
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

44 | P a g e

www.ijacsa.thesai.org

Experimental Analysis of WebHDFS API Throughput

Yordan Kalmukov, Milko Marinov

Department of Computer Systems and Technologies, University of Ruse, Ruse, Bulgaria

Abstract—Data analysis is very important for the success of

any business today. It helps to optimize business processes,

analyze users’ behavior, demands etc. There are powerful data

analytics tools, such as the ones of the Hadoop ecosystem, but

they require multiple high-performance servers to run and high-

qualified experts to install, configure and support them. In most

cases, small companies and start-ups could not afford such

expenses. However, they can use them as web services, on

demand, and pay much lower fees per request. To do that,

companies should somehow share their data with an existing,

already deployed, Hadoop cluster. The most common way of

uploading their files to the Hadoop’s Distributed File System

(HDFS) is through the WebHDFS API (Application

Programming Interface) that allows remote access to HDFS. For

that reason, the API’s throughput is very important for the

efficient integration of a company’s data to the Hadoop cluster.

This paper performs a series of experimental analyses aiming to

determine the WebHDFS API’s throughput, if it is a bottleneck

in integration of a company’s data to existing Hadoop

infrastructure and to detect all possible factors that influence the

speed of data transmission between the clients’ software and the

Hadoop’ file system.

Keywords—WebHDFS API; throughput analysis; data

analytical tools; Hadoop Distributed File System (HDFS)

I. INTRODUCTION

Data analysis is a key point for success of any business
organization. It allows companies to extract knowledge from
the data they gather, to optimize their business processes and
operations, to predict future failovers and to determine the right
moment of maintenance. In general, users and clients are
source of enormous amount of data. Companies can use these
data to analyze users’ behavior [1] and anticipate their
demands. So, the analysis of any type of data can provide a
significant competitive advantage of the company over rival
businesses.

However, data analysis is a complex, time-consuming and
computationally intensive task. Data analytics tools are usually
either expensive or requires multiple high performance servers
to run together with highly qualified IT experts to install and
support them. This, of course, is not affordable for small and
especially start-up companies. Fortunately, they can still use
big data analysis tools, like the ones provided by the Hadoop’s
ecosystem, by hiring them as services “on demand”. The “on
demand” business model is a modern trend for hiring web-
based (cloud-based) services and paying per request, rather
than buying own expensive software and hardware. It provides
maximum scalability and flexibility. According to it,
computing resources are always available on the Internet and a
company can use as many resources as it needs at the moment,
while paying as much as it consumes.

Using remote data analytics services however, requires that
the company share its data with the service provider [2]. In
case big data analytics tools, being provided, are part of the
Hadoop ecosystem, they will read the data from the “Hadoop
Distributed File System” (HDFS). Although there are several
ways to copy data to remote HDFS [3], the most preferable one
is through the WebHDFS Application Programming Interface
(API). It allows third-party applications to connect to remote
HDFS file system and write/read files to/from it. As we are
considering big data analysis, the amount of data being
transferred is supposed to be large enough, so the WebHDFS
API’s throughput plays an important role in integration of a
company’s data to the Hadoop service provider. Other ways of
data integration are reviewed in [4],[5],[6],[7],[8] and [9].

The aim of this work is to perform a series of experimental
analyses to determine the WebHDFS API’s throughput; if it is
a bottleneck in integration of a company’s data to existing
Hadoop infrastructure; and to detect all possible external
factors that influences the speed of data transmission between
the clients’ software and the WebHDFS API of existing
Hadoop cluster.

The paper is structured as follows: Section II reviews some
previous work done by other researchers. Section III describes
the experimental system’s architecture and the experimental
setup in details. Section IV analyzes and discusses obtained
experimental results. Finally, Section V ends the article with a
conclusion, outlining and summarizing all key observations
authors noticed during the experimental analysis.

