
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

520 | P a g e

www.ijacsa.thesai.org

A Cloud Native Framework for Real-time Pricing in

e-Commerce

Archana Kumari
1
, Mohan Kumar. S

2

School of Engineering and Technology, CMR University, Bengaluru, India
1

Directorate of Research and Innovation, CMR University, Bengaluru, India
2

Abstract—Real-time pricing is a form of 'dynamic pricing,'

and it enables online sellers to adjust prices in real-time in

response to variations in demand and competition to achieve

higher revenue or improve customer satisfaction. As modern e-

commerce implementations become more cloud-based, this paper

proposes a cloud-native framework for a real-time pricing

system. We take a requirement driven approach to come up with

a modular architecture and a set of reusable components for

real-time pricing. Following DSRM methodology, during the

design phase, we identify and develop the theoretical foundations

for key parts of the system, such as pricing models, competition

and demand watchers, and other analytics components that

fulfill the functional requirements of the system. At the stage of

implementation, we describe how each of these components and

the entire cloud application will be configured using an AWS

cloud native implementation. As a framework, this work can

support a variety of pricing models, demonstrating that multiple

pricing models have been discussed. Other low-latency, reusable

components described in this work provide the ability to react

quickly to changes in demand and competition. We also provide

a price-cache that decouples pricing model calculation from end-

user price requests and keeps price query latency to a minimum.

For a real-time system, where latency stands to be the most

desired NFR, we validate the system for price-request latency

(found to be a single digit of milliseconds) and market reaction

latency (less than a second). Overall, our proposed framework

provides a comprehensive solution for real-time pricing, which

can be adapted to different business needs and can help online

sellers optimize their pricing strategies.

Keywords—Real-time pricing; cloud-native design; system-

design; pricing-framework; Amazon web services

I. INTRODUCTION

e-Commerce has become increasingly competitive;
therefore, enterprises that intend to win must be able to offer
their products and services at prices that are competitive with
those of their rivals. Pricing is a crucial aspect of e-commerce,
and proper pricing can help to attract and retain customers,
increase sales and revenue, and optimize profits [1]. The term
"dynamic pricing" refers to the practice of adjusting prices in
response to fluctuations in supply, demand, and other factors in
the market. Profits can be maximized, sales increased,
customer happiness improved, and market share preserved by
employing dynamic pricing [2]. Firms are looking to provide
prices that are more personalized to each client by using a
customer's location and purchase history, among other factors.
Dynamic pricing is popular in industries other than e-
commerce, including energy, transportation, and financial
markets [3].

Real-time pricing is a form of dynamic pricing that
involves adjusting prices in response to market factors as they
take place in real time. Real-time pricing allows businesses to
respond to market conditions in a near-instantaneous fashion,
which can help them optimize their profits and minimize risk.
By using real-time data, businesses can make more informed
pricing decisions and ensure that they are not charging too
much or too little for their goods or services [4].

Factors of Dynamic Pricing: Demand is the most important
factor in dynamic pricing; when there is high demand, a
company may be able to charge a higher price, and in the event
of low demand, the company may need to lower the price in
order to attract buyers. The amount of competition and what
firms know about their prices can help them decide on pricing
strategies like undercutting, matching, leading, or skimming. A
company may use dynamic pricing to differentiate its prices
based on customer segmentation. For example, a company may
charge higher prices to customers who are more willing to pay,
typically referred to as "myopic customers". Similarly,
customer loyalty enables differentiated pricing, i.e., if a
company has a loyal customer base, it may be able to charge a
higher price for its products or services. Another crucial factor
is the level of inventory, i.e., if a company has a limited supply
of a product, it may be able to charge a higher price due to the
scarcity of the product. Other pricing factors may include
seasonality, time of day or week, weather, choice of payment
methods, etc. [1] [2].

Cloud technology has undergone significant advancement
in recent years, and there are several key developments like
containers, serverless computing, AI/ML & IoT etc. The
adoption of cloud computing has been growing rapidly in
recent years. According to a report by IDC, global spending on
cloud services is expected to reach $1.3 trillion in 2025, up
from $706 billion in 2021 [5]. Cloud computing is increasingly
important for businesses as they look to take advantage of cost
savings, increased agility and flexibility, and improved
scalability and reliability. A wide range of online businesses
leverage cloud infrastructure to host stores, manage
transactions, and offer integrations and extensions to customize
and optimize their online presence [6]. Cloud native refers to a
method of developing and deploying applications that fully
utilize the cloud computing paradigm. Two popular cloud-
native application development paradigms are: 1)
Microservices architecture splits an e-commerce platform into
discrete services that may be independently developed,
deployed, and scaled [7]. 2) Serverless architecture leverages
cloud services such as AWS Lambda to manage infrastructure

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

521 | P a g e

www.ijacsa.thesai.org

and run programs without servers. This decreases expenses and
improves company agility [8].

