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Abstract—Human activity recognition is widely used in smart 
cities, public safety and other fields, especially in smart home 
systems where it has a pivotal role. The study addresses the 
shortcomings of Markov logic networks for human activity 
recognition and proposes a human activity recognition method in 
smart home scenarios - an activity recognition framework based 
on Probabilistic Soft Logic (PSL). The framework is able to deal 
with logical uncertainty problems and provides expression and 
inference mechanisms for data uncertainty problems on this 
basis. The framework utilizes Deng entropy evidence theory to 
provide an evaluation method for sensor event uncertainty, and 
combines event calculus for activity modeling. Comparing the 
PSL method with three other common recognition methods, 
Ontology, Hidden Markov Model (HMM), and Markov logic 
network, on a public dataset, it was found that the PSL method 
has a much better ability to handle data uncertainty than the 
other three algorithms. The average recognition rates on the 
ADL and ADL-E sub datasets were 82.87% and 80.33%, 
respectively. In experiments to verify the ability of PSL to handle 
temporal complexity, PSL showed the least significant decrease 
in the average recognition rate and maintained an average 
recognition rate of 81.02% in the presence of concurrent and 
alternating activities. The human activity recognition method 
based on PSL has a better performance in handling both data 
uncertainty and temporal complexity. 

Keywords—Human activity recognition; probabilistic soft logic; 
MAP inference; temporal complexity; data uncertainty 

I. INTRODUCTION 
With the rise of smart cities and smart homes and the rapid 

development of related technologies, human activity 
recognition has become a hot topic of research for many 
researchers [1]. In the smart home environment, human activity 
recognition can help the smart home system to form a human 
“understanding” based on the activities being performed by the 
residents, and then provide better and smarter living services to 
the residents [2-3]. With the new iteration of wireless sensing 
devices, the research focus of smart home systems is gradually 
shifting from data collection to high-level information 
integration and activity recognition [4]. Human activity 
recognition includes sequential activity recognition and 
composite activity recognition, while the latter is more in line 
with the alternating and concurrent characteristics of daily 
activities [5-6]. Problems related to activity recognition have 
been classified into 12 main research types based on three 
different metrics: number of recognized users, activity 

complexity and perceptual patterns [7]. In order to further 
optimize the structure and function of smart home systems and 
provide a more convenient, comfortable, and safe living 
environment for people with inconvenience, especially the 
elderly, the study focuses on the identification of complex 
activities based on dense sensing in a single user environment 
of smart home systems. Firstly, a human activity recognition 
framework based on Probabilistic Soft Logic (PSL) is 
proposed, and an event preprocessing mechanism is proposed 
based on the characteristics of dense sensing. The reduction of 
irrelevant and redundant data is achieved through fragment 
partitioning and event merging. In addition, an event 
uncertainty calculation method based on DS evidence theory is 
proposed for data uncertainty in activity recognition, and 
activity modeling is carried out by combining Event Calculus 
(EC) and PSL. It is expected that the ability to relax first-order 
logical constraints through PSL and the ability to describe 
event persistence through EC will allow for conflicts in the 
knowledge base, enhance the freedom of the activity model, 
and further enhance its ability to handle logical uncertainty and 
temporal complexity problems. 

Section II of the article describes the relevant work, 
focusing on the current research status at home and abroad, and 
provides a detailed explanation of the improvements and 
technical roadmap of the research. The first section of 
Section III proposes a human activity recognition framework 
based on PSL, which provides a detailed introduction to 
segment partitioning, event merging, and calculation methods 
for event uncertainty. Subsection B of Section III provides an 
activity modeling method based on PSL-EC and proves the 
equivalence between PSL-EC and complex activity 
descriptions. Section IV verifies the effectiveness of the PSL 
method through experiments and compares it with current 
mainstream activity recognition methods. Section V 
summarizes the research methods and results, and concludes by 
summarizing and organizing them. 

