to produce label co-occurrence 
embedding. The MFB component is finally integrated into our 
task in the module of cross-modal fusion, where it helps us 
effectively combine label embeddings and image 
characteristics to allow a complete classification system. 
Widespread tests on MS-COCO [14] and PASCAL VOC2007 
[15] show that MSCNN-LCE-MIC significantly improves 
convergence efficiency and outperforms existing methods in 
terms of classification outcomes. The following are the paper's 
main contributions: 

1) By combining the multi-staged CNN with a visual 

attention process for effective extraction of features and GCN 

to simultaneously detect regional label relationships in an 

image and universal label relationships among different items 

over the data distribution, we provide an innovative complete 

capable of training multi-label image categorization 

framework, MSCNN-LCE-MIC. 

2) To effectively extract features of each object from an 

image, which will improve the performance of the 

classification model, we suggest a multi-staged CNN with a 

visual attention mechanism. 

3) We incorporate an improved label propagation 

technique to add labels to the training data's unlabeled images, 

and we also incorporate the fusion component MFB into 

MSCNN-LCE-MIC to effectively combine features of image 

and embeddings of label co-occurrence. As a result, model 

convergence is considerably accelerated and classification 

performance is improved. 

4) The proposed method, MSCNN-LCE-MIC, 

consistently outperforms earlier competing approaches and is 

simple to apply end-to-end. We put our approach to the test 

using benchmark datasets for multiple label image 

identification. 

The remaining portions of the piece of writing are 
structured as follows: In Section II, we will review recent 
works related to the topic. Section III will cover the suggested 
framework for semi-supervised multiple label image 
classification, along with a comprehensive explanation of each 
component. Section IV will discuss the experimental design, 
the datasets used, the architecture, and analysis of the results 
obtained. Section V, reviews the findings and concludes the 
whole work with the proposal to future research options. 

II. RELATED WORKS 

A. MultipleLabel Image Classification 

Due to the emergence of large-scale datasets like Image 
Net [16], MSCOCO [14], and PASCAL VOC [15], as well as 
the quick advancement of deep convolutional networks [3, 
17], the efficiency of image categorization has seen a quick 
improvement. Extending deep CNNs for categorization of 
images with multiple labels has received a lot of attention. 
Image categorization using a single label techniques have 
advanced significantly with the quick creation of CNN-based 
models. Experts employed binary methods to classify images 
that have multiple labels through developing a binary 
classification algorithm for each label. To recognize multi-
label photos, [18] apply pre-built features of ImageNet. 
Chatfield et al.'s [19] model success is improved by using the 
target dataset to create task-specific image characteristics. A 
deep network that excels on particular items is VeryDeep [4]. 
These methods, however, deal every object in the image 
separately and ignore the connections between various 
elements. To jointly describe the label significance and 
relationships, Wang et al. suggest CNN-RNN [2]. 

The SRN created by Zhu et al. [9] places an emphasis 
upon the associated image area associated with every label 
and uses image level oversights to obtain an attention map for 
each label. They are unable to finish end-to-end training 
because they update the entire network using a subpar multi-
step training workflow. The study [20] suggests employing 
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GCAM to record the label relationships between diverse 
image transforms. Graph convolution network (GCN) is used 
by MLGCN [11] and AGCN [12] to produce label co-
occurrence embedding for multiple label picture 
categorizations. Unfortunately, they use dot product (DP) to 
finish the process of fusing label co-occurrence embeddings 
and image features, substantially impeding system 
convergence and more effectively classify images with 
multiple labels. 

B. Learning with Structured Graph 

By utilizing graph propagation and reasoning, it is possible 
to model the relationships between labels in a useful fashion 
as well. In order to improve image categorization, [21] used 
neural networks to analyze data with a graph layout and 
provide a paradigm using GNNs to discover more 
characteristic relationships. In order to investigate the 
relationships between various labels of multiple label zero-
shot learning, [22] used information graphs. For the study of 
graph-structured data, [1] introduced a GCN method, which 
utilized layer wise propagation to encode both graph data and 
node attributes. According to the aforementioned GCN, 
Semantic embeddings and classification associations were 
merged by Wang et al. [23] to predict the effectiveness of the 
visual classification for each group. Moreover, [11] provided a 
framework built on GCN that modeled the relationships 
between labels for multi-label categorization using a 
predefined graph. 

C. Cross-modal Fusion 

Recent years have seen a rise in interest in the disciplines 
of visual question and answering (VQA) [24, 25] and multi-
modal counterfeit news discovery [26], which attempts to 
successfully combine vectors from several modules. These 
fields combine visual and linguistic representation derived 
from open, sizable linguistic or visual databases. Nevertheless, 
current techniques are unable to produce expressive image-
text features or to comprehend the complex connections 
between these characteristics. The majority of available 
solutions merely integrate cross-modal embeddings using 
linear models such element-wise addition. It has been 
suggested that MCB and MLB significantly lower the 
calculation costs associated with the VQA fusion procedure to 
address this issue. However, there are two significant 
drawbacks: MLB requires too much iteration before it 
converges, while MCB can only produce good results if it 
collects multi-dimensional feature vectors. Additionally, [13] 
proposed MFB, which successfully combines image features 
and text embeddings while also noticeably accelerating model 
convergence. MFB first transforms vectors of high dimension 
into vectors of low dimension before combining the matching 
position element of cross modal vectors. By incorporating 
MFB to be trained on the multiple label picture characteristics, 
F-GCN [27] successfully addresses the cross-modal fusion 
problem, but it disregards each image's attention process. 