II. RELATED WORK

HDFS allows management of large volumes of data using
commodity items. This reinforces the need to provide robust
data protection to facilitate file sharing in Hadoop, as well as
having a trusted mechanism to verify the authenticity of shared
files. This is the focus of [10], where the authors' attention is
directed to improving the security of HDFS using a
blockchain-enabled approach (hereafter referred to as
BlockHDFS). User connects to the WebHDFS REST API,
through which all data retrieval and modifications are
implemented. In BlockHDFS, the blockchain is responsible for
storing the file metadata. The costs incurred in storing HDFS
file metadata on the blockchain are twofold. First, the
WebHDFS API must read a file's metadata from HDFS as a
hash value. Second, additional operations are required to store
the metadata in the blockchain. However, since the metadata
size is typically small, such overhead will neither introduce
high latency for HDFS operations nor require a large amount
of disk space for blockchain storage. The paper proposes a new
approach to introduce blockchain (and more specifically,
Hyperledger) to improve the security of the HDFS ecosystem.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

45 | P a g e

www.ijacsa.thesai.org

Paper [11] discusses one of the most significant challenges
of next-generation big data federation platforms, namely the
access control in Hadoop systems. The paper critically
analyzes and explores security limitations in Hadoop systems
and presents a tool called “Big Data federation access broker”
to address eight major Hadoop security limitations. To validate
the performance of the broker, authors have conducted a set of
experimental studies on a real Hadoop cluster. They made a
comparison between read and write operations, performed
through WebHDFS, in two cases - without using any security
measures (pure WebHDFS access) and when using the authors'
proposed broker model for accessing the big data. Performance
analysis of operations executed over WebHDFS with files of
various sizes was done as well.

Authors of [12] discuss the design of a data transfer service,
called Stargate, to address the challenges of large data transfers
over a WAN. Stargate implements a content-addressable
protocol and multi-layered caching to cope with these
challenges. It uses a novel approach that localizes computation,
cache, and transfers to achieve efficient data access in cluster
computing. Stargate is evaluated experimentally by comparing
its performance with two widely used Hadoop data access
methods - DistCP and WebHDFS. DistCP is a built-in Hadoop
data delivery tool. DistCP preorders data, while WebHDFS
provides data access on-demand. The elapsed times of three
Hadoop benchmarks that have different I/O workloads were
compared to evaluate efficiency. Experiments show that
Stargate over WAN has comparable performance to HDFS
running on a LAN. It also has lower overhead than WebHDFS,
which is widely used for remote access to data from Hadoop
clusters.

Apache Spark uses a cluster of compute-optimized servers
on which the execution modules run, and a cluster of servers,
optimized for performing storage operations and hosting the
HDFS data. However, the network transfer from the data
warehouse to the computing cluster becomes a serious obstacle
for big data processing. Near-data processing (NDP) is a
concept that aims to ease the network load in such cases by
offloading some of the computing tasks to the storage cluster.
Rachuri et al. present an architecture and basic principles of
implementation of an NDP system for Spark [13]. HDFS can
be configured to add redundancy by copying the same blocks
of files across multiple data nodes to improve fault tolerance. It
also provides an API - WebHDFS. In the proposed
implementation, the authors take advantage of the replication
factor to increase the number of data nodes that can perform
operations related to offloading the computational tasks and
intercept the WebHDFS communication between the client and
the data node to perform NDP operations. Simulation results
and experiments conducted on the developed prototype show
that SparkNDP can help reduce the execution time of Spark
queries compared to both - the default approach of not
directing any tasks to the repository, and the direct NDP
approach to offloading all tasks to the repository.

High Performance Computing (HPC) and Big Data are two
trends that are starting to converge. In this process, aspects of
hardware architectures, system support, and programming
paradigms are revisited from both perspectives. The authors of
[14] present their experience on this path of convergence. They

propose a framework through which some of the programming
problems, arising from such integration, are solved. An
integrated environment has been developed that integrates: (1)
COMPS, a programming environment for developing and
running parallel applications for distributed infrastructures; (2)
Lemonade, a data mining and analysis tool; and (3) HDFS, the
most widely used distributed file system for big data. In order
to implement the integration between COMPS and HDFS,
aspects of the available techniques for communication between
external applications, in particular those written in Java and
Python, and HDFS are considered. HDFS provides interfaces
through a direct Java API, a command-line interface (CLI), a
REST API (WebHDFS), and a C API (libhdfs). The proposed
solution provides processing of large data transfers, with access
to low-level functions.