II. RELATIVE WORK 
Human activity recognition is an important research field in 

the Internet of Things, especially in smart homes, which 
focuses on understanding human behavior and further 
predicting human action intentions and motivations. A deep 
neural network model using convolutional neural networks and 
gated recurrent units was proposed by Dua et al. for activity 
time series data collected by wearable sensors, and the model 
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was used to automatically extract and classify human activities. 
More than 95% accuracy was obtained on all three datasets, 
demonstrating the excellent recognition and classification 
performance of the model [8]. Zhang et al. proposed an 
approach combining convolutional neural networks and 
activity recognition attention mechanisms for sensors and 
mobile devices in smart healthcare applications and systems. 
The approach incorporates attention into a multi-headed neural 
network to improve the accuracy and feature extraction of 
activity recognition [9]. Bianchi et al. designed an activity 
recognition system combining a wearable device with deep 
learning, where the wearable system embeds an inertial 
measurement unit and WiFi to send the collected data to a 
cloud service. The system minimizes inference resources, saves 
cost, and achieves 97% accuracy in the recognition of 9 
activities [10]. Agarwal and Alam propose a lightweight deep 
learning model for human activity recognition based on the 
feature that edge computing can reduce communication latency 
and network traffic, which overcomes the disadvantages of 
deep learning computationally intensive. Experimental results 
obtained on six daily activity data from testers show that the 
proposed model extends the ability to handle data uncertainty 
in activity recognition due to most existing machine learning 
and deep learning techniques [11]. Artikis et al. by defining the 
probability of maximum intervals and the confidence rate of 
such intervals. A linear time algorithm is then proposed to 
compute the full probabilistic time intervals for a given dataset 
and the performance of the method is evaluated on a 
benchmark activity recognition dataset [12]. 

Due to the uncertainty and temporal complexity of human 
daily activities, two main activity recognition methods, 
data-driven and knowledge-driven, have been derived. 
Data-driven methods mainly include Hidden Markov Model 
(HMM), support vector machine, dynamic Bayesian model, 
etc. Tran et al. investigated multiple recognition methods in 
multi-user scenarios and conducted evaluation experiments on 
the same dataset, while exploring the effectiveness and 
recognition efficiency of temporal learning algorithms using 
sequential data and non-temporal learning using temporal 
manipulation features the effectiveness and recognition 
efficiency of algorithms [13]. Li et al. proposed a method to 
analyze the significance of sensor data contribution based on 
sensor state frequency and inverse type frequency for daily 
behavior recognition of a single user in a multi-tenant smart 
home scenario Xi’an. The method is used to measure the 
contribution of specific types of sensors to a certain type of 
behavior recognition, and then construct a spatial distance 
matrix based on the layout of environmental sensors to achieve 
context awareness and reduce data noise. Based on this, an 
activity recognition algorithm based on wide time domain 
convolutional neural network and multi-environmental sensor 
data for daily activity recognition is also proposed [14]. 
Scholars such as Ashari P have conducted in-depth analysis of 
data fusion and multi classifier system technologies for human 
activity recognition, particularly systems based on mobile and 
wearable devices, focusing on sensor pattern based activity 
monitoring and classification methods used for behavior 
analysis, environmental monitoring, and other activities in 
smart home environments. They have identified the 
advantages, applications, and shortcomings of deep learning 

fusion methods for human activity recognition [15]. Asghari et 
al. proposed an online application of hierarchical HMM to 
detect the current activity in a real-time stream of sensor 
events, and also to detect activities that occur during an 
activity, i.e., interrupted activities. The proposed approach is 
validated on two different smart home datasets and the 
experimental results demonstrate its effectiveness and 
superiority [16]. The knowledge-driven recognition approach 
reduces the dependence on data for activity recognition and 
usually uses Ontology or rules for activity modeling and 
reasoning. Zhang et al. proposed a knowledge-based 
multi-intelligence collaboration approach. This layered 
architecture for smart homes that combines Ontology and 
multi-intelligence technologies aims to automatically acquire 
semantic knowledge and support heterogeneous and 
interoperable services. A generic inference algorithm based on 
the properties of disordered actions and activity events is 
proposed in this architecture for real-time inference of 
continuous composite activities and personalized services. 
Then a new idea is introduced to allow intelligences to learn 
knowledge of human activities autonomously and to transform 
them. The feasibility, effectiveness and stability of the proposal 
are verified through an extensive experimental evaluation at 
[17]. 

Comprehensive domestic and international related research 
can find that most of the commonly used recognition models 
are hybrid-driven approaches that mix two modeling methods, 
such as Markov Logic Networks (MLN). However, although 
MLN is used as an effective framework to address uncertainty 
and complexity, it adopts hard constraints on closed atoms and 
cannot effectively describe continuous variables of sensor data 
classes, resulting in low efficiency and inability to meet 
real-time requirements. Therefore, in view of the shortcomings 
of MLN method for human activity recognition, a PSL based 
activity recognition framework is proposed. PSL adopts 
Lukasiewicz logic instead of Boolean logic to transform 
integer linear programming problem into convex optimization 
problem for solution. Then, DS evidence theory was used to 
compensate for the lack of measurement of event uncertainty in 
PSL, and the activity modeling method PSL-EC was proposed 
in conjunction with EC, aiming to achieve efficient and 
accurate human activity recognition. 