The problems in the existing methods are lack of efficient 
feature extraction methods to handle morphological similarity 

issues and label dependency that exists between objects of an 
image. 

The proposed work presents an innovative semi-supervised 
framework called MSCNN-LCE-MIC that acquires label 
relationship and their interdependence with GCNs in order to 
enhance the accuracy of multiple object label image 
categorization. The aforementioned structure learning methods 
served as inspiration for this framework. Our MSCNN-LCE-
MIC explicitly stacks numerous GCN layers to build universal 
models for exploring the feature representations, in contrast 
with earlier structure learning methods. The main difference 
between MSCNN-LCE-MIC and rival approaches is that the 
proposed work uses an end-to-end methodology during the 
training stage to concurrently record localized label 
correlations within an image along with universal label 
correlations across multiple items in the data distribution. The 
label encoding and structured representation of graphs 
techniques used in MSCNN-LCE-MIC are more efficient at 
addressing the over-smoothing and scaling problems that are 
brought on by the substantial depth of GCN-based 
architecture. 

III. PROPOSED WORK 

The general structure of our suggested framework, multi-
stage CNN with label co-occurrence embedding and attention 
mechanism (MSCNN-LCE-MIC) for semi-supervised 
classification of multiple label images, is given away in Fig. 2. 
This framework includes (1) enhanced label propagation to 
obtain labels for unlabelled images, (2) a multi-stage CNN 
with visual attention to mine the each input image features, (2) 
a module for learning label co-occurrence embedding that is 
built on the GCN, and (3) a module for fusing the two cross 
modal vectors described above successfully. We describe our 
plan's workflow in more detail below. 

A. Improved Label Propagation 

The label propagation method (LPA) is a well-known 
clustering technique due to its popularity and freedom from 
parameter dependence. Label propagation is a technique for 
propagating labels from labeled to unlabeled picture data 
based on the association between the two object classes 
[28][29]. The similarity weights in conventional label 
propagation systems, on the other hand, may not be 
appropriate for subsequent label propagation because they 
distribute labels after a certain data graph generation process. 
This strategy offers benefits, but it also has some 
disadvantages. Another drawback of LPA is the 
unpredictability with which nodes are clustered, which 
increases instability and the creation of big communities. 
When nearby nodes are chosen at random from a list of fixed 
constant hops, a collection of disconnected nodes results. We 
suggest an LPA-based solution to overcome the problem of 
random community allocation and build better clusters. These 
variations improve the quality of communities that are found 
by taking advantage of node attribute values and link strength. 
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Fig. 2. Overall flow diagram of proposed method. 

Using the feature data, a weighted graph is first created. 
The issue of random selection between nearest neighbors is 
then addressed via enhanced label propagation with dynamic 
connection strength metrics. The improved label propagation 
identifies the linked neighbors in the graph by using the heat 
kernel dispersion approach and its corresponding heat 
equation. The community arrangement of the node-attributed 
network is then returned by the program. In this form, the 
weighted common neighborhood (WCN) is employed as the 
link strength measure to award a community label (Murata 
&Moriyasu, 2007). The WCN value for each community label 
is then added together for the neighborhood. The system then 
chooses the community tag to apply to the selected node that 
has the highest total. The equation below describes how to 
measure the WCN connection strength. 





)()(

, ),(),(
BAC

BA BCwCAwStrength
                (1) 

The shared neighbors of nodes A and B are shown by the 
pair (A) (B). The edge weights that link the nodes A and B to 
their neighbor C are w (A, C) and w(C, B), respectively. 

B. Multi-stage CNN 

The projected model is based on an 18-layer CNN inspired 
by VGGNet [30]. However, as shown in Fig. 3, the proposed 
design classifies data by considering both high level and mid-
level features. The second, third, and fourth network segments 
are used to extract these feature maps. The data from the first 
block is not directly used because it only contains minimal 
object label recognition filters. It is clear that the initial block's 
attributes made little of an impact. At this point, the networks 
can only understand and learn about simple textures, which is 
insufficient to define the essential traits required to 
differentiate objects. 

 

Fig. 3. Proposed multi-stage CNN with attention mechanism. 
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Furthermore, although mid-level layers in the second and 
third blocks produce local features, high-level layers in the 
fourth and fifth blocks greatly contribute to tiny object 
recognition via global characteristics. In this study, we 
propose MS-CNNs that combine local and global features in a 
predetermined way to produce the global feature vector g. Our 
networks, in contrast to conventional CNNs, generate a large 
number of essential characteristics that make the system 
robust to fluctuations in image quality and object occlusion 
problems. Also, a few pointless feature extraction filters are 
present in the same block, which is consistent with the 
discovery made regarding mid-level features in the prior 
section is given in eq.2. 
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1  feature vectors that 
came from different network tiers. If the input is the result of 
Convolutional layers, vectorization is required before 
employing this operator. 