WebHDFS allows users to connect to HDFS from outside
the Hadoop cluster, which is especially useful when an external
application needs to load data into or out of HDFS or work
with the data stored in HDFS. WebHDFS also supports (for all
HDFS users) operations such as reading files, writing to files,
creating directories, changing access permissions, renaming,
etc. The WebHDFS API is used for two functions in [15]: 1)
after server-side processing is complete, this data is stored in
HDFS via the WebHDFS API; and 2) when the created final
data for visualization in raw text format is requested by clients,
the data is passed to them via the WebHDFS API.

A system architecture combining the “IP multimedia
subsystem (IMS)” platform and the Hadoop system used in the
distributed storage of the IMS service resources is proposed in
[16]. The result is a manageable Hadoop-based data center for
telecommunication service providers. Interoperability between
different systems is achieved through RESTful web services.
The WebHDFS API is used to allow services to interact with
HDFS, while the Oozie Web Services API is used for the
compute service. The conducted tests prove the availability,
scalability, and reliability of the proposed system.
Experimental results show that system performance is
improved, especially in terms of disk space utilization and
system throughput.

Although HDFS works well with medium-sized and large
files, its performance seriously degrades in case of multiple
very small files. To overcome this shortcoming, the authors of
[17] propose a system to improve the performance of HDFS
using a distributed full-text search system. By indexing each
file's metadata, such as name, size, date, and description, files
can be quickly accessed through efficient metadata searches.
Additionally, by consolidating many small files into one large
file to be stored with better space and I/O efficiency, the
negative performance impacts caused by directly storing each
small file separately are avoided.

HDFS is a widely used open-source scalable and reliable
file management system designed as a general-purpose
distributed file storage solution. WebHDFS is a service for
accessing data stored and maintained in HDFS. It runs on all
nodes in the Hadoop cluster and provides a REST interface for
data access. Unlike other file systems or data transfer tools,
WebHDFS detects the layout of data blocks stored in HDFS.
Using this block information, clients can directly access the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

46 | P a g e

www.ijacsa.thesai.org

HDFS node (data node) on which the data is stored. This not
only reduces data access latency, but also provides load
balancing of data access requests. This motivated the authors
of [18],[19],[20] to investigate the performance of HDFS in
remote data access.

III. EXPERIMENTAL SETUP

To study the throughput of the WebHDFS API, a testing
client must be developed to access the interface in both read
and write modes. The client, for the current experiment, has
been implemented in the php programming language. It uses
the open source library PHP-Hadoop-HDFS [21], implemented
and maintained by Aleksandr Kuzmenko. It is a wrapping
library that does not do any specific data processing, but just
composes the necessary HTTP requests to access the
WebHDFS API. The access itself is done through the cURL
(client URL library) library [22], distributed together with the
php interpreter. The WebHDFS API could be accessed without
PHP-Hadoop-HDFS library, but it facilitates the access, since
the library frees the programmer from having to know the
WebHDFS API itself. Instead, the programmer should only
know the methods that the library implements and their input
arguments. The architecture of the experimental system is
presented on Fig. 1.

When performing the experiments, several key parameters
should be monitored: total time; upload speed; download
speed; bytes uploaded; bytes downloaded; and response HTTP
code. Fortunately, all of these, together with many more
parameters, are measured by the cURL library itself.

The throughput of the WebHDFS API is not the only
limitation factor. The network speed is important as well, even
more important. Even if the API itself allows the transfer of
hundreds of megabytes per second, if the user's Internet speed
is slow, then the API’s throughput does not matter at all.
Therefore, experiments should be performed from different
type of computer networks:

1) Internet- This is the most important experiment, as this

is the most realistic scenario for accessing the Hadoop cluster.

Most likely, the greatest limitation factor will be the Internet

connection speed.

2) Corporate LAN of the service provider: This

experiment is important in case of a large company, having

multiple offices, maintaining its own Hadoop infrastructure

and MAN network between the different locations.

Experiments could be done at multiple network speeds - 1

gbit/s and 100 mbit/s seem to be the most realistic speeds for a

company’s MAN.

