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Abstract—Real-time pricing is a form of 'dynamic pricing,' 

and it enables online sellers to adjust prices in real-time in 

response to variations in demand and competition to achieve 

higher revenue or improve customer satisfaction. As modern e-

commerce implementations become more cloud-based, this paper 

proposes a cloud-native framework for a real-time pricing 

system. We take a requirement driven approach to come up with 

a modular architecture and a set of reusable components for 

real-time pricing. Following DSRM methodology, during the 

design phase, we identify and develop the theoretical foundations 

for key parts of the system, such as pricing models, competition 

and demand watchers, and other analytics components that 

fulfill the functional requirements of the system. At the stage of 

implementation, we describe how each of these components and 

the entire cloud application will be configured using an AWS 

cloud native implementation. As a framework, this work can 

support a variety of pricing models, demonstrating that multiple 

pricing models have been discussed. Other low-latency, reusable 

components described in this work provide the ability to react 

quickly to changes in demand and competition. We also provide 

a price-cache that decouples pricing model calculation from end-

user price requests and keeps price query latency to a minimum. 

For a real-time system, where latency stands to be the most 

desired NFR, we validate the system for price-request latency 

(found to be a single digit of milliseconds) and market reaction 

latency (less than a second). Overall, our proposed framework 

provides a comprehensive solution for real-time pricing, which 

can be adapted to different business needs and can help online 

sellers optimize their pricing strategies. 

Keywords—Real-time pricing; cloud-native design; system-

design; pricing-framework; Amazon web services 

I. INTRODUCTION 

e-Commerce has become increasingly competitive; 
therefore, enterprises that intend to win must be able to offer 
their products and services at prices that are competitive with 
those of their rivals. Pricing is a crucial aspect of e-commerce, 
and proper pricing can help to attract and retain customers, 
increase sales and revenue, and optimize profits [1]. The term 
"dynamic pricing" refers to the practice of adjusting prices in 
response to fluctuations in supply, demand, and other factors in 
the market. Profits can be maximized, sales increased, 
customer happiness improved, and market share preserved by 
employing dynamic pricing [2]. Firms are looking to provide 
prices that are more personalized to each client by using a 
customer's location and purchase history, among other factors. 
Dynamic pricing is popular in industries other than e-
commerce, including energy, transportation, and financial 
markets [3]. 

Real-time pricing is a form of dynamic pricing that 
involves adjusting prices in response to market factors as they 
take place in real time. Real-time pricing allows businesses to 
respond to market conditions in a near-instantaneous fashion, 
which can help them optimize their profits and minimize risk. 
By using real-time data, businesses can make more informed 
pricing decisions and ensure that they are not charging too 
much or too little for their goods or services [4]. 

Factors of Dynamic Pricing: Demand is the most important 
factor in dynamic pricing; when there is high demand, a 
company may be able to charge a higher price, and in the event 
of low demand, the company may need to lower the price in 
order to attract buyers. The amount of competition and what 
firms know about their prices can help them decide on pricing 
strategies like undercutting, matching, leading, or skimming. A 
company may use dynamic pricing to differentiate its prices 
based on customer segmentation. For example, a company may 
charge higher prices to customers who are more willing to pay, 
typically referred to as "myopic customers". Similarly, 
customer loyalty enables differentiated pricing, i.e., if a 
company has a loyal customer base, it may be able to charge a 
higher price for its products or services. Another crucial factor 
is the level of inventory, i.e., if a company has a limited supply 
of a product, it may be able to charge a higher price due to the 
scarcity of the product. Other pricing factors may include 
seasonality, time of day or week, weather, choice of payment 
methods, etc. [1] [2]. 

Cloud technology has undergone significant advancement 
in recent years, and there are several key developments like 
containers, serverless computing, AI/ML & IoT etc. The 
adoption of cloud computing has been growing rapidly in 
recent years. According to a report by IDC, global spending on 
cloud services is expected to reach $1.3 trillion in 2025, up 
from $706 billion in 2021 [5]. Cloud computing is increasingly 
important for businesses as they look to take advantage of cost 
savings, increased agility and flexibility, and improved 
scalability and reliability. A wide range of online businesses 
leverage cloud infrastructure to host stores, manage 
transactions, and offer integrations and extensions to customize 
and optimize their online presence [6]. Cloud native refers to a 
method of developing and deploying applications that fully 
utilize the cloud computing paradigm. Two popular cloud-
native application development paradigms are: 1) 
Microservices architecture splits an e-commerce platform into 
discrete services that may be independently developed, 
deployed, and scaled [7]. 2) Serverless architecture leverages 
cloud services such as AWS Lambda to manage infrastructure 
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and run programs without servers. This decreases expenses and 
improves company agility [8]. 