C. Attention Mechanism 

Attention estimators have been inserted after layers 7, 10, 
and 13. The attention estimator receives the layer 7 output and 
generates a "attention mask" consisting of integers between 0 
and 1, then multiplies by output of the layer 7 to produce 
"ga1". Following layers 10 and 13, the attention estimators go 
through a similar process, producing, respectively, ga2 and 
ga3. There was often another fully connected layer (FC) after 
the FC layer with the number "16," but it has been eliminated, 
leaving only the fully connected layer that comes after the 
dense layer at the network end to make the label classification. 
Instead, the three attention estimators' inputs are now handled 
by a new fully connected layer. The process of visual attention 
method for feature extraction is described as follows, 

Step 1: The compatibility score C is calculated with use of the 
regional feature vector l and the universal feature vector g. 
The compatibility score is meant to be high when the local 
characteristics-defined image patch contains components of 
the dominating picture category. For instance, if the image 
contains a multiple objects, we assume that the global feature 
vector g adequately describes all possible object features. The 
patch that most closely resembles a particular object is also 
expected to produce local traits l that, when paired with g, will 
result in a high compatibility score. 
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i
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  (3) 

The local feature vector l and the global feature vector g 
are simply added together. Be aware that while the local 
features l will change based on the convolutional layer (layers 
7, 10, and 13), the global feature vector g will remain 
constant. Projecting g into l's lower-dimensional space will 
make sense if l and g are not the same dimensions. 

Step 2: Calculate the Attention Weights ai from the 
Compatibility Scores C shown in eq(4). The outcome is 
referred to as ―a‖, after that the compatibility scores C are 
compressed into the range of (0, 1) using a softmax. 
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Step 3: Determine Each Layer's Final Attention 
Mechanism Output using equation 5. 
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Here, we calculate the attention mechanism's (ga) final 
output for a certain layer using a weighted combination of the 
l for that particular layer (s). The attention weights "a" that we 
recently found are the weights that we employ. 

Step 4: Create a categorization forecast based on final 
outcome of the attention module. We now want to select a 
classification using the attention outputs ga that we just 
gathered for layers 7, 10, and 13. To acquire intermediate 
predictions, feed each attention output into a separate, 
completely connected layer. The final projections are then 
calculated by averaging these intermediate guesses. 

D. Label Dependency Learning with GCN 

According to [1] and [11], the label co-existence learning 
(LCL) module uses GCN of two-layers, with each layer taking 
the output of the layer before it and producing a new graph 
representation. Fig.4 shows the LCL module with GCN. The 
semantic encoding vectors X = {Xi}i=1

C
  and the equivalent 

association graph G are fed into the LCL component for the 
initial GCN layer. The graph representation and node feature 
may be easily combined by the LCL module in the 
convolution. The LCL module, which serves as the central 
part of the proposed MSCNN-LCE-MIC, intends to be trained 
on a set of classifier score Wϵ R

c x d
 to recalibrate early values 

for every label received from the image feature embedding 
module. In order to satisfy the requirements of the broadcast 
method, it is important to address two crucial challenges, 
namely word embedding and graph representation (5). 

1) Word embedding: To retrieve the word embeddings for 

each of the labels across these multiple label image datasets, 

we use the 300-dim GloVe [31] algorithm learned on the 

Wikipedia dataset. We demonstrate that it is evenly efficient 

when using the suggested LCL method as demonstrated in 

Sections 4(c).To acquire the global label interdependence on 

the training set, we build a GCN with two layers. We use 

GloVe [31][33] to create 300 dimensional vectors for each of 

the objects in order to create the label embeddings matrix Zϵ 

RCx300, following MLCGN [32]. 

 
Fig. 4. Label Co-occurrence embedding network with GCN. 
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2) Graph representation: It goes without saying that the 

correlation matrix A affects how the node representations 

propagate. Instead of starting from scratch, researchers have 

suggested a number of methods for building the predetermined 

correlation matrix (explicit graph representations). For 

instance, WordNet [34] was used by Lee et al. [22] to develop 

their structured knowledge network. String matching was 

employed by Gao et al. [35] to plot concepts to nodes 

available in concept Net [36]. To express relationships 

between labels, these methods rely solely on semantic 

embedding and do not explicitly include information about 

interdependencies. Instead, we concentrate on the label co-

existence matrix based on the training images, which is then 

used to represent the organized network composed of label 

associations by combining the label relationship data from 

neighboring nodes into a singular association matrix. 

The following is the production procedure: 

1) The first component of the label co-existence matrix P 

for the training image, we count the times at which pairs labels 

(Li, Lj) first emerge. 

  cxcc

jiipP 
 0,1   (6) 

2) The initial label correlation matrix P' can be 

constructed using the matrix R
c x c

. 
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jiii NpP 
 0,1

' /
 (7) 

where Ni is the object label's i
th

 number. As a result, the 
graph constructed from such an asymmetric matrix P' is 
directed. 
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In order to safeguard label partnerships' specifics as stated 
in eq. (8), this work presents a nonlinear method for preparing 
matrix P' which can reduce noise (7), where φ is the noise 
filtration cutoff, 1

e-6
, and M is the label association matrix 

employed in every GCN layer. 

E. Multi-Label Classification Loss 

Both the MS-COCO and the PASCAL VOC-2007 datasets 
exhibit the issue of class imbalance, which usually manifests 
as an inequity in the amount of negative and positive data. The 
suggested weighted cross entropy loss is taken into account as 
the multiple label categorization loss employed in our 
MSCNN-LCE-MIC to tackle this issue, and is described as: 

 
 
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1 0

))(1log())(log(),(

i il l
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Where,
|1|||

|1|||||






Po

Nepo
wt p and 

|1|||

|1|||||






Ne

Nepo
wtn

, |Po| and |Ne| are The total amount of both positive and 
negative image labels in a batch, bi is belief of each class 
label, σ is the sigmoid function. 