III. PSL-BASED HUMAN ACTIVITY RECOGNITION IN SMART 
HOMES 

A. PSl-Based Human Activity Recognition Framework 
In smart home systems, especially in most voice-activated 

systems, a key part of implementing an intelligent control 
system is the recognition of human activities [18]. Many 
researchers have proposed many excellent recognition 
frameworks for different environments, but most of these 
frameworks focus on the monitoring of the user’s own 
characteristics and are weak in monitoring situational 
information. To address the uncertainty and complexity issues 
in daily activities, a PSL based activity recognition framework 
is proposed. From an application perspective, the framework 
divides the smart home control system into data collection 
layer, event management layer, and application layer. This 
section mainly studies the event management layer, which is 
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divided into three sub tasks: event preprocessing, activity 
modeling, and activity inference. Event preprocessing is further 
divided into three parts: fragment partitioning, event merging, 
and event uncertainty calculation. Firstly, this section adopts a 
dynamic fragment partitioning method based on information 
quantity to address the characteristic of the unfixed sampling 
rate of raw sensor data. Then merge the redundant information 
within the fragments and consider the triggering frequency of 
the event; Finally, evaluate the uncertainty of these events 
based on DS evidence theory. The structure of the human 
activity recognition framework based on PSL is shown in 
Fig. 1. 

 
Fig. 1. Human activity recognition framework based on PSL. 

In Fig. 1, the framework divides the smart home control 
system into a data collection layer, an event management layer, 
and an application layer. The data collection layer is 
responsible for collecting scenario information in the smart 
home environment and transmitting it to the event management 
layer through the wireless sensor network, which includes both 
sensors and network components deployed in the environment. 
The event management layer is responsible for transforming 
the received raw data into high-level scenario information, 
which can be divided into three parts by function: event 
pre-processing, activity modeling, and activity inference. The 
application layer is responsible for integrating the identified 
user activities and requests and is divided into two subtasks: 
decision making and service management. Event 
pre-processing is responsible for converting raw data into 
probabilistic events, which mainly includes three parts: 
fragmentation, event merging and event uncertainty 
calculation. Due to the sensor inexpensiveness and activity 
complexity in the smart home environment, usually a single 
behavior can be sensed by multiple sensors. Therefore, the 
study divides the relationship between sensors and activities 
into two categories: one sensor sensing multiple activities and 
multiple sensors sensing one activity. For the PSL model, the 
size of the problem increases exponentially with the number of 
formulas and the sensor information is susceptible to multiple 
factors. Therefore, the study first excludes irrelevant scenario 
information by segmenting the original sensor data, and then 
merges the sensor events within the segments to approximate 
the redundant information. Finally, the credibility of the 
observed evidence is measured by calculating the uncertainty 
of the events. Common segmentation methods include the 
interactive window method and the segmentation method based 
on unique attributes. The sensor trigger moments when a 
particular user performs a specific activity in the experimental 
dataset are shown in Fig. 2. 

 
Fig. 2. Sensor trigger time chart when a user performs a specific activity. 

By observing the sensor triggers when users perform 
different activities in the experimental dataset, it can be seen 
that the number of sensors triggered by different activities is 
stable at around 55. Therefore, the study adopts a 
fragmentation method based on the number of sensors based on 
the feature that the number of sensors triggered by different 
targets in the activity is more average. The method constitutes 
a range of values for the window length based on the average 
number of sensors triggered by the activities counted in the 
training data, and the window length is dynamically selected 
based on the current sensors, and the computational expression 
is shown in Equation (1). 

  ( ){ }arg max /∗ =
l

s l m
ws

L P ws A    (1) 

In Equation (1),
∗

sL  is the optimal window length 

corresponding to the active mA  . lws The range of values is
[ ]1, lws ws  , where ( ) ( ) ( ){ }1 1 2min , , ,=  mws ws A ws A ws A

 ,
( ) ( ) ( ){ }1 2median , , ,= l mws ws A ws A ws A

 , and ( )mws A  
represent the average of the number of sensors triggered by the 

activity mA  . The expression of the relationship between 
sensors and activities is shown in Equation (2). 