A wide range of e-commerce businesses use cloud 
computing. Amazon's online business runs almost entirely on 
AWS [9], a platform that hosts and oversees its online store 
and other operations. Alibaba utilizes the cloud to power its 
operations on Alibaba Cloud, which handles and maintains all 
the company's business operations, including its e-commerce 
platform [10]. Apart from e-commerce businesses, there are 
cloud-based e-commerce platforms that host and administer 
online stores. Shopify [11] and Magento [12] are such popular 
e-commerce platform for establishing and managing online 
stores [11]. It leverages cloud infrastructure to host stores and 
manage transactions, and offers integrations and extensions to 
customize and optimize its online presence. 

Real-time pricing has the potential to improve revenue and 
give businesses real-time control over prices. However, its 
implementation poses challenges such as real-time decision-
making, managing large volumes of data, achieving scalability, 
and accommodating diverse product types. Cloud-native 
technology has become the preferred platform for 
contemporary e-commerce development, and designing a 
cloud-native application can help address many of these 
challenges. To increase adoption of real-time pricing by sellers, 
it is important to solve the challenge of real-time decision-
making and develop a reusable framework that can be used for 
different e-commerce product types. The objective of this 
paper is to develop a framework for a real-time pricing system 
that helps online stores optimize revenues or other business 
specific pricing requirements. We will begin by identifying the 
requirements and specifications, using them to guide the design 
and build the necessary functional foundation. To implement 
the framework, we will use cloud-native technology, which 
offers cost-effectiveness, scalability, and quick time-to-market. 
In addition, we will follow the philosophy of "meeting 
customers where they are", by implementing the system on a 
popular cloud platform. Specifically, we have chosen AWS, 
which is currently the most widely used cloud solution. 

The remaining sections of this paper are organized as 
follows: Section II surveys the existing literature, explores all 
the different types of work that has been carried out in the field 
of dynamic pricing. There we will also identify the lack of 
system design and implementation work in the existing 
literature, among other things as a research gap. The 
methodology and system requirements are discussed in Section 
III and Section IV, respectively. Section V presents the high-
level design of the real-time pricing system, while Section VI 
focuses on the cloud-native implementation of the same. The 
results of this study are discussed in Section VII, and Section 
VIII provides the conclusion and potential future work. 

II. LITERATURE REVIEW AND RESEARCH GAP 

A. Background of Dynamic Pricing in e-Commerce 

Dynamic pricing is a multi-disciplinary research area as it 
involves the integration of knowledge and techniques from 
multiple fields, including economics, mathematics, statistics, 
computer science, and behavioral psychology [13]. The 
primary goal of dynamic pricing is to adjust prices based on 

various factors such as supply and demand, competition, and 
customer behavior, to remain competitive in the market [14]. 
Dynamic Pricing implementation may involve statistic, 
algorithms, and machine learning techniques to predict demand 
and adjust prices accordingly [15]. Dynamic pricing has 
several benefits, including increased sales, improved profit 
margins, and better customer satisfaction [16]. 

B. Algorithms for Dynamic Pricing 

1) Rule-based pricing: This is dynamic pricing based on 

predefined rules and conditions that adjusts prices for goods 

and services accordingly. In this strategy prices are 

dynamically determined on factors such as demand, supply, 

competition, time of day, and other market conditions. [17]. 

2) Competition pricing: This refers to the practice of 

basing prices on those offered by competitors. It can be an 

effective strategy for a low-cost supplier entering a new 

market. However, blindly following competitive pricing can 

hinder a company's ability to capitalize on shifting customer 

perceptions of value and brand differentiation. [18]. 