A wide range of e-commerce businesses use cloud
computing. Amazon's online business runs almost entirely on
AWS [9], a platform that hosts and oversees its online store
and other operations. Alibaba utilizes the cloud to power its
operations on Alibaba Cloud, which handles and maintains all
the company's business operations, including its e-commerce
platform [10]. Apart from e-commerce businesses, there are
cloud-based e-commerce platforms that host and administer
online stores. Shopify [11] and Magento [12] are such popular
e-commerce platform for establishing and managing online
stores [11]. It leverages cloud infrastructure to host stores and
manage transactions, and offers integrations and extensions to
customize and optimize its online presence.

Real-time pricing has the potential to improve revenue and
give businesses real-time control over prices. However, its
implementation poses challenges such as real-time decision-
making, managing large volumes of data, achieving scalability,
and accommodating diverse product types. Cloud-native
technology has become the preferred platform for
contemporary e-commerce development, and designing a
cloud-native application can help address many of these
challenges. To increase adoption of real-time pricing by sellers,
it is important to solve the challenge of real-time decision-
making and develop a reusable framework that can be used for
different e-commerce product types. The objective of this
paper is to develop a framework for a real-time pricing system
that helps online stores optimize revenues or other business
specific pricing requirements. We will begin by identifying the
requirements and specifications, using them to guide the design
and build the necessary functional foundation. To implement
the framework, we will use cloud-native technology, which
offers cost-effectiveness, scalability, and quick time-to-market.
In addition, we will follow the philosophy of "meeting
customers where they are", by implementing the system on a
popular cloud platform. Specifically, we have chosen AWS,
which is currently the most widely used cloud solution.

The remaining sections of this paper are organized as
follows: Section II surveys the existing literature, explores all
the different types of work that has been carried out in the field
of dynamic pricing. There we will also identify the lack of
system design and implementation work in the existing
literature, among other things as a research gap. The
methodology and system requirements are discussed in Section
III and Section IV, respectively. Section V presents the high-
level design of the real-time pricing system, while Section VI
focuses on the cloud-native implementation of the same. The
results of this study are discussed in Section VII, and Section
VIII provides the conclusion and potential future work.

II. LITERATURE REVIEW AND RESEARCH GAP

A. Background of Dynamic Pricing in e-Commerce

Dynamic pricing is a multi-disciplinary research area as it
involves the integration of knowledge and techniques from
multiple fields, including economics, mathematics, statistics,
computer science, and behavioral psychology [13]. The
primary goal of dynamic pricing is to adjust prices based on

various factors such as supply and demand, competition, and
customer behavior, to remain competitive in the market [14].
Dynamic Pricing implementation may involve statistic,
algorithms, and machine learning techniques to predict demand
and adjust prices accordingly [15]. Dynamic pricing has
several benefits, including increased sales, improved profit
margins, and better customer satisfaction [16].

B. Algorithms for Dynamic Pricing

1) Rule-based pricing: This is dynamic pricing based on

predefined rules and conditions that adjusts prices for goods

and services accordingly. In this strategy prices are

dynamically determined on factors such as demand, supply,

competition, time of day, and other market conditions. [17].

2) Competition pricing: This refers to the practice of

basing prices on those offered by competitors. It can be an

effective strategy for a low-cost supplier entering a new

market. However, blindly following competitive pricing can

hinder a company's ability to capitalize on shifting customer

perceptions of value and brand differentiation. [18].

3) Linear programming approaches: In order to maximize

revenue, profit, or market share, among other business goals,

linear programming can be used to optimize pricing decisions

over time. Linear programming for dynamic pricing seeks to

maximize a predetermined objective function by first

developing a pricing model that factors in several factors,

including but not limited to customer demand, product

availability, and competitive pressure [19][20].

4) Statistical and machine learning approaches: (non)

Linear regression can be used in dynamic pricing to model the

relationship between the price of the product or service and

the demand for it. One can collect data on past sales and prices

and use it to train a linear regression model and possibly

optimize sales revenues (or profit) based on a parametric

model using (non) linear regression [21]. Machine learning

algorithms like reinforcement learning (RL, which is typically

used to maximize rewards in games) have the potential to

solve dynamic pricing problems in various scenarios like

varying demand and competitive settings. [22].

C. Cloud Native based Application Development

Cloud-native technology is becoming more popular as
businesses seek ways to build and deploy software applications
that can handle high traffic, frequent updates, and rapid scaling.
Gannon et al. define cloud-native as the practice of developing
and deploying highly scalable, resilient, and secure cloud-
based software [23]. Cloud has popularized microservices that
divides a larger application into smaller, more manageable
services that can be built, deployed, and scaled independently.
Kubernetes is an open-source container orchestration platform
that automates the deployment, scaling, and management of
containerized applications [24]. The current academic literature
lists some interesting case studies conducted with cloud native
technology. Using technologies such as microservice
architecture, event-driven architecture, domain-driven design,
and containerization, Pan et al. schedule CPU and GPU
resources for their cloud-native online judge system [25]. A
cloud-native smart operation management platform

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

522 | P a g e

www.ijacsa.thesai.org

architecture is proposed by Lang et al., which would centralize
the technical architecture and data interaction of various
operation subsystems [26].