Formally, for all i ϵ [1,C], we will fuse F and Wi to obtain 
Y

i
, or the i

th
 component of the predicted label Y ϵ R

C
, where 

Wi indicates the i
th

 row vector of W. This is done provided the 
I

th
 image feature vector F. First, using two fC layers, Wi and F 

will be transformed into the corresponding m dimensional 
vectors M1 and M2. Additionally, M1 and M2 are cross-
modal vectors that will be multiplied element-wise into an m-
dimensional vector M1 M2 to enhance the interaction between 

these two embeddings. We further convert M1M2 into a m 

/ g dimensional vector M via group sum-pooling to decrease 
parameter inflation and over-fitting, the elements in each 
group are represented by the letter g, to hasten convergence. 
The i

th
 constituent of Y is then obtained by creating a fC layer. 

As a result, we are able to produce the full anticipated labels Y 
following fusion of C number of times. In order to create an 
end-to-end classification model, we employ the multiple label 
loss function by updating the  Loss given in eq. (9) between 
predicted labels Y and the actual labels Y

’
 ϵ {0, 1 }

C
 of  I

th
 

image. 

IV. EXPERIMENTAL SETUP 

A. Specifications of Implementation 

PyTorch is used to perform all experiments. Each input 
image is resized to 448x448 before passing it to feature 
extraction component. Using the GloVe [37] model, each 
object is transformed to become a 300-dimensional vector that 
includes words in the label association embedding module. 
We set g = 2 to perform the group sum-pooling procedure and 
m = 358 to perform the fusion of the vectors of features and 
label co-existence embedded data with reference to the FGCN.  
A batch size of 32 is used when updating our network during 
the training procedure. The proposed model uses stochastic 
gradient descent (SGD) with 0.9 momentum, 10

-4 
weight 

decay and initial learning rate of 0.001. 

1) Datasets: We conducted in-depth tests to confirm the 

effectiveness of MSCNN-LCE-MIC on MS-COCO [14] and 

PASCAL-VOC2007 [15]. To separate the datasets, we use the 

similar settings of MLGCN and FGCN. For further 

information, consult the references [5, 24]. 

2) Metrics for evaluation: We employ the following 

assessment metrics in accordance with mainstream techniques 

[9, 11]: (P-C) precision per class, (R-C) recall per-class, 

(mAP) mean average precision, F1 per class (F1-C) and F1 

overall (F1-O). For fair comparisons, we also catalog the 

investigational findings on the top-3 classes of the 

categorization scores. 

B. Investigational Results and Discussions 

The convergence effectiveness and classification outcomes 
of MSCNN-LCE-MIC are compared to those of cutting-edge 
image classification methods. 
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1) Convergence efficiency: We track how the number of 

training epochs changed the mAP on the examination set in 

this section. We execute this experiment using the same 

parameters as ML-GCN, including SGD, batch size, learning 

rate, datasets, loss function, etc., to allow for fair comparisons. 

MSCNN-LCE-MIC has, on MS-COCO and PASCAL 

VOC2007, converged at the 25th and 23th epochs, 

respectively, and it produces superior mAP of 84.3% and 

95.8%. Instead, MLGCN has not yet converged, and its mAP 

values are 45.8% and 75.7% lower than MSCNN-LCE-MIC at 

this time. Moreover, it will take the MLGCN roughly 200 

epochs (more than 10 times as long as MSCNN-LCE-MIC) to 

complete its learning process. These findings show that multi-

stage CNN, visual attention and cross module fusion 

significantly quickens model convergence and enhances 

performance of classification model. 

2) Results comparisons with the existing models 

a) Evaluation results on MS-COCO: The most recent 

existing techniques are compared to MSCNN-LCE-MIC, 

including FGCN [27], AGCN [12], MLGCN [11], ResNet-101 

[3], SRN [9], Order Free RNN [38], RNN with Attention [8], 

and CNN+RNN [2]. Fig. 5(a) and 5(b) shows the graphical 

representations of results obtained on MS-COCO dataset 

using proposed method. MSCNN-LCE-MIC nearly 

outperforms other options on all metrics which are shown in 

Table I and Table II. MSCNN-LCE-MIC significantly 

enhances the classification outcomes by 7% mAP in 

comparison to ResNet-101 baseline [3]. This occurrence 

shows that understanding the label dependency to produce 

more precise label features is greatly influenced by GCN. 

Also, as compared to those DP-based approaches, cross fusion 

module effectively completes the modal fusion to improve the 

efficiency of MSCNN-LCE-MIC. Additionally, based on the 

discrepancy between the earlier FGCN [27] and MLGCN 

[11], the multi-stage CNN with attention mechanism does in 

fact assist in extracting more precise image features, 

improving the effectiveness of categorization outcomes by 

1.3% mAP. 

b) Evaluation results on VOC2007: The state-of-the-art 

approaches are compared to MSCNN-LCE-MIC, including 

CNN+RNN [2], MLGCN [5], AGCN [6], ResNet-101 [8], 

Attention Reinforce [16], RNN with Attention [14], Very 

Deep [13], and FGCN [24]. The AP values and mAP values 

for each category are listed in Table III. With the exception of 

somewhat poorer performance on "bike", ―bird‖ and "person" 

MSCNN-LCE-MIC outperforms other contenders overall in 

every category. The main cause is that the majority of earlier 

techniques ignored the local and global label dependencies, 

allowing them to solely focus on one or a few objects while 

ignoring the distribution of global labels. Our MSCNN-LCE-

MIC, in contrast to existing approaches, considers both the 

regional label relationships in addition to the universal label 

relationships among diverse objects (multi-stage CNN with 

attention mechanism) within an image.  MSCNN-LCE-MIC 

outperforms other methods for the remaining 17 objects. 