3) Linear programming approaches: In order to maximize 

revenue, profit, or market share, among other business goals, 

linear programming can be used to optimize pricing decisions 

over time. Linear programming for dynamic pricing seeks to 

maximize a predetermined objective function by first 

developing a pricing model that factors in several factors, 

including but not limited to customer demand, product 

availability, and competitive pressure [19][20]. 

4) Statistical and machine learning approaches: (non) 

Linear regression can be used in dynamic pricing to model the 

relationship between the price of the product or service and 

the demand for it. One can collect data on past sales and prices 

and use it to train a linear regression model and possibly 

optimize sales revenues (or profit) based on a parametric 

model using (non) linear regression [21]. Machine learning 

algorithms like reinforcement learning (RL, which is typically 

used to maximize rewards in games) have the potential to 

solve dynamic pricing problems in various scenarios like 

varying demand and competitive settings. [22]. 

C. Cloud Native based Application Development 

Cloud-native technology is becoming more popular as 
businesses seek ways to build and deploy software applications 
that can handle high traffic, frequent updates, and rapid scaling. 
Gannon et al. define cloud-native as the practice of developing 
and deploying highly scalable, resilient, and secure cloud-
based software [23]. Cloud has popularized microservices that 
divides a larger application into smaller, more manageable 
services that can be built, deployed, and scaled independently. 
Kubernetes is an open-source container orchestration platform 
that automates the deployment, scaling, and management of 
containerized applications [24]. The current academic literature 
lists some interesting case studies conducted with cloud native 
technology. Using technologies such as microservice 
architecture, event-driven architecture, domain-driven design, 
and containerization, Pan et al. schedule CPU and GPU 
resources for their cloud-native online judge system [25]. A 
cloud-native smart operation management platform 
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architecture is proposed by Lang et al., which would centralize 
the technical architecture and data interaction of various 
operation subsystems [26]. 

D. Research Gaps 

Although several studies have been conducted on pricing 
strategies for e-commerce, there is a lack of research that 
specifically addresses real-time pricing systems that can adapt 
to changing market conditions and customer types in real-time. 
There is also a lack of studies that examine the technical 
aspects of implementing real-time pricing systems, such as the 
selection of appropriate technology platforms, pricing 
algorithms and building reusable components. 

III. METHOD 

For this work, we use DSRM (Design Science Research 
Methodology), a research paradigm that emphasizes the 
generation and validation of prescriptive knowledge. Design 
science is a serious research approach for creating solutions to 
real-world engineering issues. As contrasted with how things 
are in the natural sciences, DSRM is concerned with how 
things ought to be, that is, with creating artifacts to accomplish 
things. The steps of the DSRM [27] process include problem 
identification and motivation, specification of the solution's 
objectives (requirements), design and implementation, 
demonstration, evaluation, and communication. Algorithms, 
user interfaces for computers and people, design approaches 
(including process models), and languages are among the kinds 
of artifacts for which design science research is often used. For 
this work, problem identification and motivation for a real-time 
pricing system have already been established (in the first 
section), for the next few sections, we are going to cover 
requirement, design, implementation, result analysis and will 
provide conclusion. 

IV. REQUIREMENTS 

A. Functional Requirement 

FR1: A real-time pricing system should provide a suitable 
price, as per the business need, that optimizes revenue, 
customer experience or stakeholder‟s expectations. 

FR2: Price should be able to be derived from one or more 
factors: market factors (demand, competition prices), inventory 
level, and possibly different customer segments. 

B. Non-functional Requirement 

NFR1: Configurability/Reusability - Depending on the 
product type and its current state in the product lifecycle, more 
than one pricing logic may be configured to run; i.e., the 
framework should have the ability to switch to different pricing 
logic. 

NFR2: Response latency – Pricing response should be 
quick, and there should be very minimal deterioration in the 
price lookup. 

NFR3: Reactive Latency – System should react to changes 
in factors listed in FR2 in an automated fashion within an 
acceptable time-frame. 

NFR-4: Asses the aspects of availability, scalability, and 
infrastructure cost. 

V. DESIGN 

This section explains the theoretical design for a real-time 
pricing system that meets the functional requirement 
established in the previous section, as well as how it paves a 
way out for NFRs. 