D. Research Gaps

Although several studies have been conducted on pricing
strategies for e-commerce, there is a lack of research that
specifically addresses real-time pricing systems that can adapt
to changing market conditions and customer types in real-time.
There is also a lack of studies that examine the technical
aspects of implementing real-time pricing systems, such as the
selection of appropriate technology platforms, pricing
algorithms and building reusable components.

III. METHOD

For this work, we use DSRM (Design Science Research
Methodology), a research paradigm that emphasizes the
generation and validation of prescriptive knowledge. Design
science is a serious research approach for creating solutions to
real-world engineering issues. As contrasted with how things
are in the natural sciences, DSRM is concerned with how
things ought to be, that is, with creating artifacts to accomplish
things. The steps of the DSRM [27] process include problem
identification and motivation, specification of the solution's
objectives (requirements), design and implementation,
demonstration, evaluation, and communication. Algorithms,
user interfaces for computers and people, design approaches
(including process models), and languages are among the kinds
of artifacts for which design science research is often used. For
this work, problem identification and motivation for a real-time
pricing system have already been established (in the first
section), for the next few sections, we are going to cover
requirement, design, implementation, result analysis and will
provide conclusion.

IV. REQUIREMENTS

A. Functional Requirement

FR1: A real-time pricing system should provide a suitable
price, as per the business need, that optimizes revenue,
customer experience or stakeholder‟s expectations.

FR2: Price should be able to be derived from one or more
factors: market factors (demand, competition prices), inventory
level, and possibly different customer segments.

B. Non-functional Requirement

NFR1: Configurability/Reusability - Depending on the
product type and its current state in the product lifecycle, more
than one pricing logic may be configured to run; i.e., the
framework should have the ability to switch to different pricing
logic.

NFR2: Response latency – Pricing response should be
quick, and there should be very minimal deterioration in the
price lookup.

NFR3: Reactive Latency – System should react to changes
in factors listed in FR2 in an automated fashion within an
acceptable time-frame.

NFR-4: Asses the aspects of availability, scalability, and
infrastructure cost.

V. DESIGN

This section explains the theoretical design for a real-time
pricing system that meets the functional requirement
established in the previous section, as well as how it paves a
way out for NFRs.

A. Typical Setup of Pricing-module in an e-commerce

Application

In a typical e-commerce setup, the user interacts with the
catalogue service, which sends them a list of products along
with information like the price and the product's description. A
product may have a static (fixed) price or be dynamically
priced. When there is static pricing, a special database created
just for this purpose provides the price data to the catalogue
service. When there is dynamic pricing, the prices might need
to be calculated on the fly. The catalogue service should
contact the pricing service to learn the item's price. Fig. 1
provides an illustration of this variation. Even though dynamic
pricing can automate the price generation process, a trivial
implementation may result in longer "price-response" latencies
and higher computational costs.

Fig. 1. Static vs dynamic pricing implementation.

B. Pricing Service – High Level Design

The functional requirements (FR1 and FR2) served as our
inspiration for the high-level design of the pricing service that
is presented below (Fig. 2). The pricing model is in charge of
determining the prices. The model may be dependent on
inventory, demand, and price competition. By depicting the
components in Fig. 2 as distinct parts, we suggest that they can
all function concurrently and prefetch/prebuild all the input
required by the pricing model. The use of a pricing cache
eliminates the need to invoke the pricing model, as it serves
cached the pricing results produced by the model to the
catalogue service.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

523 | P a g e

www.ijacsa.thesai.org

Fig. 2. HLD for real-time pricing system.

C. Component Design

1) Competition watcher: The competition watcher

component has the responsibility of routinely monitoring and

reporting changes in competition prices. The interval at which

the “competition watcher” can detect a change in competition

prices will determine how quickly the real-time pricing system

responds to market prices. A trivial design for this component

would be to poll the market for prices at regular intervals.

Better reactive latency (FR3) would result from shorter polling

intervals, but at the cost of higher computational costs. An

ideal polling frequency would be determined by considering

how frequently the competition changes their prices. Let us

say a competitor increases the price of her product at a rate of

λ, Poisson's theorem can be used to calculate the probability

that the price (PCPt) will change during the period t. (shown in

Eq.(1)).

 (1)

PCPt becomes an input configuration parameter for the
system for a given competitor; let us call it the desired
probability (to detect the competition price change, denoted by
DP). This helps figure out the polling interval for which the
probability of competition price change is configured.

 (2)

Initially rate λ is unknown and can be trivially calculated by
polling at a small period during the initial setup phase. Once λ
is known, Polling interval T can be found using Eq. 2, and
should be used to poll the prices. Should competition later
increase the frequency of price change, it would be seen by the
competition watcher that, number of price changes in the
interval T, is more than 1/DP, and that would trigger a re-
calculation of λ. When there are fewer samples than 1/DP in
the competition prices, this means the competition has
decreased their price change rate, and a new polling interval
can be calculated using Eq. (2) again.