Although writing to HDFS is more important than reading,
both operations will be tested. Writing is more important since
company’s data should be saved to HDFS, before being
analyzed by the Hadoop’s data analytical tools. So, the data
flow direction in general will be from the company to the
Hadoop cluster. However, reading is also useful.

Experiments have been conducted with small, medium-
sized and large files which are generated with the Windows’
fsutil application. They contain only zeros (i.e. no meaningful
information). Since we are making performance experiments,
the content of the files does not matter at all, but their exact
size does. It is important that their size can be precisely
controlled.

The Hadoop cluster consists of 1 name node (2 x Intel
Xeon Silver 4110, 32 total threads, 64 GB RAM) and 9 data
nodes (Intel Xeon E-2124, 16 GB RAM). Servers are
connected through 24 Port Gigabit switch HPE OfficeConnect
1820.

The experimental application, developed in php, runs on a
laptop computer (Intel i7-7500U, 12 GB RAM) for all
experiments in all types of networks. Using the same laptop for
all experiments is intentionally done in order to ignore the
influence of the client’s hardware.

The access from the client to the WebHDFS API is done
through the:

1) Internet – the access is done from a laptop computer,

connected to a home router. According to the subscription, the

guaranteed Internet speed is 80 mbit/s.

2) University of Ruse’s campus network – the access is

done from the same laptop, connected to any point of the

university’s campus-wide 100 mbit/s network.

3) 1 gbit/s cluster’s switch – the laptop is connected

directly to the 1-gigabit switch of the Hadoop cluster.

Internet / www

Experimental

Application

PHP-Hadoop-HDFS

Library

PHP Interpreter

cURL

Library

WebHDFS API

Hadoop Distributed

File System (HDFS)

Hadoop Cluster

HTTP
HTTP

Local File System

Fig. 1. Architecture of the system for experimental study of the WebHDFS API’s throughput.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

47 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTAL RESULTS

A. Writing Data to HDFS

As previously mentioned, when integrating a company’s
data to an existing Hadoop cluster, writing/saving files to
WebHDFS is the most important operation. So, it is tested with
priority.

Experiments started with small to medium-sized files from
10 to 100 MB, with a step of 10MB. Results are presented on
Fig. 2. They show almost constant write speed when
WebHDFS is accessed from the Internet and the university’s
campus-wide 100 mb/s network. The transfer speed almost
reaches the network’s capacity – with the 80 mbit/s Internet
connection, the achieved speed is around 60 mbit/s, while
within the 100 mbit/s campus-wide LAN, we achieve
sustainable transfer of 85 mbit/s.

When the laptop is connected directly to the cluster’s
gigabit switch, the writing speed is times higher and is
increasing with the increase of the file size.

Since the API supports high-speed data transfer, we
decided to go further and experiment with medium-sized files,
from 100 to 300 MB with step of 50 MB, and large files from
500 to 1500 MB with step of 500 MB. Results are shown on
Fig. 3 and 4 respectively. For larger files, upload speed
becomes constant (about 800 mb/s) for the gigabit network as
well. That proves the WebHDFS API supports very high
writing speeds and could not be considered as bottleneck in the
integration architecture. Most probably, the API just saves the
incoming data to the HDFS file system without applying any
complex processing on them.

As known from everyday usage of computer network and
different types of file transfer, copying single large files is
much more efficient than copying multiple smaller files. There
are objective reasons for that, including metadata overheads.
So, it is worth testing how much slower uploading multiple
smaller files will be in respect to a single large file, having the
same total size.

Three experiments have been performed with single large
files of 100 MB, 200 MB and 300 MB, and 10 x 10 MB, 20 x
10 MB and 30 x 10 MB. The size of the single large file
exactly matches the total sum of bytes of the respective many
10 MB files. Results are presented on Fig. 5. Expectedly,
uploading a single large file is faster than uploading many
smaller files, having the same total size as the large one.

Fig. 2. Write speed to HDFS via the WebHDFS API with relatively small

file sizes - from 10 MB to 100 MB.

Fig. 3. Write speed to HDFS via the WebHDFS API. File sizes from 100

MB to 300 MB. Write speed is constant, independent on the file size.