Although it appears that there is a trade-off between other 

approaches and our MSCNN-LCE-MIC in this phenomenon, 

we think that this global viewpoint is essential for multi-label 

picture categorization. The MSCNN-LCE-MIC produces a 

superior mAP value of 1.8% when compared to the existing 

method FGCN [27], which shows that both the multi-stage 

CNN with attention mechanism and the cross fusion module 

are involved and help to provide more accurate classification 

results. In Table IV of Section IV C, we also discuss how 

these modules have an impact. 

 
(a) 

 
(b) 

Fig. 5. Performance comparison of proposed method on MS-COCO dataset 

(a) Overall labels (b) top-3 class. 

TABLE I.  ACCURACY(%) OBTAINED ON MS-COCO IMAGE DATASET 

Method P-C R-C F1-C P-O R-O F1-O mAP 

[9] 81.6 65.4 71.2 82.7 69.9 75.8 77.1 

[3] 80.2 66.7 72.8 83.9 70.8 76.8 77.3 

[11] 85.1 72.0 78.0 85.8 75.4 80.3 83.0 

[12] 84.7 72.3 78.0 85.6 75.5 80.3 83.1 

[27] 85.4 72.4 78.3 86.0 75.7 80.5 83.2 
MSCNN-LCE-

MIC 86.3 73.0 79.1 86.8 76.9 81.5 84.3 

TABLE II.  TOP-3 ACCURACY (%) ON MS-COCO DATASET 

Method P-C R-C F1-C P-O R-O F1-O mAP 

[2] 66.0 55.6 60.4 69.2 66.4 67.8 – 

[8] 79.1 58.7 67.4 84.0 63.0 72.0 67.4 

[38] 71.6 54.8 62.1 74.2 62.2 67.7 71.5 

[9] 85.2 58.8 67.4 87.4 62.5 72.9 63.2 

[3] 84.1 59.4 69.7 89.1 62.8 73.6 75.2 

[11] 89.2 64.1 74.6 90.5 66.5 76.7 – 

[12] 89.0 64.2 74.6 90.5 66.3 76.6 75.2 

[27] 89.3 64.3 74.7 90.5 66.6 76.7 75.2 
MSCNN-LCE-

MIC 89.9 65.0 75.4 91.0 67.7 77.6 77.8 
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TABLE III.  CLASSIFICATION ACCURACY RESULTS (%) ON VOC 2007 DATASET 

C. AblationStudies 

We carry out ablation study to examine how important 
elements and parameter settings affect MSCNN-LCE-MIC. 

1) Classification performance of MSCNN-LCE-MIC 

with/without different modules: In this section, we examine 

how five crucial modules—namely, Multi-stage CNN, the 

visual attention method, the GCN, label propagation and the 

cross modal fusion affect our proposed model. Cross-modal 

fusion won't work if our suggested paradigm is used without 

GCN. Table IV displays the mAP results for MS-COCO and 

PASCAL VOC2007 with different module combinations. As 

can be seen, MSCNN-LCE-MIC performs best when all four 

of these modules are used at once. The evaluation findings 

show that any one module can enhance our model's mAP 

output. By incorporating the label dependencies between 

objects in global level, GCN especially improves MS-COCO 

and PASCAL VOC2007 mAP by 5.9% and 4.1%, 

respectively. In addition, the visual attention method boosts 

the mAP value by 0.3% on these two datasets while taking 

into account the label dependencies within an image. Finally, 

MFB keeps improving the classification outcomes with 

respective mAP improvements of 0.4% and 0.5%. These 

outcomes attest to the potency of our strategy, which notably 

benefits from both local and global level label dependencies, 

also the cross-modal fusion to boost the accuracy of 

classification. 

2) GCN with different layers: The change in performance 

is shown in Table V and Fig. 6 after designing two (1024-

2048), three (1024-1024-2048), and four (1024-1024-1024-

2048) GCN layers in this section. With MS-COCO, MSCNN-

LCE-MIC achieves its best performance with two GCN layers 

(Fig. 6(a)), after which its performance on mAP would 

degrade as GCN layers are added. Similar to Fig. 6(b), 

MSCNN-LCE-MIC produced the best outcome (mAP) on 

PASCAL VOC2007 using a 2-layer GCN. The main reason is 

because adding more layers of GCN would have a major 

negative impact on the model's functionality by making it so 

that the output features of nodes are no longer recognizable 

during the propagation process. We therefore employ two 

GCN layers in order to acquire the label-occurrence 

embeddings. 