A. Typical Setup of Pricing-module in an e-commerce 

Application 

In a typical e-commerce setup, the user interacts with the 
catalogue service, which sends them a list of products along 
with information like the price and the product's description. A 
product may have a static (fixed) price or be dynamically 
priced. When there is static pricing, a special database created 
just for this purpose provides the price data to the catalogue 
service. When there is dynamic pricing, the prices might need 
to be calculated on the fly. The catalogue service should 
contact the pricing service to learn the item's price. Fig. 1 
provides an illustration of this variation. Even though dynamic 
pricing can automate the price generation process, a trivial 
implementation may result in longer "price-response" latencies 
and higher computational costs. 

 

Fig. 1. Static vs dynamic pricing implementation. 

B. Pricing Service – High Level Design 

The functional requirements (FR1 and FR2) served as our 
inspiration for the high-level design of the pricing service that 
is presented below (Fig. 2). The pricing model is in charge of 
determining the prices. The model may be dependent on 
inventory, demand, and price competition. By depicting the 
components in Fig. 2 as distinct parts, we suggest that they can 
all function concurrently and prefetch/prebuild all the input 
required by the pricing model. The use of a pricing cache 
eliminates the need to invoke the pricing model, as it serves 
cached the pricing results produced by the model to the 
catalogue service. 
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Fig. 2. HLD for real-time pricing system. 

C. Component Design 

1) Competition watcher: The competition watcher 

component has the responsibility of routinely monitoring and 

reporting changes in competition prices. The interval at which 

the “competition watcher” can detect a change in competition 

prices will determine how quickly the real-time pricing system 

responds to market prices. A trivial design for this component 

would be to poll the market for prices at regular intervals. 

Better reactive latency (FR3) would result from shorter polling 

intervals, but at the cost of higher computational costs. An 

ideal polling frequency would be determined by considering 

how frequently the competition changes their prices. Let us 

say a competitor increases the price of her product at a rate of 

λ, Poisson's theorem can be used to calculate the probability 

that the price (PCPt) will change during the period t. (shown in 

Eq.(1)). 

                    (1) 

PCPt becomes an input configuration parameter for the 
system for a given competitor; let us call it the desired 
probability (to detect the competition price change, denoted by 
DP). This helps figure out the polling interval for which the 
probability of competition price change is configured. 

                   
    

 

    
 

 
           (2) 

Initially rate λ is unknown and can be trivially calculated by 
polling at a small period during the initial setup phase. Once λ 
is known, Polling interval T can be found using Eq. 2, and 
should be used to poll the prices. Should competition later 
increase the frequency of price change, it would be seen by the 
competition watcher that, number of price changes in the 
interval T, is more than 1/DP, and that would trigger a re-
calculation of λ. When there are fewer samples than 1/DP in 
the competition prices, this means the competition has 
decreased their price change rate, and a new polling interval 
can be calculated using Eq. (2) again. 

2) Demand watcher: Unlike in competition, where price 

changes can occur all at once and must be monitored at short 

intervals, the demand can be calculated once, for a specific 

time period, such as the previous hour or day. There could be 

two potential indicators of demand: 1) the price request rate 

and 2) the item sale rate. However, our understanding is that, 

sale is also a function of price, and price is variable; thus, in 

this work, we only consider the first one, i.e., the rate of 

incoming requests, as an indicator of demand. The architecture 

influences demand estimation procedure; however, the two 

most common approaches are: 

 Transaction database query: Transaction databases are 
mostly relational databases with transaction time as an 
index. Using an SQL query, it is trivial for such a 
database to get the number of transactions in a certain 
time frame. 

 Transaction stream accumulators: Another approach is 
to stream the transaction as it occurs and store the 
summary in a database table. This method is useful 
when there is no database from which to obtain 
information. 

3) Other analytics: The pricing models (many of it) need 

analytics data, for example sale-probability, customer 

segments, existing inventory (or projection of upcoming 

replenishment). Most of the analytics do not change very 

frequently and hence computing them once (say daily) would 

suffice. 