( ){ }arg max /∗ =
m

m i
A

A P A S    (2) 

∗A  in Equation (2) represents the optimal activity of the 

sensor iS  . Combining Equation (1) and Equation (2) yields 
the probability estimation formula for the sensor and window 
length as shown in Equation (3). 

( ){ } ( ) ( ){ }arg max / arg max / /∗ = = ×
l l

l i l m m i
ws ws

ws P ws S P ws A P A S  (3) 

There is still a large amount of redundancy in the 
segmented data, so event merging is required before modeling 
to avoid overly bloated recognition models. Most traditional 
merging methods address the case where multiple sensors are 
triggered at the same time and can therefore be merged into 
one event, generalizing the sensor data associated with one 
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event and ignoring the temporal impact range of sensor events. 
To address this problem, the study proposes an STF-EC 
algorithm that considers sensor trigger time and frequency in 
event merging. The algorithm first sets a time decay function to 
limit the impact range of the event, and then marks the 
recurring sensor events and records the number of times the 
sensor triggers. The impact range is calculated as shown in 
Equation (4). 

( ) 1, . & & .
,

0,

 ∈ ∈= 


a a
i l j la a

i j

e SID Uact e SID Uact
R e e

otherwise  (4) 

In Eq. (4), ( ),a a
i jR e e

 represents the sensor dependence 

between two atomic events
a
ie  and. 

a
je ( ), 1=a a

i jR e e
Then it 

indicates that two sensors correspond to one event and can be 
combined if they are within the time constraint. The time 
dependence of the two atomic times is calculated as shown in 
Equation (5). 

( ) ( ), exp . .δ= − −a a a a
i j i jT e e e T e T

  (5) 

The final uncertainty event corresponding to that atomic 
time is generated and the number of occurrences of that event 
is recorded. The study calculates the event uncertainty based on 
the evidence fusion mechanism in DS evidence theory. First, 
we assign weights to sensor information based on Dun entropy 
theory, and then combine the weights and observations to 
calculate the uncertainty of the event. Dun entropy is a 
generalized version of information entropy, which is defined as 
shown in Equation (6). 

( ) ( )
2

1
log

2 1
∗

=

= −
−

∑
i

N
i

i H
i

m H
DS m H

   (6) 

In Equation (6), DS  denotes the Dun entropy. denotes the
iH i  th proposition in the identification framework, and

∗
iH  

denotes the number of elements in the proposition. The 
relationship between sensor weights and Dun entropy is 
defined as shown in Equation (7). 

( ) ( ) ( )* * *1 exp= = −pst
ir f DS DS DS   (7) 

In equation (7),
*DS  is the normalized Dun entropy. In the 

problem of activity identification, the sensors used as evidence 
have different levels of reliability, so the uncertainty of the 
events is calculated using a weighted fusion as shown in 
Equation (8). 

1

ˆ α
=

= ∑
n

i i
i

u x      (8) 

In Equation (8), û  is the uncertainty of the event, ix  

indicates the sensor measured data, andαi  is the weight of the 
data in the fusion. n indicates the number of sensors 

corresponding to the sensor event ix . 

B. Combining PSL and EC for Human Activity Modeling and 
Inference Methods 
Unlike general machine learning methods, PSL is 

essentially a first-order logical knowledge base with weights, 
so the process of activity modeling is similar to the 
construction of a knowledge base. In the application 
environment of smart home, the daily life has the 
characteristics of alternation and concurrency, and the activity 
model can directly determine the accuracy of activity 
recognition[19-20]. The way of rule definition also largely 
determines the scale of the problem in PSL reasoning, which in 
turn affects the recognition efficiency of the recognition 
framework. Therefore, the study proposes the activity 
modeling method PSL-EC, which combines PSL and EC, to 
solve the problem of logical uncertainty and temporal 
complexity in daily activities by using the logical expression 
uncertainty of PSL and the characteristics of EC for activity 
persistence modeling. The activity modeling part includes two 
sub-tasks: rule definition and weight learning, and the rules in 
PSL can be classified into soft rules and hard rules by rule 
type, which are used to describe the uncertainty relationship 
between “event” and “activity” and the domain knowledge of 
activity recognition, respectively. The activity modeling 
approach of PSL-EC uses the classical discrete event algorithm 
as a template to define rules based on specific problems in the 
activity recognition domain and to model the continuity of 
activities. Then existing parametric learning methods for 
first-order logic formulas are used to deal with logical 
uncertainty. In daily life, users perform activities characterized 
not only by temporal complexity, but also by diversity in daily 
life based on different execution habits. The sensor events and 
durations triggered by different users performing the same 
activity are shown in Fig. 3. 