Fig. 4. Write speed to HDFS via the WebHDFS API. File sizes from 500

MB to 1500 MB. Write speed is still constant, although files have got very
large.

Fig. 5. Time to write data (single large file or multiple small files) to HDFS

via the WebHDFS API.

B. Reading Data from HDFS

Although reading data from HDFS is less important
operation when integrating a company’s data to existing
Hadoop cluster, a series of experiments will be done by using
the files, already uploaded to the HDFS through the WebHDFS
API. The same client is used, as in the previous experiments
for writing data, and runs on the same laptop computer as well.
Results are shown on Fig. 6 (for files 10 to 100 MB), Fig. 7
(for files 100 to 300 MB) and Fig. 8 (for files 500 to 1500
MB).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

48 | P a g e

www.ijacsa.thesai.org

Fig. 6. Read speed from HDFS via the WebHDFS API with relatively small

file sizes - from 10 MB to 100 MB.

Fig. 7. Read speed from HDFS via the WebHDFS API. File sizes from 100

MB to 300 MB. On high-speed networks, read/download speed is decreasing

with increasing the file size.

Fig. 8. Read speed from HDFS via the WebHDFS API. File sizes from 500

MB to 1500 MB. Read/download speed is decreasing with increasing the file

size on all networks.

In contrast to the constant writing speed however, the
reading (download) speed rapidly falls with increasing the file
size – significantly noticeable for the high-speed 1 gbit/s
connection. The initial suspicion/assumption was this decrease
of the reading speed is related to the higher number of packets
that the large files consist of. There is a sense in that – since
larger files contains many more packets, more time may be

required to reconstruct the file from the higher number of
packets. To test if the assumption is correct, the experiments
have been repeated with measuring not just the total time, but
transferring time and file saving time separately.

Results show that the transferring time, without the time
needed to save the file within the local file system is
commensurate with the total time. And time needed to
reconstruct and save the file is actually very small and does not
depend on the file size. So, the assumption is wrong. Since the
communication between the client and the WebHDFS API is
handled by the cURL library, distributed with the PHP
interpreter, then the cause of the reading speed decrease could
be either the cURL library itself or the API. To determine
where the problem is, the WebHDFS API should be accessed
in another way. It could be accessed directly through a
browser, but it is not very convenient. Other tools like Postman
or Rester are not very suitable as well, since they do not
measure times. The cURL library however is not developed
specially for PHP, but it is an open source project ported to
almost any programming language. It is provided as a built-in
application in Unix/Linux/MacOS and could be downloaded as
external stand-alone application for Windows.

We take the HTTP queries, generated by the PHP-Hadoop-
HDFS library and run them from the cURL applications for
MacOS and Windows. Results show that files are downloading
(read) from HDFS with very high speed almost reaching the
maximum throughput capacity of the relevant type of network,
regardless of the file size. So, the causer of the read speed
decrease in our experiments is determined to be the cURL
library, distributed with the PHP interpreter. Further
experiments will be done with different versions of PHP and its
accompanying cURL library.

Another interesting and unexpected result occurred when
reading files from WebHDFS over the Internet. The utilized
home Internet subscription plan is guaranteeing speed of 80
mbit/s. However, reading was done at speeds up to 175 mbit/s.
The connection between the home computer and the Internet
Service Provider (ISP) is actually higher than the guaranteed
80mbit/s. Apparently, the ISP also has a high-speed connection
to the university’s network, where the Hadoop cluster is
located. So, the access to the servers from the home computer
is done in a kind of MAN network with speeds significantly
higher than guaranteed Internet connection. Interestingly, this
is not the case when writing data to WebHDFS. When writing
(uploading) files, they are transferred at a speed no higher than
the guaranteed Internet connection. This, however, is a specific
case study related to the specific ISP and should not be
considered as an essential part of the results of the experiments.

V. CONCLUSIONS

Since WebHDFS is the most preferable way for remote
access of the distributed file system HDFS, it is important to
know its capabilities, performance and throughput.

After performing dozens of experiments and additional
analyses, the results could be summarized in the following
conclusions:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

49 | P a g e

www.ijacsa.thesai.org

1) WebHDFS API allows data exchange with the Hadoop

Distributed File System (HDFS) at very high speeds, and in

general it is not the limitation factor, but the speed of the

network itself. In a 1 gbit/s network, we achieve data transfer

rates of around 800 mbit/s. On slower networks, the network

capacity is almost entirely compressed.