3) Number of units g in group sum pooling: By using 

group sum-pooling, we reduce each m dimensional vector to a 

manageably small m / g dimensional vector. Changing g from 

1 to 64 allows us to track how performance changes and the 

outcomes are exposed in Table VI. As can be shown, g = 2 

improves the outcome on MS-COCO even though the 

improvement in mAP on PASCAL VOC2007 is less 

pronounced. We think that g = 2 is more appropriate for 

minimizing the dimension and convey the semantic 

significance of the top phrase, despite the fact that various 

values of g have a comparable effect. 

 
(a) 

 
(b) 

Fig. 6. Change in performance of proposed method with different GCN 

layers. 
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CNN+RNN [2] 96.7 83.1 94.1 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0 

Very Deep [4] 98.9 95.0 96.8 95.4 69.7 90.4 93.5 96.0 74.2 86.6 87.8 96.0 96.3 93.1 97.2 70.0 92.1 80.3 98.1 87.0 89.7 

ResNet-101 [3] 99.5 97.7 97.8 96.4 65.7 91.8 96.1 97.6 74.2 80.9 85.0 98.4 96.5 95.9 98.4 70.1 88.3 80.2 98.9 89.2 89.9 

RNN+Attention[8] 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 87.7 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9 

Attention-

reinforce[39] 

98.6 97.1 97.1 95.5 75.6 92.8 96.8 97.3 78.3 92.2 87.6 96.9 96.5 93.6 98.5 81.6 93.1 83.2 98.5 89.3 92.0 

MLGCN [11] 99.5 98.5 96.8 98.1 80.8 94.6 97.2 98.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7 94.0 

AGCN[12] 99.4 98.5 98.6 98.0 80.8 94.7 97.2 98.2 82.4 95.5 86.4 98.2 98.4 96.7 98.9 84.8 96.6 84.4 98.9 93.7 94.0 

FGCN[27] 99.5 98.5 98.7 98.2 80.9 94.8 97.3 98.3 82.5 95.7 86.6 98.2 98.4 96.7 99.0 84.8 96.7 84.4 98.9 93.7 94.0 

MSCNN-LCE-

MIC 

99.7 98.5 98.8 98.3 84.7 96.6 97.6 98.8 83.9 96.5 87.5 98.6 98.9 97.4 99.1 85.7 97.1 85.1 99.2 94.6 95.8 
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4) Performance of improved label propagation: The 

PASCAL VOC-2007 is a sizable multiple label standard 

dataset gathered for a number of computer vision tasks, 

including captioning, recognition and segmentation. The test 

collection contains 77,980 images, 24640 number of objects. 

There are about 2.4 object labels per picture, and there are 20 

different classes in which the objects are divided. The 5K 

samples are used for testing, while the 20K samples are 

divided into 5 batches and used as training data. From each 

batch, we took 4k labeled samples at random and used the 

remaining 16K examples as unlabeled data. For each batch, 

this process is repeated five times. The end accuracy is the 

average of these trials. 32 mini-batch sizes were employed. 

Table VII and Table VIII display the outcomes of enhanced 

label propagation using various epochs. The proposed label 

propagation method achieves 3% less error than the existing 

label propagation method. 