2) Demand watcher: Unlike in competition, where price

changes can occur all at once and must be monitored at short

intervals, the demand can be calculated once, for a specific

time period, such as the previous hour or day. There could be

two potential indicators of demand: 1) the price request rate

and 2) the item sale rate. However, our understanding is that,

sale is also a function of price, and price is variable; thus, in

this work, we only consider the first one, i.e., the rate of

incoming requests, as an indicator of demand. The architecture

influences demand estimation procedure; however, the two

most common approaches are:

 Transaction database query: Transaction databases are
mostly relational databases with transaction time as an
index. Using an SQL query, it is trivial for such a
database to get the number of transactions in a certain
time frame.

 Transaction stream accumulators: Another approach is
to stream the transaction as it occurs and store the
summary in a database table. This method is useful
when there is no database from which to obtain
information.

3) Other analytics: The pricing models (many of it) need

analytics data, for example sale-probability, customer

segments, existing inventory (or projection of upcoming

replenishment). Most of the analytics do not change very

frequently and hence computing them once (say daily) would

suffice.

D. Pricing Models

1) Rule base pricing: This style of pricing involves the

dynamic adjustment of a product's price in accordance with a

predetermined set of rules. Such a rule may be formed by a

combination of supply and demand, time of day, day of the

week, and supply and demand alone. One straightforward

illustration of this is to raise the price of the product during

periods of high demand and lower it during periods of low

demand. The model can react instantly to changes in market

factors by automatically changing prices in accordance with a

predetermined set of rules. The pricing logic in this method is

typically quite simple; the main challenge is retrieving

underlying factors like supply and demand.

2) Competition pricing: The term "competition-based

pricing" refers to a pricing approach in which a company's

prices change over time in response to the prices offered by its

rivals. This strategy can be used to stay competitive in a

market by matching or beating the prices of other companies.

The implementation for this model has just one dependency,

i.e., access to competition prices.

3) Linear regression: This pricing strategy uses linear

regression analysis to ascertain the connection between prices

and demand for a product. This can assist in identifying a

product's ideal price point in order to maximize sales or

profits. The first step is to use historical sales and pricing data

to train a linear regression model that can forecast demand

based on various prices. Different linear regression methods,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

524 | P a g e

www.ijacsa.thesai.org

such as simple linear regression, multiple linear regression,

and sophisticated techniques, can be used to train the model.

The product‟s demand is then predicted at various price points

using the model, which is then used to determine the price that

will generate the most revenue (or profits).

Price = b0 + b1.Demand + b2.CompPrice + b3.Time (3)

Eq. (3) shows the outcome of linear regression analysis, is
an expression that can be programmed into pricing model to
calculate prices over the period of the time, In the equation, b0
represents the baseline price of the product, b1 represents the
elasticity of demand, b2 represents the effect of competition on
price, and b3 represents the effect of time of day on price.

4) Linear programming: Linear programming (LP) is an

optimization method in which the objective function and all

constraints are linear. Linear programming dynamic pricing is

a pricing strategy that employs linear programming to

calculate the best price for a product. The dynamic pricing

problem can be expressed as a linear program, with the goal of

maximizing revenue or profits while keeping prices, demand,

and costs in check. The objective function and constraints are

expressed as linear equations, with the solution being the set

of prices that maximizes the objective function [19] (Eq. (4))

while satisfying all constraints (Eq. (5) to Eq. (9)).

 ∑
 ∑

 (4)

Constraints:

 ∑

 (5)

 ∑
 ∑

 (6)

 ∑

 (7)

 { } (8)

 { } (9)

Where:

R is the total expected number of price requests across k
customer segments.

K is the customer segments (K = 2 for myopic and strategic
customers setup),

Ck is the ratio of expected request count in the customer
category (k) and total requests.

Qtk is number of price response by the DP engine with price
Pt in customer segment k. (This is LP Variable).

Pt is the price point to offer, its range is Pmin and Pmax.

Stk is the sale probability at price Pt, customer segment k.

E. Pricing Cache

Client price requests for a product many times more
frequent than change in market factors hence the price
calculated by model can be cached to avoid the model
invocation time, which is not just time but also
computationally expensive. Pricing cache decouples the

expensive pricing process from servicing the pricing. If cache
is not used, price request latency is given by 10, i.e., sum of
latencies of model evaluation and sum of all the analytic fetch.

 ∑ (10)

By using the cache, the price-request-latency simply
becomes the latency of cache lookup (11).

 (11)

Please note that, the pricing cache is considered large
enough to hold the calculated pricing results for all the items,
and hence cache miss penalties are not considered.

