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Abstract—Data analysis is very important for the success of 

any business today. It helps to optimize business processes, 

analyze users’ behavior, demands etc. There are powerful data 

analytics tools, such as the ones of the Hadoop ecosystem, but 

they require multiple high-performance servers to run and high-

qualified experts to install, configure and support them. In most 

cases, small companies and start-ups could not afford such 

expenses. However, they can use them as web services, on 

demand, and pay much lower fees per request. To do that, 

companies should somehow share their data with an existing, 

already deployed, Hadoop cluster. The most common way of 

uploading their files to the Hadoop’s Distributed File System 

(HDFS) is through the WebHDFS API (Application 

Programming Interface) that allows remote access to HDFS. For 

that reason, the API’s throughput is very important for the 

efficient integration of a company’s data to the Hadoop cluster. 

This paper performs a series of experimental analyses aiming to 

determine the WebHDFS API’s throughput, if it is a bottleneck 

in integration of a company’s data to existing Hadoop 

infrastructure and to detect all possible factors that influence the 

speed of data transmission between the clients’ software and the 

Hadoop’ file system. 

Keywords—WebHDFS API; throughput analysis; data 

analytical tools; Hadoop Distributed File System (HDFS) 

I. INTRODUCTION 

Data analysis is a key point for success of any business 
organization. It allows companies to extract knowledge from 
the data they gather, to optimize their business processes and 
operations, to predict future failovers and to determine the right 
moment of maintenance. In general, users and clients are 
source of enormous amount of data. Companies can use these 
data to analyze users’ behavior [1] and anticipate their 
demands. So, the analysis of any type of data can provide a 
significant competitive advantage of the company over rival 
businesses. 

However, data analysis is a complex, time-consuming and 
computationally intensive task. Data analytics tools are usually 
either expensive or requires multiple high performance servers 
to run together with highly qualified IT experts to install and 
support them. This, of course, is not affordable for small and 
especially start-up companies. Fortunately, they can still use 
big data analysis tools, like the ones provided by the Hadoop’s 
ecosystem, by hiring them as services “on demand”. The “on 
demand” business model is a modern trend for hiring web-
based (cloud-based) services and paying per request, rather 
than buying own expensive software and hardware. It provides 
maximum scalability and flexibility. According to it, 
computing resources are always available on the Internet and a 
company can use as many resources as it needs at the moment, 
while paying as much as it consumes. 

Using remote data analytics services however, requires that 
the company share its data with the service provider [2]. In 
case big data analytics tools, being provided, are part of the 
Hadoop ecosystem, they will read the data from the “Hadoop 
Distributed File System” (HDFS). Although there are several 
ways to copy data to remote HDFS [3], the most preferable one 
is through the WebHDFS Application Programming Interface 
(API). It allows third-party applications to connect to remote 
HDFS file system and write/read files to/from it. As we are 
considering big data analysis, the amount of data being 
transferred is supposed to be large enough, so the WebHDFS 
API’s throughput plays an important role in integration of a 
company’s data to the Hadoop service provider. Other ways of 
data integration are reviewed in [4],[5],[6],[7],[8] and [9]. 

The aim of this work is to perform a series of experimental 
analyses to determine the WebHDFS API’s throughput; if it is 
a bottleneck in integration of a company’s data to existing 
Hadoop infrastructure; and to detect all possible external 
factors that influences the speed of data transmission between 
the clients’ software and the WebHDFS API of existing 
Hadoop cluster. 

The paper is structured as follows: Section II reviews some 
previous work done by other researchers. Section III describes 
the experimental system’s architecture and the experimental 
setup in details. Section IV analyzes and discusses obtained 
experimental results. Finally, Section V ends the article with a 
conclusion, outlining and summarizing all key observations 
authors noticed during the experimental analysis. 