D. Pricing Models 

1) Rule base pricing: This style of pricing involves the 

dynamic adjustment of a product's price in accordance with a 

predetermined set of rules. Such a rule may be formed by a 

combination of supply and demand, time of day, day of the 

week, and supply and demand alone. One straightforward 

illustration of this is to raise the price of the product during 

periods of high demand and lower it during periods of low 

demand. The model can react instantly to changes in market 

factors by automatically changing prices in accordance with a 

predetermined set of rules. The pricing logic in this method is 

typically quite simple; the main challenge is retrieving 

underlying factors like supply and demand. 

2) Competition pricing: The term "competition-based 

pricing" refers to a pricing approach in which a company's 

prices change over time in response to the prices offered by its 

rivals. This strategy can be used to stay competitive in a 

market by matching or beating the prices of other companies. 

The implementation for this model has just one dependency, 

i.e., access to competition prices. 

3) Linear regression: This pricing strategy uses linear 

regression analysis to ascertain the connection between prices 

and demand for a product. This can assist in identifying a 

product's ideal price point in order to maximize sales or 

profits. The first step is to use historical sales and pricing data 

to train a linear regression model that can forecast demand 

based on various prices. Different linear regression methods, 
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such as simple linear regression, multiple linear regression, 

and sophisticated techniques, can be used to train the model. 

The product‟s demand is then predicted at various price points 

using the model, which is then used to determine the price that 

will generate the most revenue (or profits). 

Price = b0 + b1.Demand + b2.CompPrice + b3.Time     (3) 

Eq. (3) shows the outcome of linear regression analysis, is 
an expression that can be programmed into pricing model to 
calculate prices over the period of the time, In the equation, b0 
represents the baseline price of the product, b1 represents the 
elasticity of demand, b2 represents the effect of competition on 
price, and b3 represents the effect of time of day on price. 

4) Linear programming: Linear programming (LP) is an 

optimization method in which the objective function and all 

constraints are linear. Linear programming dynamic pricing is 

a pricing strategy that employs linear programming to 

calculate the best price for a product.  The dynamic pricing 

problem can be expressed as a linear program, with the goal of 

maximizing revenue or profits while keeping prices, demand, 

and costs in check. The objective function and constraints are 

expressed as linear equations, with the solution being the set 

of prices that maximizes the objective function [19] (Eq. (4)) 

while satisfying all constraints (Eq. (5) to Eq. (9)). 

           ∑     
   ∑   

 
           (4) 

Constraints: 

         ∑ 
  
          (5) 

                ∑     
   ∑       

 
     (6) 

  ∑   
 
           (7) 

      {                         }  (8) 

       {                   }  (9) 

Where: 

R is the total expected number of price requests across k 
customer segments. 

K is the customer segments (K = 2 for myopic and strategic 
customers setup),  

Ck is the ratio of expected request count in the customer 
category (k) and total requests. 

Qtk is number of price response by the DP engine with price 
Pt in customer segment k. (This is LP Variable). 

Pt is the price point to offer, its range is Pmin and Pmax. 

Stk is the sale probability at price Pt, customer segment k. 

E. Pricing Cache 

Client price requests for a product many times more 
frequent than change in market factors hence the price 
calculated by model can be cached to avoid the model 
invocation time, which is not just time but also 
computationally expensive. Pricing cache decouples the 

expensive pricing process from servicing the pricing. If cache 
is not used, price request latency is given by 10, i.e., sum of 
latencies of model evaluation and sum of all the analytic fetch. 

                       ∑               (10) 

By using the cache, the price-request-latency simply 
becomes the latency of cache lookup (11). 

                               (11) 

Please note that, the pricing cache is considered large 
enough to hold the calculated pricing results for all the items, 
and hence cache miss penalties are not considered. 

F. Product Module 

A product module is a component or module that manages 
and provides access to product information. This includes 
information such as the pricing model, minimum and 
maximum price settings, available inventory, price exploration 
factor, and any other relevant settings required for the product's 
pricing model to function. This data is typically stationary and 
varies infrequently (say, monthly or quarterly). Also note that 
the product module does not need to exclusive to pricing 
system; it can be shared across other e-commerce services 
(such as catalogue, order etc). 