F. Product Module

A product module is a component or module that manages
and provides access to product information. This includes
information such as the pricing model, minimum and
maximum price settings, available inventory, price exploration
factor, and any other relevant settings required for the product's
pricing model to function. This data is typically stationary and
varies infrequently (say, monthly or quarterly). Also note that
the product module does not need to exclusive to pricing
system; it can be shared across other e-commerce services
(such as catalogue, order etc).

VI. AWS CLOUD IMPLEMENTATION

We will go over the specifics of this work's cloud
implementation in this section. Real-time pricing system
implementation requires compute, a database, and the ability to
react to events. Most cloud service providers can easily meet
these requirements, but we have chosen to implement AWS for
the proof-of-concept and because it is the most widely used
cloud service. Python was used exclusively throughout the
work to program everything.

A. A Quick Review of AWS Services

Amazon Elastic Compute Cloud (EC2) is an AWS web
service that allows users to rent virtual computers to run their
own computer programs. Elastic Container Service (ECS) is a
fully managed container orchestration service that allows you
to run and scale containerized applications on a cluster of EC2
instances using Docker and Kubernetes. Amazon Elastic
Container Registry (ECR) is a fully managed Docker container
registry hosted by Amazon Web Services (AWS). Docker
images can be safely and saleably stored, managed, and
deployed using ECR. EventBridge is a serverless event bus
service that connects applications by automating event
scheduling and routing from sources such as DynamoDB to
destinations such as Lambda functions, Lambda is a serverless
computing service that allows you to run code without the need
for server provisioning or management. Lambda-powered
applications can respond to events and run functions
automatically in response to triggers such as changes to data in
DynamoDB or an EventBridge-triggered event. Lambda does
have some limitations, such as a maximum amount of memory
and limited concurrency, which should be considered for
scalability. DynamoDB is a fully managed NoSQL key-value
and document database that scales to provide millisecond
performance. It is an excellent choice for applications that
require consistent, fast performance as well as the ability to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

525 | P a g e

www.ijacsa.thesai.org

manage large amounts of data. Applications can use
DynamoDB Streams to react to changes in DynamoDB tables
and invoke AWS Lambda to handle the change [28].

B. Component Implementation

1) Competition watcher: The goal of the Competition

Watcher software is to obtain competitor product pricing

information by scraping competitor websites. Web-scraping

tools are commonly used for this purpose. Several libraries

and frameworks, such as “Beautiful Soup,” [29] “Scrapy,” and

“Selenium,” are available for web scraping in the Python

programming language. Under Amazon Web Services, there

are two possibilities for designing and building this:

a) Event-bridge-based periodic Lambda invocation:

EventBridge allows you to schedule a Lambda for a specific

time (Say every 30 minutes). Lambda executes the web

scraping business logic and updates the competition prices in

DynamoDB. DynamoDB Stream can then be used to retrigger

the pricing process by triggering a lambda function.

b) Docker workflow with ECS, ECR (running on

EC2): In this approach, web-scraping logic is executed in a

Docker container powered by EC2, ECS, and ECR Services to

retrieve competition prices, detect changes, and store in

DynamoDB. A DynamoDB stream, like the previous option,

can be used to trigger a lambda function for pricing. This

process can monitor hundreds of products, making it more

cost-effective for large e-commerce setups.

2) Demand watcher: The demand watcher watches the

ongoing demand periodically, and if there is a change in the

demand, it is supposed to trigger the repricing by invoking the

lambda function. Demand Watcher implementation is

dependent on E-Commerce architecture implementation.

Assume that E-commerce architecture has a database table

called REQUSET and a REQUEST_TIME index on it.

Demand SQL expression is shown in Fig. 3.

Fig. 3. Demand calculation in a period using existing RDBMS DB.

In many use cases, the above approach would work, except
when users want more real-time demand tracking. The
alternative is to use streaming analytics, for this purpose, first,
the incoming price requests can be posted to a Kinesis
analytics stream. This stream has a consumer, a lambda
function that is configured with batch triggers on Kinesis
updates. The lambda analyses and records the demand
information in real-time into a DynamoDB. Dynamodb stream
then triggers the pricing function to recalculate the price for the
new demand (Fig. 4).

3) Customer segmentation and sale probability: For the

analytics that do not change in real-time, like sale-probability

and customer-segments, in order to be cost-effective, the

framework would compute these periodically (say, once a

day). We use the price request stream and order stream, and

register lambda triggers (with the largest possible batch

size/window, i.e., 5K records and 5 minutes). Both the

lambdas add/update the entries in the Analytics table (Fig. 5).

Their logic updates and aggregates the incoming stream in the

format shown in Table I. This serves as the common source

for segmentation and sale probability calculators. Customer

segmentation is done by aggregating the analytics table by

customer-id and the ratio of purchases to requests. Those with

a higher purchase to request ratio are classified as myopic,

while the rest are classified as strategic. Table II shows

DynamoDB schema for customer segmentation table. Sale-

probability is calculated as sale to request ratio for each

segment and at each price points. Table III displays the

schema for DynamoDB table for the same. Please Note, since

DynamoDB is a KV store, probability data is stored in json

format, and pricing-model is expected to deserialize that

before using.