II. RELATED WORK 

HDFS allows management of large volumes of data using 
commodity items. This reinforces the need to provide robust 
data protection to facilitate file sharing in Hadoop, as well as 
having a trusted mechanism to verify the authenticity of shared 
files. This is the focus of [10], where the authors' attention is 
directed to improving the security of HDFS using a 
blockchain-enabled approach (hereafter referred to as 
BlockHDFS). User connects to the WebHDFS REST API, 
through which all data retrieval and modifications are 
implemented. In BlockHDFS, the blockchain is responsible for 
storing the file metadata. The costs incurred in storing HDFS 
file metadata on the blockchain are twofold. First, the 
WebHDFS API must read a file's metadata from HDFS as a 
hash value. Second, additional operations are required to store 
the metadata in the blockchain. However, since the metadata 
size is typically small, such overhead will neither introduce 
high latency for HDFS operations nor require a large amount 
of disk space for blockchain storage. The paper proposes a new 
approach to introduce blockchain (and more specifically, 
Hyperledger) to improve the security of the HDFS ecosystem. 
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Paper [11] discusses one of the most significant challenges 
of next-generation big data federation platforms, namely the 
access control in Hadoop systems. The paper critically 
analyzes and explores security limitations in Hadoop systems 
and presents a tool called “Big Data federation access broker” 
to address eight major Hadoop security limitations. To validate 
the performance of the broker, authors have conducted a set of 
experimental studies on a real Hadoop cluster. They made a 
comparison between read and write operations, performed 
through WebHDFS, in two cases - without using any security 
measures (pure WebHDFS access) and when using the authors' 
proposed broker model for accessing the big data. Performance 
analysis of operations executed over WebHDFS with files of 
various sizes was done as well. 

Authors of [12] discuss the design of a data transfer service, 
called Stargate, to address the challenges of large data transfers 
over a WAN. Stargate implements a content-addressable 
protocol and multi-layered caching to cope with these 
challenges. It uses a novel approach that localizes computation, 
cache, and transfers to achieve efficient data access in cluster 
computing. Stargate is evaluated experimentally by comparing 
its performance with two widely used Hadoop data access 
methods - DistCP and WebHDFS. DistCP is a built-in Hadoop 
data delivery tool. DistCP preorders data, while WebHDFS 
provides data access on-demand. The elapsed times of three 
Hadoop benchmarks that have different I/O workloads were 
compared to evaluate efficiency. Experiments show that 
Stargate over WAN has comparable performance to HDFS 
running on a LAN. It also has lower overhead than WebHDFS, 
which is widely used for remote access to data from Hadoop 
clusters. 

Apache Spark uses a cluster of compute-optimized servers 
on which the execution modules run, and a cluster of servers, 
optimized for performing storage operations and hosting the 
HDFS data. However, the network transfer from the data 
warehouse to the computing cluster becomes a serious obstacle 
for big data processing. Near-data processing (NDP) is a 
concept that aims to ease the network load in such cases by 
offloading some of the computing tasks to the storage cluster. 
Rachuri et al. present an architecture and basic principles of 
implementation of an NDP system for Spark [13]. HDFS can 
be configured to add redundancy by copying the same blocks 
of files across multiple data nodes to improve fault tolerance. It 
also provides an API - WebHDFS. In the proposed 
implementation, the authors take advantage of the replication 
factor to increase the number of data nodes that can perform 
operations related to offloading the computational tasks and 
intercept the WebHDFS communication between the client and 
the data node to perform NDP operations. Simulation results 
and experiments conducted on the developed prototype show 
that SparkNDP can help reduce the execution time of Spark 
queries compared to both - the default approach of not 
directing any tasks to the repository, and the direct NDP 
approach to offloading all tasks to the repository. 

High Performance Computing (HPC) and Big Data are two 
trends that are starting to converge. In this process, aspects of 
hardware architectures, system support, and programming 
paradigms are revisited from both perspectives. The authors of 
[14] present their experience on this path of convergence. They 

propose a framework through which some of the programming 
problems, arising from such integration, are solved. An 
integrated environment has been developed that integrates: (1) 
COMPS, a programming environment for developing and 
running parallel applications for distributed infrastructures; (2) 
Lemonade, a data mining and analysis tool; and (3) HDFS, the 
most widely used distributed file system for big data. In order 
to implement the integration between COMPS and HDFS, 
aspects of the available techniques for communication between 
external applications, in particular those written in Java and 
Python, and HDFS are considered. HDFS provides interfaces 
through a direct Java API, a command-line interface (CLI), a 
REST API (WebHDFS), and a C API (libhdfs). The proposed 
solution provides processing of large data transfers, with access 
to low-level functions. 