400350300250200150100500

Walk
Stand

Wash cup
Wash Plate
Clean table
Move cup

400350300250200150100500

Walk
Stand

Wash cup
Wash Plate
Clean table
Move cup

(a) P03 Execute the activity "sweeping" (b) P05 Execute the activity "sweeping"  
Fig. 3. Sensor events and duration triggered by different users performing 

the same activity. 

Daily activities may seem to be irregular, but different 
users often have certain patterns embedded in their starting and 
ending actions when performing a particular activity. 
Assuming that daily activities are only related to start and end 
actions, the predicates in the event algorithm can be 
approximately reduced, thus streamlining the predicate 
structure. The study defines the start and end conditions of an 
activity as soft rules, and assigns weights to the formulas 
through parameter learning. The core of the event algorithm 
lies in the use of the law of inertia to describe the continuity of 
events, i.e., the state of an activity is determined only by its 
start and end conditions. The study defines hard rules based on 
the axioms of event algorithms and the law of the number of 
event triggers. The defined soft rules and hard rules are shown 
in Table I. 
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TABLE I.  SOFT AND HARD RULES OF FRAMEWORK 

Rule type Number Describe 

Soft rule 

1 ( ) ( ) ( )1 2: , , 1 , 1∀ ∧ + → +Timestept Happens pa t Happens pa t Initiates a t
 

2 
( ) ( )

( )
1 2: , , 1

, 1

∀ ∧ +

→ +

Timestept Happens pa t Happens pa t

Terminates a t
 

3 
( ) [ ]

( )
1 1: , ,

, 1

∀ ∧ >

→ +

Timestept Happens pa t pa frequency K

Terminates a t
 

Hard rule 

1 
( ) ( )
( )

1 2 1 1 2

1

, : 'close the front door ', 1

'open the front door ',

∀ ∧ + ≤

→

Timestept t HoldsAt t t t

HoldsAt t
 

2 
( ) ( )
( )

1 2 1 1 2

1

, : 'set the table ', 1

'eat breakfast ',

∀ ∧ + ≤

→

Timestept t HoldsAt t t t

HoldsAt t
 

3 
( )

( ) ( )
1 2 1

1 1

, : 'eat breakfast ',

'clear the table ', 1 'eat breakfast ', 1

∀ ∧

+ → +

Timestept t HoldsAt t

HoldsAt t HoldsAt t
 

The original version of the PSL model can be generated by 
rule definition, and these formulas are often given the same 
weights, so more appropriate weighting is needed through 
parameter learning. Commonly used weight learning methods 
are maximum likelihood estimation and maximum 
pseudo-likelihood estimation, and weight maximum 
pseudo-likelihood estimation uses pseudo-likelihood 
probabilities instead of likelihood probabilities. PSL-based 
inference needs to be performed in a closed PSL, so its 
inference problem is similar to that of probability maps. 
Activity inference is another important part of the study, and 
the activity inference mechanism in PSL includes maximum 
posterior probability inference and marginal probability 
inference. The PSL model constructed by activity modeling is 

defined as ( ),= i iP F W  , where iF  is the formula template in 

the model and iW  is the corresponding weights. The first step 
in performing Maximum A Posteriori Probabilistic Inference 
(MAP) is to convert the arithmetic and logical rules in PSL into 
a linear constraint form. This form of rule can be easily 
converted into the form of Horn clause as shown in 
Equation (9). 

+ −∈ ∈

   ∨ ∨ ∨ ¬   
   j j

i i
i I i I

l l
    (9) 

In Eq. (9), L  denotes the set of all words il  included in a 

clause, and
+
jI  and

−
jI  denote the set of non-negative and 

negative words, respectively. The PSL model includes soft and 
hard rules, both of which can be transformed into potential 
functionsφ  and inequality constraintsϕ  as shown in Eq. (10). 

( ) ( )

( ) ( )

, max 1 1 ,0

, 1 1 0

φ

ϕ

+ −

+ −

∈ ∈

∈ ∈

    = − − −    
 = − − − ≤


∑ ∑

∑ ∑
j j

j j

i i
i I i I

i i
i I i I

y x l l

y x l l
  (10) 

In PSL, the MAP inference problem can be described as 
finding the maximum probability distribution of possible 
worlds with the set of variables Y  given the sequence of 

observations { }1 2, ,=  mX x x x  , where the normalization 
factor Z  is fixed, as shown in Equation (11). 