2) The speed of writing (uploading) files through the

WebHDFS API does not depend on the size of the files, but

remains constant and it is only limited by the network capacity.

3) In contrast to the constant write speed, the reading

(download) speed through the WebHDFS API decreases

rapidly as the file size increases.

4) However, the reason for the decreasing read speed is not

in the WebHDFS API itself, but in the implementation of the

cURL library, distributed together with the PHP interpreter.

When accessing the API in alternative ways, the read speed

remains constant and comparable to the write speed.

5) When reading files from the WebHDFS API by using

PHP and cURL, it is mandatory that the PHP interpreter is

configured to use a larger amount of RAM memory than the

size of the files being read. This is expected since the data

transfer happens in multiple small network packets, but in

order to reconstruct the file from them, they must be stored and

arranged in a common buffer (located within the RAM

memory).

6) When writing files through the WebHDFS API, the

amount of RAM memory that the PHP interpreter can work

with is not of such importance because the data is read from

the local file system in chunks, which are typically much

smaller than the default memory limit of 128 MB. In this case,

the buffer size is important on the receiving side – i.e. on the

server where the WebHDFS API is running. This size is

managed by Cloudera Manager and is large enough.

7) In relation to the above-mentioned, it has been observed

that files larger than 2GB cannot be reliably written to HDFS

via the WebHDFS API. For all of our attempts to upload a file

larger than 2 GB, the server did not return any HTTP response,

although in some cases the files were actually stored in HDFS.

The fact that files of 1.99 GB were always reliably saved, but

2.0 GB were not, suggests that the reason might be a

WebHDFS setting, maybe the server-side buffer in question or

something else. Further analysis could help to determine the

exact cause.

8) A large number of small files are transferred more

slowly than a single large file of the same total size. This

observation is absolutely expected given the fact that with

many small files, many separate HTTP requests are made, each

of which has time to resolve the domain to an IP address, time

to connect, time to make and receive the request, etc.

The WebHDFS API allows data exchange with HDFS at
very high speeds, so it could not be considered as a bottleneck
in the integration of a company’s data to an existing Hadoop
cluster. However, by default, it does not perform any user
access control by itself, so additional means should be
designed and implemented, or integrated, to control user access

and guarantee data isolation (no third-party company should be
able to access data of another company).

ACKNOWLEDGMENTS

This work is supported by the Science Fund of the “Angel
Kanchev” University of Ruse and the European Regional
Development Fund under grant BG05M2OP001-1.002-0002-
С02 “Digitalization of Economy in Big Data Environment”.

REFERENCES

[1] Ashayer, S. Yasrobi, S. Thomas and N. Tabrizi, "Performance Analysis
of Hadoop Cluster for User Behavior Analysis", 2018 IEEE 20th
International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Exeter, UK, 2018, pp. 805-809, doi
10.1109/HPCC/SmartCity/DSS.2018.00135.

[2] Y. Kalmukov, M. Marinov. “Hadoop as a Service: Integration of a
Company’s Heterogeneous Data to a Remote Hadoop Infrastructure”.
International Journal of Advanced Computer Science and Applications,
13(4), pp. 49-55, 2022, DOI:10.14569/IJACSA.2022.0130406.

[3] Y. Kalmukov, M. Marinov, T. Mladenova, I. Valova. “Analysis and
Experimental Study of HDFS Performance”. TEM Journal, 10(2), pp.
806-814, ISSN 2217-8309, DOI: 10.18421/TEM102-38, May 2021.

[4] M. Sarnovsky, P. Bednar and M. Smatana, "Data integration in scalable
data analytics platform for process industries", 2017 IEEE 21st
International Conference on Intelligent Engineering Systems (INES), pp.
187-192, 2017.

[5] J. Pokorný, “Integration of Relational and NoSQL Databases”, Vietnam
Journal of Computer Science, vol. 6, no. 4, pp. 389-405, 2019.