WebHDFS allows users to connect to HDFS from outside 
the Hadoop cluster, which is especially useful when an external 
application needs to load data into or out of HDFS or work 
with the data stored in HDFS. WebHDFS also supports (for all 
HDFS users) operations such as reading files, writing to files, 
creating directories, changing access permissions, renaming, 
etc. The WebHDFS API is used for two functions in [15]: 1) 
after server-side processing is complete, this data is stored in 
HDFS via the WebHDFS API; and 2) when the created final 
data for visualization in raw text format is requested by clients, 
the data is passed to them via the WebHDFS API. 

A system architecture combining the “IP multimedia 
subsystem (IMS)” platform and the Hadoop system used in the 
distributed storage of the IMS service resources is proposed in 
[16]. The result is a manageable Hadoop-based data center for 
telecommunication service providers. Interoperability between 
different systems is achieved through RESTful web services. 
The WebHDFS API is used to allow services to interact with 
HDFS, while the Oozie Web Services API is used for the 
compute service. The conducted tests prove the availability, 
scalability, and reliability of the proposed system. 
Experimental results show that system performance is 
improved, especially in terms of disk space utilization and 
system throughput. 

Although HDFS works well with medium-sized and large 
files, its performance seriously degrades in case of multiple 
very small files. To overcome this shortcoming, the authors of 
[17] propose a system to improve the performance of HDFS 
using a distributed full-text search system. By indexing each 
file's metadata, such as name, size, date, and description, files 
can be quickly accessed through efficient metadata searches. 
Additionally, by consolidating many small files into one large 
file to be stored with better space and I/O efficiency, the 
negative performance impacts caused by directly storing each 
small file separately are avoided. 

HDFS is a widely used open-source scalable and reliable 
file management system designed as a general-purpose 
distributed file storage solution. WebHDFS is a service for 
accessing data stored and maintained in HDFS. It runs on all 
nodes in the Hadoop cluster and provides a REST interface for 
data access. Unlike other file systems or data transfer tools, 
WebHDFS detects the layout of data blocks stored in HDFS. 
Using this block information, clients can directly access the 
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HDFS node (data node) on which the data is stored. This not 
only reduces data access latency, but also provides load 
balancing of data access requests. This motivated the authors 
of [18],[19],[20] to investigate the performance of HDFS in 
remote data access. 

III. EXPERIMENTAL SETUP 

To study the throughput of the WebHDFS API, a testing 
client must be developed to access the interface in both read 
and write modes. The client, for the current experiment, has 
been implemented in the php programming language. It uses 
the open source library PHP-Hadoop-HDFS [21], implemented 
and maintained by Aleksandr Kuzmenko. It is a wrapping 
library that does not do any specific data processing, but just 
composes the necessary HTTP requests to access the 
WebHDFS API. The access itself is done through the cURL 
(client URL library) library [22], distributed together with the 
php interpreter. The WebHDFS API could be accessed without 
PHP-Hadoop-HDFS library, but it facilitates the access, since 
the library frees the programmer from having to know the 
WebHDFS API itself. Instead, the programmer should only 
know the methods that the library implements and their input 
arguments. The architecture of the experimental system is 
presented on Fig. 1. 

When performing the experiments, several key parameters 
should be monitored: total time; upload speed; download 
speed; bytes uploaded; bytes downloaded; and response HTTP 
code. Fortunately, all of these, together with many more 
parameters, are measured by the cURL library itself. 