VI. AWS CLOUD IMPLEMENTATION 

We will go over the specifics of this work's cloud 
implementation in this section. Real-time pricing system 
implementation requires compute, a database, and the ability to 
react to events. Most cloud service providers can easily meet 
these requirements, but we have chosen to implement AWS for 
the proof-of-concept and because it is the most widely used 
cloud service. Python was used exclusively throughout the 
work to program everything. 

A. A Quick Review of AWS Services 

Amazon Elastic Compute Cloud (EC2) is an AWS web 
service that allows users to rent virtual computers to run their 
own computer programs. Elastic Container Service (ECS) is a 
fully managed container orchestration service that allows you 
to run and scale containerized applications on a cluster of EC2 
instances using Docker and Kubernetes. Amazon Elastic 
Container Registry (ECR) is a fully managed Docker container 
registry hosted by Amazon Web Services (AWS). Docker 
images can be safely and saleably stored, managed, and 
deployed using ECR. EventBridge is a serverless event bus 
service that connects applications by automating event 
scheduling and routing from sources such as DynamoDB to 
destinations such as Lambda functions, Lambda is a serverless 
computing service that allows you to run code without the need 
for server provisioning or management. Lambda-powered 
applications can respond to events and run functions 
automatically in response to triggers such as changes to data in 
DynamoDB or an EventBridge-triggered event. Lambda does 
have some limitations, such as a maximum amount of memory 
and limited concurrency, which should be considered for 
scalability. DynamoDB is a fully managed NoSQL key-value 
and document database that scales to provide millisecond 
performance. It is an excellent choice for applications that 
require consistent, fast performance as well as the ability to 
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manage large amounts of data. Applications can use 
DynamoDB Streams to react to changes in DynamoDB tables 
and invoke AWS Lambda to handle the change [28]. 

B. Component Implementation 

1) Competition watcher: The goal of the Competition 

Watcher software is to obtain competitor product pricing 

information by scraping competitor websites. Web-scraping 

tools are commonly used for this purpose. Several libraries 

and frameworks, such as “Beautiful Soup,” [29] “Scrapy,” and 

“Selenium,” are available for web scraping in the Python 

programming language. Under Amazon Web Services, there 

are two possibilities for designing and building this: 

a) Event-bridge-based periodic Lambda invocation: 

EventBridge allows you to schedule a Lambda for a specific 

time (Say every 30 minutes). Lambda executes the web 

scraping business logic and updates the competition prices in 

DynamoDB. DynamoDB Stream can then be used to retrigger 

the pricing process by triggering a lambda function. 

b) Docker workflow with ECS, ECR (running on 

EC2): In this approach, web-scraping logic is executed in a 

Docker container powered by EC2, ECS, and ECR Services to 

retrieve competition prices, detect changes, and store in 

DynamoDB. A DynamoDB stream, like the previous option, 

can be used to trigger a lambda function for pricing. This 

process can monitor hundreds of products, making it more 

cost-effective for large e-commerce setups. 

2) Demand watcher: The demand watcher watches the 

ongoing demand periodically, and if there is a change in the 

demand, it is supposed to trigger the repricing by invoking the 

lambda function. Demand Watcher implementation is 

dependent on E-Commerce architecture implementation. 

Assume that E-commerce architecture has a database table 

called REQUSET and a REQUEST_TIME index on it. 

Demand SQL expression is shown in Fig. 3. 

 

Fig. 3. Demand calculation in a period using existing RDBMS DB. 

In many use cases, the above approach would work, except 
when users want more real-time demand tracking. The 
alternative is to use streaming analytics, for this purpose, first, 
the incoming price requests can be posted to a Kinesis 
analytics stream. This stream has a consumer, a lambda 
function that is configured with batch triggers on Kinesis 
updates. The lambda analyses and records the demand 
information in real-time into a DynamoDB.  Dynamodb stream 
then triggers the pricing function to recalculate the price for the 
new demand (Fig. 4). 

3) Customer segmentation and sale probability: For the 

analytics that do not change in real-time, like sale-probability 

and customer-segments, in order to be cost-effective, the 

framework would compute these periodically (say, once a 

day). We use the price request stream and order stream, and 

register lambda triggers (with the largest possible batch 

size/window, i.e., 5K records and 5 minutes). Both the 

lambdas add/update the entries in the Analytics table (Fig. 5). 