Fig. 4. Realtime demand-data accumulation.

Fig. 5. Analytics: sale probability & customer segmentation.

TABLE I. ANALYTICS TABLE SCHEMA

Date String String Float Bool

Date Cust-id Product Price Purchased

SELECT count(*) from REQUEST

where REQUST_TIME > Now()-POLL_WINDOW

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

526 | P a g e

www.ijacsa.thesai.org

TABLE II. CUSTOMER SEGMENTATION SCHEMA

String Integer

Cust-id (key) Segment

TABLE III. SALE PROBABILITY SCHEMA

String String (Json)

Product (Key) {segment_str = [[price_float, probability_float]] }

4) Pricing model and price-cache: The framework

proposed in this work supports multiple pricing methods; all

of those are implemented in python and deployed with AWS

Lambda. Below picture shows the interaction of Pricing logic

with its upstream data-sources. The pricing logic may be

invoked in real-time in response to changes in Demand and

Competition Prices (depending on the pricing strategy).

Fig. 6. AWS architecture for real-time pricing.

Additionally, if pricing strategy depends on customer
segmentation and/or sales probability, the same are fetched
from the respective Dynamodb tables. Pricing logic writes its
data to Price Cache. As stated before, Pricing clients connect to
pricing cache and receive real-time dynamic pricing with
latency as low as a key lookup into database.

C. Complete AWS Architecture

Fig. 6 presents the overall end-to-end system architecture; it
glues all the components described in the previous subsection
and demonstrates their connection and dependencies. The
figure describes the cloud-based application as a set of
connected microservices that communicate with each other
over the network. This design is quite modular (with clear
separation of concerns) and flexible, which makes it easy to
substitute individual components. In the previous section,

multiple pricing models were described. It is entirely possible
to replace an existing pricing model with a new and better one
without changing other parts of the system. To be specific in
the context of AWS, it is all about redefining the lambda
expression for the pricing function, which follows the same
interface (I/O contract).

VII. RESULTS

A. Experimental Setup

Our experimental setup focuses on both functional and non-
functional requirements. For functional requirements such as
the behavior of the pricing model, the implementation uses
Python-based simulation for pricing logic. The non-functional
requirement was verified by setting up the component, as
shown in Fig. 6, in our test AWS account.

B. Experimental Result

Fig. 7, 8, and 9 show how competition-based pricing
works. Because the goal of such a pricing mechanism is to
simply follow market pricing, a re-pricing signal is easy to
find. We implement a module that periodically scrapes prices
from popular e-commerce websites. The latency of scraping,
for the competition watcher module, is shown in Fig. 7, which
was found to be around 600-800 ms. Please note that this
latency also includes network latency.

Fig. 8 and Fig. 9 show the tracking of competition prices.
Fig. 9 is a zoomed in version of Fig. 8 to show the difference in
timing between the price signal and price change.

Though it takes a while for market-watcher component to
observe the competition‟s price changes, however, thanks to
DynamoDB trigger, lambda evaluation, and subsequent price-
cache update is quite fast (double digit of milliseconds). The
whole reaction time to competition price is around one second,
which should be acceptable reaction latency in almost all real-
time pricing use-case.

Fig. 10 shows a simulation of rule-based dynamic pricing.
The rule is a combination of demand for the product and the
competition's price, with an upper cap on the maximum price.
The rule provides separate prices for myopic and strategic
customers.

Fig. 7. Competition price fetch latency.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

527 | P a g e

www.ijacsa.thesai.org

Fig. 8. Competition pricing tracking.

Fig. 9. Competition response latency.

Fig. 10. Rule-based dynamic pricing.

Fig. 11 and 12 are the simulation outcomes for the linear
programming-based pricing model. The solution for objective
function (Eq. (4)) and constraint (Eq. (5) to Eq. (9)) can change
the prices for changing demand or target sale-quantities and

maximize the revenue under the different circumstances. Fig.
11 shows optimal prices for different values of target sale-
quantity, and Fig. 12 shows the same different demand values.

Fig. 13 and Fig. 14 explain the content and performance of
the price cache. Fig. 13 is a snippet taken from AWS console
depicting the content of price cache. Key shown in the Fig. 13
is the product-id, and the json value provides the price values
for myopic and strategic customer.

It also has a default value, which is useful in situation when
pricing-model is yet to provide any pricing value. Fig. 14
shows our typical distribution of price-request latency when
using DynamoDB as a pricing cache. The latency is single-
digit millisecond latency and comparable to static-pricing
scenarios.

Fig. 11. Linear programming-based pricing (1).

Fig. 12. Linear programming-based pricing (2).

Fig. 13. Typical price cache values.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

528 | P a g e

www.ijacsa.thesai.org

Fig. 14. Price cache latency distribution.