[6] S, Ramzan, I.S. Bajwa, B. Ramzan, and W. Anwar, “Intelligent Data
Engineering for Migration to NoSQL Based Secure Environments”,
IEEE Access, vol. 7, pp. 69042-69057, 2019.

[7] Cholissodin, D. Seruni, J. Zulqornain, A. Hanafi, A. Ghofur, M.
Alexander and M. Hasan, “Development of Big Data App for
Classification based on Map Reduce of Naive Bayes with or without
Web and Mobile Interface by RESTful API Using Hadoop and Spark”,
Journal of Information Technology and Computer Science, vol. 5(3), pp.
302–312, 2020.

[8] Anilkumar and B. Shireesha, "A Study on Optimized Big Data
Performance and its Industrial Development”, Journal of Advanced
Research in Technology and Management Sciences, vol. 1(1), pp. 1-11,
2019.

[9] Erraissi, A. Belangour, A.Tragha, "A Comparative Study of Hadoop-
based Big Data Architectures", International Journal of Web
Applications, vol. 9(4), pp. 129-137, 2017.

[10] Mothukuri, S. Cheerla, R. Parizi, Q. Zhang and K. Choo, “BlockHDFS:
Blockchain-integrated Hadoop distributed file system for secure
provenance traceability”, Blockchain: Research and Applications, vol.
2(4), pp. 1-7, 2021.

[11] F. Awaysheh, M. Alazab, M. Gupta, T. Pena and J. Cabaleiro, “Next-
generation big data federation access control: A reference model”,
Future Generation Computer Systems, vol. 108, pp. 726-741, 2020.

[12] Choi and J. Hartman, “Stargate: remote data access between Hadoop
clusters”, in Proc. of the 36th Annual ACM Symposium on Applied
Computing (SAC '21), ACM, NY, USA, pp. 32–39, 2021.

[13] S. Rachuri, A. Gantasala, P. Emanuel, A. Gandhi, R. Foley, P. Puhov, T.
Gkountouva and H. Lei, "Optimizing Near-Data Processing for Spark",
2022 IEEE 42nd International Conference on Distributed Computing
Systems (ICDCS), pp. 636-646, 2022.

[14] L. Ponce, W. Santos, W. Meira, D. Guedes, D. Lezzi and R. Badia,
“Upgrading a high performance computing environment for massive
data processing”, Journal of Internet Services and Applications, Vol.
10:19, 2019.

[15] Khan, Y. Li, A. Anwar, Y. Cheng, T. Hoang, N. Baracaldo and A. Butt,
“A Distributed and Elastic Aggregation Service for Scalable Federated

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

50 | P a g e

www.ijacsa.thesai.org

Learning Systems”, ArXiv, abs/2204.07767, 2022.
https://arxiv.org/abs/2204.07767.

[16] Y. Seraoui, M. Bellafkih and B. Raouyane, "A high-performance and
scalable distributed storage and computing system for IMS services",
2016 2nd International Conference on Cloud Computing Technologies
and Applications (CloudTech), Marrakech, Morocco, pp. 335-342, 2016.

[17] W. Xu, X. Zhao, B. Lao, G. Nong, “Enhancing HDFS with a full-text
search system for massive small files”, The Journal of Supercomputing,
vol. 77, pp. 7149-7170, 2021.

[18] U. Özdil, and S. Ayvaz, “An experimental and comparative benchmark
study examining resource utilization in managed Hadoop context”,
Cluster Computing, 2022. https://doi.org/10.1007/s10586-022-03728-7.

[19] Raj, R. D’Souza, “A Review on Hadoop Eco System for Big Data”,
International Journal of Scientific Research in Computer Science,
Engineering and Information Technology, vol, 5(1), pp. 343-348, 2019.

[20] T. Ma, F. Tian and B. Dong, "Ordinal Optimization-Based Performance
Model Estimation Method for HDFS", in IEEE Access, vol. 8, pp. 889-
899, 2020.

[21] PHP-Hadoop-HDFS Library, Pure PHP unified wrapper for WebHDFS
and CLI, https://github.com/adprofy/Php-Hadoop-Hdfs (Accessed
March 2023).

[22] The cURL Project, https://curl.se/ (Accessed March 2023).