Their logic updates and aggregates the incoming stream in the 

format shown in Table I. This serves as the common source 

for segmentation and sale probability calculators. Customer 

segmentation is done by aggregating the analytics table by 

customer-id and the ratio of purchases to requests. Those with 

a higher purchase to request ratio are classified as myopic, 

while the rest are classified as strategic. Table II shows 

DynamoDB schema for customer segmentation table. Sale-

probability is calculated as sale to request ratio for each 

segment and at each price points. Table III displays the 

schema for DynamoDB table for the same. Please Note, since 

DynamoDB is a KV store, probability data is stored in json 

format, and pricing-model is expected to deserialize that 

before using. 

 
Fig. 4. Realtime demand-data accumulation. 

 
Fig. 5. Analytics: sale probability & customer segmentation. 

TABLE I.  ANALYTICS TABLE SCHEMA 

Date String String Float Bool 

Date Cust-id Product Price Purchased 

SELECT count(*) from REQUEST 

where REQUST_TIME >  Now()-POLL_WINDOW 
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TABLE II.  CUSTOMER SEGMENTATION SCHEMA 

String Integer 

Cust-id (key) Segment 

TABLE III.  SALE PROBABILITY SCHEMA 

String String (Json) 

Product (Key) {segment_str = [ [price_float, probability_float] ]  } 

4) Pricing model and price-cache: The framework 

proposed in this work supports multiple pricing methods; all 

of those are implemented in python and deployed with AWS 

Lambda. Below picture shows the interaction of Pricing logic 

with its upstream data-sources. The pricing logic may be 

invoked in real-time in response to changes in Demand and 

Competition Prices (depending on the pricing strategy). 

 
Fig. 6. AWS architecture for real-time pricing. 

Additionally, if pricing strategy depends on customer 
segmentation and/or sales probability, the same are fetched 
from the respective Dynamodb tables.  Pricing logic writes its 
data to Price Cache. As stated before, Pricing clients connect to 
pricing cache and receive real-time dynamic pricing with 
latency as low as a key lookup into database. 

C. Complete AWS Architecture 

Fig. 6 presents the overall end-to-end system architecture; it 
glues all the components described in the previous subsection 
and demonstrates their connection and dependencies.  The 
figure describes the cloud-based application as a set of 
connected microservices that communicate with each other 
over the network. This design is quite modular (with clear 
separation of concerns) and flexible, which makes it easy to 
substitute individual components. In the previous section, 

multiple pricing models were described. It is entirely possible 
to replace an existing pricing model with a new and better one 
without changing other parts of the system. To be specific in 
the context of AWS, it is all about redefining the lambda 
expression for the pricing function, which follows the same 
interface (I/O contract). 

VII. RESULTS 

A. Experimental Setup 

Our experimental setup focuses on both functional and non-
functional requirements. For functional requirements such as 
the behavior of the pricing model, the implementation uses 
Python-based simulation for pricing logic. The non-functional 
requirement was verified by setting up the component, as 
shown in Fig. 6, in our test AWS account. 

B. Experimental Result 

Fig. 7, 8, and 9 show how competition-based pricing 
works. Because the goal of such a pricing mechanism is to 
simply follow market pricing, a re-pricing signal is easy to 
find. We implement a module that periodically scrapes prices 
from popular e-commerce websites. The latency of scraping, 
for the competition watcher module, is shown in Fig. 7, which 
was found to be around 600-800 ms. Please note that this 
latency also includes network latency. 

Fig. 8 and Fig. 9 show the tracking of competition prices. 
Fig. 9 is a zoomed in version of Fig. 8 to show the difference in 
timing between the price signal and price change. 

Though it takes a while for market-watcher component to 
observe the competition‟s price changes, however, thanks to 
DynamoDB trigger, lambda evaluation, and subsequent price-
cache update is quite fast (double digit of milliseconds). The 
whole reaction time to competition price is around one second, 
which should be acceptable reaction latency in almost all real-
time pricing use-case. 

Fig. 10 shows a simulation of rule-based dynamic pricing. 
The rule is a combination of demand for the product and the 
competition's price, with an upper cap on the maximum price. 
The rule provides separate prices for myopic and strategic 
customers. 