VIII. CONCLUSION

A. Summary and Discussion

Real-time pricing can help e-commerce owners; however,
implementation requires careful handling of multiple
requirements in order to perform dynamic pricing in real-time.
Through this work, we defined functional and non-functional
requirements and used them to guide our system design
process. We created a pricing framework that can potentially
provide the most suitable price for various products at different
stages of their product lifecycle while taking a variety of
market factors such as demand and competition into
consideration (satisfying functional requirements FR1 and
FR2).

The components (e.g., demand watcher, competition price
fetcher, cache) are reusable, concurrent (designed with
separation of concerns in mind), and allow plug-and-play of
different pricing logic through the defined database schema
(satisfies NFR1). By the virtue of design decision, price
response latency (NFR2) equals to a cache-lookup which is
similar to systems without dynamic pricing. The cache latency
can further be improved (if required) by using DynamoDB-
DAX [30]. It has been demonstrated in the result that, system
response to any price change is within a single second, an
acceptable latency in the context of e-commerce (NFR3). The
cloud native building blocks (DynamoDB, lambda, etc.)
inherently provide availability and scalability to our design and
with the pay-as-you-go model for cost, cloud-native design
satisfies the last one, NFR-4.

B. Research Contributions

Real-time e-commerce pricing is a relatively unexplored
academic field. In the research gap analysis, we did not find
any implementation-specific work, which emphasizes the
timeliness of the pricing. As our first research contribution, we
have been able to apply existing knowledge of 'dynamic
pricing' to methodologically specify, design, and implement a
real-time pricing system.

Other contribution of this research is the demonstration of
cloud-native design principles for the implementation of real-
time pricing. The framework provides, unlike anything else in
the published literature, a low-cost (pay as you go) and scalable
solution for real-time pricing by making use of cloud

implementation methodologies. By providing the ability to
plug-and-play a pricing model for different e-commerce use-
cases, the framework does not enforce „one-size-fits-all', but
rather promises flexibility while maintaining the reusability of
building blocks.

C. Future Work

The primary goal of this work is to create a framework for
a real-time pricing system, which has been demonstrated in the
implementation and results section. However, because real-
time pricing for e-commerce is going to evolve further, there
are a few opportunities for future work:

 There is an opportunity to improve the analytics
described by performing some finer optimizations. To
give an example, advanced statistical techniques can be
used to provide more accurate results for sale-
probability estimation. Similarly, sophisticated
forecasting techniques can be utilized to predict
demand, which will help price the product more
efficiently over the long run.

 Another potential area of research can be conducted on
pricing models and their selection in the context of
real-time pricing and cloud native. Models can be fast
or time-consuming and may have different memory
and compute requirements, leading to deployment
choices such as serverless or containers.

REFERENCES

[1] Y. Narahari, C. Raju, K. Ravikumar, and S. Shah, “Dynamic pricing
models for electronic business,” Sadhana, vol. 30, pp. 231–256, 2005.

[2] D. Elreedy, A. F. Atiya and S. I. Shaheen, "Multi-Step Look-Ahead
Optimization Methods for Dynamic Pricing With Demand Learning,"
in IEEE Access, vol. 9, pp. 88478-88497, 2021, doi:
10.1109/ACCESS.2021.3087577.

[3] S. Christ, Operationalizing Dynamic Pricing Models: Bayesian Demand
Forecasting and Customer Choice Modeling for Low Cost Carriers.
2011.

[4] G. Mehra, “Real-time Pricing Affordable for Smaller Merchants,”
Practical Ecommerce, Jan. 22,
2017.https://www.practicalecommerce.com/Real-time-Pricing-
Affordable-for-Smaller-Merchants.

[5] “IDC Forecasts Worldwide,” IDC: The premier global market
intelligence
company.https://www.idc.com/getdoc.jsp?containerId=prUS48208321.

[6] Z. Mahmood, “Cloud computing for enterprise architectures: concepts,
principles and approaches,” in Cloud computing for Enterprise
architectures, Springer, 2011, pp. 3–19.

[7] M. Wu, X. Ding, and R. Hou, “Design and implementation of B2B E-
commerce platform based on microservices architecture,”
in Proceedings of the 2nd International Conference on Computer
Science and Software Engineering, 2019, pp. 30–34.

[8] S. Athreya, S. Kurian, A. Dange, and S. Bhatsangave, “Implementation
of Serverless E-Commerce Mobile Application,” in 2022 2nd
International Conference on Intelligent Technologies (CONIT), 2022,
pp. 1–5.

[9] “Cloud Computing Services - Amazon Web Services (AWS),” Amazon
Web Services, Inc. https://aws.amazon.com/.

[10] “Empower Your Business in USA & Canada with Alibaba Cloud‟s
Cloud Products & Services,” Empower Your Business in USA & Canada
with Alibaba Cloud’s Cloud Products & Services.
https://www.alibabacloud.com.

https://aws.amazon.com/
https://www.alibabacloud.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

529 | P a g e

www.ijacsa.thesai.org

[11] “Start and grow your e-commerce business - 3-Day Free Trial,” Start
and grow your e-commerce business - 3-Day Free Trial.
https://www.shopify.com/?ref=mile-high-themes.