The throughput of the WebHDFS API is not the only 
limitation factor. The network speed is important as well, even 
more important. Even if the API itself allows the transfer of 
hundreds of megabytes per second, if the user's Internet speed 
is slow, then the API’s throughput does not matter at all. 
Therefore, experiments should be performed from different 
type of computer networks: 

1) Internet- This is the most important experiment, as this 

is the most realistic scenario for accessing the Hadoop cluster. 

Most likely, the greatest limitation factor will be the Internet 

connection speed. 

2) Corporate LAN of the service provider: This 

experiment is important in case of a large company, having 

multiple offices, maintaining its own Hadoop infrastructure 

and MAN network between the different locations. 

Experiments could be done at multiple network speeds - 1 

gbit/s and 100 mbit/s seem to be the most realistic speeds for a 

company’s MAN. 

Although writing to HDFS is more important than reading, 
both operations will be tested. Writing is more important since 
company’s data should be saved to HDFS, before being 
analyzed by the Hadoop’s data analytical tools. So, the data 
flow direction in general will be from the company to the 
Hadoop cluster. However, reading is also useful. 

Experiments have been conducted with small, medium-
sized and large files which are generated with the Windows’ 
fsutil application. They contain only zeros (i.e. no meaningful 
information). Since we are making performance experiments, 
the content of the files does not matter at all, but their exact 
size does. It is important that their size can be precisely 
controlled. 

The Hadoop cluster consists of 1 name node (2 x Intel 
Xeon Silver 4110, 32 total threads, 64 GB RAM) and 9 data 
nodes (Intel Xeon E-2124, 16 GB RAM). Servers are 
connected through 24 Port Gigabit switch HPE OfficeConnect 
1820. 

The experimental application, developed in php, runs on a 
laptop computer (Intel i7-7500U, 12 GB RAM) for all 
experiments in all types of networks. Using the same laptop for 
all experiments is intentionally done in order to ignore the 
influence of the client’s hardware. 

The access from the client to the WebHDFS API is done 
through the: 

1) Internet – the access is done from a laptop computer, 

connected to a home router. According to the subscription, the 

guaranteed Internet speed is 80 mbit/s. 

2) University of Ruse’s campus network – the access is 

done from the same laptop, connected to any point of the 

university’s campus-wide 100 mbit/s network. 

3) 1 gbit/s cluster’s switch – the laptop is connected 

directly to the 1-gigabit switch of the Hadoop cluster. 

Internet / www

Experimental 

Application

PHP-Hadoop-HDFS

Library

PHP Interpreter

cURL 

Library

WebHDFS API

Hadoop Distributed 

File System (HDFS)

Hadoop Cluster

HTTP
HTTP

Local File System 

 
Fig. 1. Architecture of the system for experimental study of the WebHDFS API’s throughput. 
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IV. EXPERIMENTAL RESULTS 

A. Writing Data to HDFS 

As previously mentioned, when integrating a company’s 
data to an existing Hadoop cluster, writing/saving files to 
WebHDFS is the most important operation. So, it is tested with 
priority. 

Experiments started with small to medium-sized files from 
10 to 100 MB, with a step of 10MB. Results are presented on 
Fig. 2. They show almost constant write speed when 
WebHDFS is accessed from the Internet and the university’s 
campus-wide 100 mb/s network. The transfer speed almost 
reaches the network’s capacity – with the 80 mbit/s Internet 
connection, the achieved speed is around 60 mbit/s, while 
within the 100 mbit/s campus-wide LAN, we achieve 
sustainable transfer of 85 mbit/s. 

When the laptop is connected directly to the cluster’s 
gigabit switch, the writing speed is times higher and is 
increasing with the increase of the file size. 

Since the API supports high-speed data transfer, we 
decided to go further and experiment with medium-sized files, 
from 100 to 300 MB with step of 50 MB, and large files from 
500 to 1500 MB with step of 500 MB. Results are shown on 
Fig. 3 and 4 respectively. For larger files, upload speed 
becomes constant (about 800 mb/s) for the gigabit network as 
well. That proves the WebHDFS API supports very high 
writing speeds and could not be considered as bottleneck in the 
integration architecture. Most probably, the API just saves the 
incoming data to the HDFS file system without applying any 
complex processing on them. 