TABLE IV.  CLASSIFICATION PERFORMANCE WITH / WITHOUT DIFFERENT 

MODULES 

Improved 

label 

propagation 

Multi-

stage 

CNN 

Visual 

Attention 
GCN MFB 

mAP 

MS-

COCO 

VOC-

2007 

Yes Yes Yes Yes Yes 84.3 95.8 

Yes Yes Yes No No 83.5 94.4 

Yes No No No No 77.4 90.6 

No No Yes Yes Yes 83.7 94.6 

No Yes No Yes Yes 84.0 94.6 

No Yes Yes No No 77.2 90.2 

TABLE V.  PERFORMANCE COMPARISON ON GCN WITH VARIOUS 

LAYERS 

Number 

of layers 

MS-COCO VOC-2007 

F1-C F1-O 
F1-C-

top-3 

F1-O- 

top-3 
mAP mAP 

2-layers 79.1 81.5 75.4 77.6 84.3 95.8 

3-layers 78.5 80.6 74.5 77.1 81.8 94.6 

4-layers 77.8 80.1 73.9 76.8 81.4 94.1 

TABLE VI.  MODEL PERFORMANCE WITH DIFFERENT G VALUE 

Dimensions of g 
mAP 

MS-COCO VOC-2007 

1 83.8 95.6 

2 84.3 95.8 

4 84.1 95.6 

8 84.0 95.4 

16 83.7 95.2 

32 83.5 95.1 

64 83.4 94.9 

TABLE VII.  ERROR RATE COMPARISON ON CIFAR-10 

Dataset CIFAR-10 

Labeled 

images 
1000 2000 3000 4000 

LPA [40] 22.02±0.88 15.66±0.35 - 12.69±0.29 

Improved 

LA(ours) 
18.24±0.50 11.78±0.65 10.80±0.30 9.40±0.50 

TABLE VIII.  ERROR RATE COMPARISON ON PASCAL VOC-2007 

Dataset PASCAL VOC-2007 

Labeled images 2000 4000 6000 

LPA[40] 36.72±0.45 27.64±0.55 20.46±75 

Improved 

LPA (ours) 
30.33±0.25 20.25±0.56 17.70±0.44 

V. CONCLUSION AND FUTURE WORK 

This paper argues that most of the images in large scale 
datasets are unlabeled; the labels have dependency and 
morphological similarity issues. The existing methods using 
traditional convolution technique may fail to extract features 
efficiently and classify labels accurately due to large unlabeled 
data. We construct MSCNN-LCE-MIC, which combines 
multi-stage CNN with visual attention and GCN to 
concurrently collect global and regional level dependencies. A 
feature extraction component with multi-stage CNN and 
visual attention technique helps to create the most precise 
features of each image by concentrating on the relationships 
among labels and regions of target which solves the problem 
of morphological similarity issues exists between objects. 
MSCNN-LCE-MIC primarily consists of four key modules: 
improved label propagation technique to find labels of large 
volumes of unlabeled images available in real time 
applications; learning tool for label co-occurrence with GCN; 
and multi-stage CNN with attention mechanism. 
Comprehensive tests on MSCOCO and VOC2007 show that 
MSCNN-LCE-MIC significantly improves the effectiveness 
of our suggested framework and yields superior classification 
outcomes than the existing methods in the field. Experimental 
results demonstrate that the MSCNN-LCE-MIC method 
achieves higher mAP of 3.6% on MS-COCO dataset and 1.8% 
mAP on PASCALVOC-2007 dataset. 

In the future, instead of using label propagation to train a 
neural network model, a generative adversarial network model 
could be used to get more labeled images from unlabeled 
image data and also reduce the time complexity due fusion of 
multiple components. 

REFERENCES 

[1] Kipf TN, Welling M. Semi-supervised classification with graph 
convolutional networks. In: 5th international conference on learning 
representations, Toulon, France, April 24-26, 2017. 

[2] Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W. CNN-RNN: A 
unified framework for multi-label image classification. In: 2016 IEEE 
conference on computer vision and pattern recognition, Las Vegas, NV, 
USA, June 27-30, 2016. p. 2285–94. 

[3] Kaiming He, Xiangyu Zhang, ShaoqingRen, and Jian Sun. Deep residual 
learning for image recognition. In CVPR, pages 770–778, 2016. 

[4] Karen Simonyan and Andrew Zisserman. Very deep convolutional 
networks for large-scale image recognition. In ICLR, pages 1–8, 2015. 

[5] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and 
ZbigniewWojna. Rethinking the inception architecture for computer 
vision. In CVPR, pages 2818–2826, 2016. 

[6] Qiang Li, MaoyingQiao, Wei Bian, and Dacheng Tao. Conditional 
graphical lasso for multi-label image classification. In CVPR, pages 
2977–2986, 2016. 

[7] Xin Li, Feipeng Zhao, and YuhongGuo. Multi-label image classification 
with a probabilistic label enhancement model. In UAI, pages 1–10, 
2014. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

493 | P a g e  

www.ijacsa.thesai.org 

[8] Zhouxia Wang, Tianshui Chen, Guanbin Li, RuijiaXu, and Liang Lin. 
Multi-label image recognition by recurrently discovering attentional 
regions. In ICCV, pages 464–472, 2017. 

[9] Zhu F, Li H, Ouyang W, Yu N, Wang X. Learning spatial regularization 
with image-level supervisions for multi-label image classification. In: 
2017 IEEE conference on computer vision and pattern recognition, 
Honolulu, HI, USA, July 21-26, 2017. p. 2027–36. 

[10] Mnih V, Heess N, Graves A, Kavukcuoglu K. Recurrent models of 
visual attention. In: Advances in neural information processing systems 
27: annual conference on neural information processing systems, 
Montreal, Quebec, Canada, December 8-13, 2014. p. 2204–12. 

[11] Chen Z, Wei X, Wang P, Guo Y. Multi-label image recognition with 
graph convolutional networks. In: IEEE conference on computer vision 
and pattern recognition, Long Beach, CA, USA, June 16-20, 2019. p. 
5177–86. 

[12] Li Q, Peng X, Qiao Y, Peng Q. Learning category correlations for multi-
label image recognition with graph networks. 2019, CoRR 
abs/1909.13005. 

[13] Yu Z, Yu J, Xiang C, Fan J, Tao D. Beyond bilinear: Generalized 
multimodal factorized high-order pooling for visual question answering. 
IEEE Trans Neural Netw Learn Syst 2018;29(12):5947–59. 

[14] Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, Dollár P, 
Zitnick CL. Microsoft COCO: Common objects in context. In: 
Computer vision -ECCV 2014 - 13th European conference, Zurich, 
Switzerland, September 6-12, 2014. p. 740–55. 

[15] Everingham M, Gool LV, Williams CKI, Winn JM, Zisserman A. The 
pascal visual object classes (VOC) challenge. Int J Comput Vis 
2010;88(2):303–38. 

[16] JiaDeng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 
ImageNet: A large-scale hierarchical image database. In CVPR, pages 
248–255, 2009. 

[17] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In 
CVPR, pages 7132–7141, 2018. 

[18] Razavian AS, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-
shelf: An astounding baseline for recognition. In: IEEE conference on 
computer vision and pattern recognition, Columbus, OH, USA, June 23-
28, 2014. p. 512–9. 

[19] Chatfield K, Simonyan K, Vedaldi A, Zisserman A. Return of the devil 
in the details: Delving deep into convolutional nets. In: British machine 
vision conference, Nottingham, UK, September 1-5, 2014. 

[20] Wang Y, Xie Y, Liu Y, Fan L. G-CAM: Graph convolution network 
based class activation mapping for multi-label image recognition. In: 
ICMR ’21: International conference on multimedia retrieval, Taipei, 
Taiwan, August 21-24, 2021. p. 322–30. 