[12] “What Is Magento Ecommerce And Why Should You Use It?,” World’s
#1 POS for Magento, Mar. 04, 2021.
https://www.magestore.com/blog/what-is-magento/.

[13] I. Yeoman, “The history of revenue and pricing management – 15 years
and more,” Journal of Revenue and Pricing Management, vol. 15, no. 3–
4, pp. 185–196, Jun. 2016, doi: 10.1057/rpm.2016.36.

[14] Kokkoris, I., & Lemus, C. (2022). Research Handbook on the Law and
Economics of Competition Enforcement. E-CONTENT GENERIC
VENDOR. https://books.google.co.in/books?id=jqKCEAAAQBAJ.

[15] T. Wang et al., “A framework for airfare price prediction: a machine
learning approach,” in 2019 IEEE 20th international conference on
information reuse and integration for data science (IRI), 2019, pp. 200–
207.

[16] Gallego, G., & Topaloglu, H. (2019). Revenue Management and Pricing
Analytics. Springer New York. https://books.google.co.in/books?id=YF-
pDwAAQBAJ.

[17] S. Saharan, S. Bawa, and N. Kumar, “Dynamic pricing techniques for
Intelligent Transportation System in smart cities: A systematic
review,” Computer Communications, vol. 150, pp. 603–625, 2020.

[18] R. Phillips, Pricing and Revenue Optimization. Stanford University
Press, 2005. [Online]. Available:
https://books.google.co.in/books?id=Xi17Xx9rD9wC.

[19] A. Kumari and B. R. K, “Design of a Real-Time Pricing System for E-
commerce,” International Journal of Computer Theory and
Engineering, vol. 15, no. 1, pp. 46–53, 2023.

[20] S. Kedia, S. Jain, and A. Sharma, “Price optimization in fashion e-
commerce,” arXiv preprint arXiv:2007.05216, 2020.

[21] A. V. Den Boer, “Dynamic pricing and learning: historical origins,
current research, and new directions,” Surveys in operations research
and management science, vol. 20, no. 1, pp. 1–18, 2015.

[22] A. X. Carvalho and M. L. Puterman, “Dynamic pricing and
reinforcement learning,” in Proceedings of the International Joint
Conference on Neural Networks, 2003., 2003, vol. 4, pp. 2916–2921.

[23] D. Gannon, R. Barga, and N. Sundaresan, “Cloud-native
applications,” IEEE Cloud Computing, vol. 4, no. 5, pp. 16–21, 2017.

[24] J. Lee and Y. Kim, "A Design of MANO System for Cloud Native
Infrastructure," 2021 International Conference on Information and
Communication Technology Convergence (ICTC), Jeju Island, Korea,
Republic of, 2021, pp. 1336-1339, doi:
10.1109/ICTC52510.2021.9620858.

[25] G. -C. Pan, P. Liu and J. -J. Wu, "A Cloud-Native Online Judge
System," 2022 IEEE 46th Annual Computers, Software, and
Applications Conference (COMPSAC), Los Alamitos, CA, USA, 2022,
pp. 1293-1298, doi: 10.1109/COMPSAC54236.2022.00204.

[26] H. Lang, H. Tian, D. Li, Z. Niu and L. Wen, "Design of A Cloud Native-
Based Integrated Management Platform for Smart Operation of Multi-
Business Buildings," 2022 14th International Conference on Intelligent
Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China,
2022, pp. 169-173, doi: 10.1109/IHMSC55436.2022.00047.

[27] P. Offermann, O. Levina, M. Schönherr, and U. Bub, “Outline of a
Design Science Research Process,” In Proceedings of the 4th
International Conference on Design Science Research in Information
Systems and Technology (pp. 1-11). 2009. doi:
10.1145/1555619.1555629.

[28] Cloud Products,” Amazon Web Services, Inc.
https://aws.amazon.com/products/.

[29] L. Richardson, “Beautiful Soup: We called him Tortoise because he
taught us.,” Beautiful Soup: We called him Tortoise because he taught
us. https://www.crummy.com/software/BeautifulSoup/.

[30] “In-memory acceleration with DynamoDB Accelerator (DAX) -
Amazon DynamoDB,” In-memory acceleration with DynamoDB
Accelerator (DAX) - Amazon DynamoDB.
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/D
AX.html.

https://www.shopify.com/?ref=mile-high-themes
https://www.magestore.com/blog/what-is-magento/
https://books.google.co.in/books?id=jqKCEAAAQBAJ
https://books.google.co.in/books?id=YF-pDwAAQBAJ
https://books.google.co.in/books?id=YF-pDwAAQBAJ
https://books.google.co.in/books?id=Xi17Xx9rD9wC
https://aws.amazon.com/products/
https://www.crummy.com/software/BeautifulSoup/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.html