As known from everyday usage of computer network and 
different types of file transfer, copying single large files is 
much more efficient than copying multiple smaller files. There 
are objective reasons for that, including metadata overheads. 
So, it is worth testing how much slower uploading multiple 
smaller files will be in respect to a single large file, having the 
same total size. 

Three experiments have been performed with single large 
files of 100 MB, 200 MB and 300 MB, and 10 x 10 MB, 20 x 
10 MB and 30 x 10 MB. The size of the single large file 
exactly matches the total sum of bytes of the respective many 
10 MB files. Results are presented on Fig. 5. Expectedly, 
uploading a single large file is faster than uploading many 
smaller files, having the same total size as the large one. 

 
Fig. 2. Write speed to HDFS via the WebHDFS API with relatively small 

file sizes - from 10 MB to 100 MB. 

 
Fig. 3. Write speed to HDFS via the WebHDFS API. File sizes from 100 

MB to 300 MB. Write speed is constant, independent on the file size. 

 
Fig. 4. Write speed to HDFS via the WebHDFS API. File sizes from 500 

MB to 1500 MB. Write speed is still constant, although files have got very 
large. 

 
Fig. 5. Time to write data (single large file or multiple small files) to HDFS 

via the WebHDFS API. 

B. Reading Data from HDFS 

Although reading data from HDFS is less important 
operation when integrating a company’s data to existing 
Hadoop cluster, a series of experiments will be done by using 
the files, already uploaded to the HDFS through the WebHDFS 
API. The same client is used, as in the previous experiments 
for writing data, and runs on the same laptop computer as well. 
Results are shown on Fig. 6 (for files 10 to 100 MB), Fig. 7 
(for files 100 to 300 MB) and Fig. 8 (for files 500 to 1500 
MB). 
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Fig. 6. Read speed from HDFS via the WebHDFS API with relatively small 

file sizes - from 10 MB to 100 MB. 

 
Fig. 7. Read speed from HDFS via the WebHDFS API. File sizes from 100 

MB to 300 MB. On high-speed networks, read/download speed is decreasing 

with increasing the file size. 

 
Fig. 8. Read speed from HDFS via the WebHDFS API. File sizes from 500 

MB to 1500 MB. Read/download speed is decreasing with increasing the file 

size on all networks. 

In contrast to the constant writing speed however, the 
reading (download) speed rapidly falls with increasing the file 
size – significantly noticeable for the high-speed 1 gbit/s 
connection. The initial suspicion/assumption was this decrease 
of the reading speed is related to the higher number of packets 
that the large files consist of. There is a sense in that – since 
larger files contains many more packets, more time may be 

required to reconstruct the file from the higher number of 
packets. To test if the assumption is correct, the experiments 
have been repeated with measuring not just the total time, but 
transferring time and file saving time separately. 

Results show that the transferring time, without the time 
needed to save the file within the local file system is 
commensurate with the total time. And time needed to 
reconstruct and save the file is actually very small and does not 
depend on the file size. So, the assumption is wrong. Since the 
communication between the client and the WebHDFS API is 
handled by the cURL library, distributed with the PHP 
interpreter, then the cause of the reading speed decrease could 
be either the cURL library itself or the API. To determine 
where the problem is, the WebHDFS API should be accessed 
in another way. It could be accessed directly through a 
browser, but it is not very convenient. Other tools like Postman 
or Rester are not very suitable as well, since they do not 
measure times. The cURL library however is not developed 
specially for PHP, but it is an open source project ported to 
almost any programming language. It is provided as a built-in 
application in Unix/Linux/MacOS and could be downloaded as 
external stand-alone application for Windows. 

We take the HTTP queries, generated by the PHP-Hadoop-
HDFS library and run them from the cURL applications for 
MacOS and Windows. Results show that files are downloading 
(read) from HDFS with very high speed almost reaching the 
maximum throughput capacity of the relevant type of network, 
regardless of the file size. So, the causer of the read speed 
decrease in our experiments is determined to be the cURL 
library, distributed with the PHP interpreter. Further 
experiments will be done with different versions of PHP and its 
accompanying cURL library. 