[21] K. Marino, R. Salakhutdinov, and A. Gupta, ―The more you know: 
Using knowledge graphs for image classification,‖ in Proc. Conf. 
Comput. Vision Pattern Recognit., 2016, pp. 20–28. 

[22] C.-W. Lee,W. Fang, C.-K. Yeh, and Y.-C. FrankWang, ―Multi-label 
zeroshot learning with structured knowledge graphs,‖ in Proc. IEEE 
Conf. Comput. Vision Pattern Recognit., 2018, pp. 1576–1585. 

[23] X. Wang, Y. Ye, and A. Gupta, ―Zero-shot recognition via semantic 
embeddings and knowledge graphs,‖ in Proc. IEEE Conf. Comput. 
Vision Pattern Recognit., 2018, pp. 6857–6866. 

[24] Malinowski M, Fritz M. A multi-world approach to question answering 
about real-world scenes based on uncertain input. In: Advances in neural 
information processing systems 27: Annual conference on neural 
information processing systems, Montreal, Quebec, Canada, December 
8-13, 2014. p. 1682–90. 

[25] Chen J, Zhang S, Zeng J, Zou F, Li Y-F, Liu T, Lu P. Multi-level, multi-
modal interactions for visual question answering over text in images. 
World Wide Web 2021;1–17. 

[26] Zeng J, Zhang Y, Ma X. Fake news detection for epidemic emergencies 
via deep correlations between text and images. Sustainable Cities and 
Society 2021;66:102652. 

[27] Wang Y, Xie Y, Liu Y, Zhou K, Li X. Fast graph convolution network 
based multi-label image recognition via cross-modal fusion. In: The 29th 
ACM international conference on information and knowledge 
management, Virtual Event, Ireland, October 19-23, 2020. p. 1575–84. 

[28] I. Aviles-Rivero, N. Papadakis, R. Li, S. M Alsaleh, R. T. Tan, and C.-
B. Schonlieb, ―When labelled data hurts: Deep semi-supervised 
classification with the graph 1-Laplacian,‖ 2019, arXiv:1906.08635. 
[Online]. Available: http://arxiv.org/abs/ 1906.08635. 

[29] AhmetIscen, GiorgosTolias, YannisAvrithis, Ondrej Chum, ―Label 
Propagation for Deep Semi-supervised Learning‖, Computer Vision and 
Pattern Recognition, IEEE Xplore, 2019. 

[30] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, 
―Feature pyramid networks for object detection‖, in Proc. IEEE Conf. 
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936_944. 

[31] J. Pennington, R. Socher, and C. Manning, ―Glove: Global vectors for 
word representation,‖ in Proc. Conf. Empirical Methods Natural Lang. 
Process., 2014, pp. 1532–1543. 

[32] B. Chen, J. Li, X. Guo, and G. Lu, ―Dualchexnet: Dual asymmetric 
feature learning for Thoracic disease classification in chest X-Rays,‖ 
Biomed. Signal Process. Control, vol. 53, p. 101554, 2019. 

[33] H. Sak, A. Senior, and F. Beaufays, ―Long short-term memory based 
recurrent neural network architectures for large vocabulary speech 
recognition,‖ 2014, arXiv:1402.1128. 

[34] G. A. Miller, ―Wordnet: A lexical database for english,‖ Commun. The 
ACM, vol. 38, no. 11, pp. 39–41, 1995. 

[35] J. Gao, T. Zhang, and C. Xu, ―I know the relationships: Zero-shot action 
recognition via two-stream graph convolutional networks and 
knowledge graphs,‖ in Proc. AAAI Conf. Artif. Intell., 2019, vol. 33, pp. 
8303–8311. 

[36] H. Liu and P. Singh, ―Conceptnet–a practical commonsense reasoning 
tool-kit,‖ BT Technol. J., vol. 22, no. 4, pp. 211–226, 2004. 

[37] Pennington J, Socher R, Manning CD. Glove: Global vectors for word 
representation. In: Proceedings of the 2014 conference on empirical 
methods in natural language processing, Doha, Qatar, a Meeting of 
SIGDAT, a special interest group of the ACL, October 25-29, 2014. p. 
1532–43. 

[38] Chen S, Chen Y, Yeh C, Wang YF. Order-free RNN With visual 
attention for multi-label classification. In: Proceedings of the thirty-
second AAAI conference on artificial intelligence, the 30th innovative 
applications of artificial intelligence, and the 8th AAAI symposium on 
educational advances in artificial intelligence, New Orleans, Louisiana, 
USA, February 2-7, 2018. p. 6714–21. 

[39] Chen T, Wang Z, Li G, Lin L. Recurrent attentional reinforcement 
learning for multi-label image recognition. In: Proceedings of the thirty-
second AAAI conference on artificial intelligence, the 30th innovative 
applications of artificial intelligence, and the 8th AAAI symposium on 
educational advances in artificial intelligence, New Orleans, Louisiana, 
USA, February 2-7, 2018. p. 6730–7. 

[40] Iscen A, Tolias G, Avrithis Y and Chum O. Label Propagation for Deep 
Semi-supervised Learning, Computer Vision and Pattern Recognition, 
2019, pp-5070-5079. https://doi.org/10.48550/arXiv.1904.04717. 

http://arxiv.org/abs/
https://doi.org/10.48550/arXiv.1904.04717