 
Fig. 7. Competition price fetch latency. 
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Fig. 8. Competition pricing tracking. 

 
Fig. 9. Competition response latency. 

 
Fig. 10. Rule-based dynamic pricing. 

Fig. 11 and 12 are the simulation outcomes for the linear 
programming-based pricing model. The solution for objective 
function (Eq. (4)) and constraint (Eq. (5) to Eq. (9)) can change 
the prices for changing demand or target sale-quantities and 

maximize the revenue under the different circumstances. Fig. 
11 shows optimal prices for different values of target sale-
quantity, and Fig. 12 shows the same different demand values. 

Fig. 13 and Fig. 14 explain the content and performance of 
the price cache. Fig. 13 is a snippet taken from AWS console 
depicting the content of price cache. Key shown in the Fig. 13 
is the product-id, and the json value provides the price values 
for myopic and strategic customer. 

It also has a default value, which is useful in situation when 
pricing-model is yet to provide any pricing value. Fig. 14 
shows our typical distribution of price-request latency when 
using DynamoDB as a pricing cache. The latency is single-
digit millisecond latency and comparable to static-pricing 
scenarios. 

 

Fig. 11. Linear programming-based pricing (1). 

 
Fig. 12. Linear programming-based pricing (2). 

 
Fig. 13. Typical price cache values. 
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Fig. 14. Price cache latency distribution. 

VIII. CONCLUSION 

A. Summary and Discussion 

Real-time pricing can help e-commerce owners; however, 
implementation requires careful handling of multiple 
requirements in order to perform dynamic pricing in real-time. 
Through this work, we defined functional and non-functional 
requirements and used them to guide our system design 
process. We created a pricing framework that can potentially 
provide the most suitable price for various products at different 
stages of their product lifecycle while taking a variety of 
market factors such as demand and competition into 
consideration (satisfying functional requirements FR1 and 
FR2). 

The components (e.g., demand watcher, competition price 
fetcher, cache) are reusable, concurrent (designed with 
separation of concerns in mind), and allow plug-and-play of 
different pricing logic through the defined database schema 
(satisfies NFR1). By the virtue of design decision, price 
response latency (NFR2) equals to a cache-lookup which is 
similar to systems without dynamic pricing. The cache latency 
can further be improved (if required) by using DynamoDB-
DAX [30]. It has been demonstrated in the result that, system 
response to any price change is within a single second, an 
acceptable latency in the context of e-commerce (NFR3). The 
cloud native building blocks (DynamoDB, lambda, etc.) 
inherently provide availability and scalability to our design and 
with the pay-as-you-go model for cost, cloud-native design 
satisfies the last one, NFR-4. 

B. Research Contributions 

Real-time e-commerce pricing is a relatively unexplored 
academic field. In the research gap analysis, we did not find 
any implementation-specific work, which emphasizes the 
timeliness of the pricing. As our first research contribution, we 
have been able to apply existing knowledge of 'dynamic 
pricing' to methodologically specify, design, and implement a 
real-time pricing system. 

Other contribution of this research is the demonstration of 
cloud-native design principles for the implementation of real-
time pricing. The framework provides, unlike anything else in 
the published literature, a low-cost (pay as you go) and scalable 
solution for real-time pricing by making use of cloud 

implementation methodologies. By providing the ability to 
plug-and-play a pricing model for different e-commerce use-
cases, the framework does not enforce „one-size-fits-all', but 
rather promises flexibility while maintaining the reusability of 
building blocks. 

C. Future Work 

The primary goal of this work is to create a framework for 
a real-time pricing system, which has been demonstrated in the 
implementation and results section. However, because real-
time pricing for e-commerce is going to evolve further, there 
are a few opportunities for future work: 

 There is an opportunity to improve the analytics 
described by performing some finer optimizations. To 
give an example, advanced statistical techniques can be 
used to provide more accurate results for sale-
probability estimation. Similarly, sophisticated 
forecasting techniques can be utilized to predict 
demand, which will help price the product more 
efficiently over the long run. 

 Another potential area of research can be conducted on 
pricing models and their selection in the context of 
real-time pricing and cloud native. Models can be fast 
or time-consuming and may have different memory 
and compute requirements, leading to deployment 
choices such as serverless or containers. 
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