Another interesting and unexpected result occurred when 
reading files from WebHDFS over the Internet. The utilized 
home Internet subscription plan is guaranteeing speed of 80 
mbit/s. However, reading was done at speeds up to 175 mbit/s. 
The connection between the home computer and the Internet 
Service Provider (ISP) is actually higher than the guaranteed 
80mbit/s. Apparently, the ISP also has a high-speed connection 
to the university’s network, where the Hadoop cluster is 
located. So, the access to the servers from the home computer 
is done in a kind of MAN network with speeds significantly 
higher than guaranteed Internet connection. Interestingly, this 
is not the case when writing data to WebHDFS. When writing 
(uploading) files, they are transferred at a speed no higher than 
the guaranteed Internet connection. This, however, is a specific 
case study related to the specific ISP and should not be 
considered as an essential part of the results of the experiments. 

V. CONCLUSIONS 

Since WebHDFS is the most preferable way for remote 
access of the distributed file system HDFS, it is important to 
know its capabilities, performance and throughput. 

After performing dozens of experiments and additional 
analyses, the results could be summarized in the following 
conclusions: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 4, 2023 

49 | P a g e  

www.ijacsa.thesai.org 

1) WebHDFS API allows data exchange with the Hadoop 

Distributed File System (HDFS) at very high speeds, and in 

general it is not the limitation factor, but the speed of the 

network itself. In a 1 gbit/s network, we achieve data transfer 

rates of around 800 mbit/s. On slower networks, the network 

capacity is almost entirely compressed. 

2) The speed of writing (uploading) files through the 

WebHDFS API does not depend on the size of the files, but 

remains constant and it is only limited by the network capacity. 

3) In contrast to the constant write speed, the reading 

(download) speed through the WebHDFS API decreases 

rapidly as the file size increases. 

4) However, the reason for the decreasing read speed is not 

in the WebHDFS API itself, but in the implementation of the 

cURL library, distributed together with the PHP interpreter. 

When accessing the API in alternative ways, the read speed 

remains constant and comparable to the write speed. 

5) When reading files from the WebHDFS API by using 

PHP and cURL, it is mandatory that the PHP interpreter is 

configured to use a larger amount of RAM memory than the 

size of the files being read. This is expected since the data 

transfer happens in multiple small network packets, but in 

order to reconstruct the file from them, they must be stored and 

arranged in a common buffer (located within the RAM 

memory). 

6) When writing files through the WebHDFS API, the 

amount of RAM memory that the PHP interpreter can work 

with is not of such importance because the data is read from 

the local file system in chunks, which are typically much 

smaller than the default memory limit of 128 MB. In this case, 

the buffer size is important on the receiving side – i.e. on the 

server where the WebHDFS API is running. This size is 

managed by Cloudera Manager and is large enough. 

7) In relation to the above-mentioned, it has been observed 

that files larger than 2GB cannot be reliably written to HDFS 

via the WebHDFS API. For all of our attempts to upload a file 

larger than 2 GB, the server did not return any HTTP response, 

although in some cases the files were actually stored in HDFS. 

The fact that files of 1.99 GB were always reliably saved, but 

2.0 GB were not, suggests that the reason might be a 

WebHDFS setting, maybe the server-side buffer in question or 

something else. Further analysis could help to determine the 

exact cause. 

8) A large number of small files are transferred more 

slowly than a single large file of the same total size. This 

observation is absolutely expected given the fact that with 

many small files, many separate HTTP requests are made, each 

of which has time to resolve the domain to an IP address, time 

to connect, time to make and receive the request, etc. 

The WebHDFS API allows data exchange with HDFS at 
very high speeds, so it could not be considered as a bottleneck 
in the integration of a company’s data to an existing Hadoop 
cluster. However, by default, it does not perform any user 
access control by itself, so additional means should be 
designed and implemented, or integrated, to control user access 

and guarantee data isolation (no third-party company should be 
able to access data of another company). 
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