( ) ( )arg max arg max
∈ ∈

= =
s S y Y

P S s P y x
  (11) 

According to Equation (11), it can be learned that the 
maximum probability distribution of possible worlds is equal to 
the distance between that world and the closure rule is 
minimized, so the MAP inference problem in PSL can be 
defined as shown in Equation (12). 

( ) ( )

( )
( )

arg max arg min ,

. , 0,

, 0,

ϕ ε

ϕ

∈
= =


 = ∀ ∈
 ≤ ∀ ∈

w
s S y

k

k

P S s f y x

s t y x k

y x k I
  (12) 

In Equation (12), S  represents the set of possible worlds 
consisting of x  and y  , and ε  and I  represent the set of 
equational constraints and inequality constraints in PSL, 
respectively. The MAP inference problem in PSL is a convex 
optimization problem rather than an integer linear 
programming, thus giving birth to a consistent optimization 
algorithm for efficiently solving large-scale optimization 
problems. The core of this algorithm is the Alternating 
Direction Multiplier Method (ADMM). Assuming that the 
hidden predicates constituting the soft and hard rules in the 

model are different, let jy  be the state variable appearing in the 

potential function ( ), , 1, 2, ,φ = j y x j m  and +k my  be the state 

variable appearing in the hard constraint , 1, 2, ,ϕ = k k r  . For 

each hard constraint define an indicator function kI  as shown 
in Equation (13). 
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( )
0, the congstraint is satisfied

,
,otherwise

ϕ +


=    ∞

k k k mI y x
 (13) 

Finally, the variable iY  is set to be a copy of the variable iy
1,2, ,= +i m r  , so the MAP problem in PSL can be defined 

in the form shown in Equation (14). 

[ ]
( ) ( )( )

0,1 1 1
arg min , , ,

.

φ ϕ
∈ = =

  + +  
 =

∑ ∑
i

m r

j j i k k
y j k

i i

ws y x I y L k m x

s ty Y  (14) 

Combining Eq. (12) and Eq. (14), it can be seen that it is 
feasible to solve the MAP problem in PSL according to the 
ADMM approach. The data flow of the human activity 
recognition framework based on PSL is shown in Fig. 4. 

Sensor dataD1 Fragment division

P1

Activity 
segment Event  merging

P2

D3 Uncertain event setD5

Event  uncertainty 
assessment

P3

Probabilist ic 
event (test)D8

Probabilist ic 
event (training)D9Weight  learning

P4

Weighted 
rule setD11MAP reasoning

P5

Sensor dataD12

RulesetD10

 
Fig. 4. Data flow of human activity recognition framework based on PSL. 

As shown in Fig. 4, there are five core processing modules 
of the recognition framework, of which the weight learning and 
MAP inference modules use the platform’s original approach. 
The sensor data is segmented by calculating the window length 
corresponding to the sensor through the fragment partitioning 
module. Then, the sensor and time dependencies of the event 
are calculated in the event merging module, and uncertain 
events are generated by merging based on the event 
dependency. In the event uncertainty evaluation module, the 
corresponding relationship between the event and the sensor is 
first calculated and stored, and then the uncertainty is evaluated 
based on the calculated comprehensive weights. Finally, 
human activity recognition can be achieved through weight 
learning and MAP inference modules. 

IV. RESULTS OF PSL-BASED HUMAN ACTIVITY 
RECOGNITION IN A SMART HOME ENVIRONMENT 

In the superiority test of the PSL-based activity recognition 
method, the practicality test of the PSL method for solving the 
data uncertainty problem and the temporal complexity problem 
was focused on, and a comparative experiment was conducted 
with three existing recognition methods (Ontology, HMM, 
MLN) under two datasets. The datasets for the validity 
experiments are collected in the TWSTBED apartment of the 
WSU CASAS project, where 78 sensors including motion 
sensors, kettle sensors, faucet sensors, pillbox sensors, 
temperature sensors, etc. are deployed.The validation 
experiments of the PSL method’s ability to deal with data 
uncertainty use the ADL activity dataset containing the error 
data set, including both ADL and ADL-E The ADL dataset 

contains 6415 data obtained by 24 testers performing 5 
different activities, while ADL-E is obtained by performing 
artificial activity omissions and errors based on ADL. The 
experiments to verify the ability of the PSL method to handle 
temporal complexity take the Interweaved ADL activity dataset 
with alternate execution activities, which consists of two parts 
of data obtained by 21 testers executing sequentially and by 
executing 8 activities in any order. Both sets of experiments 
were conducted using the ten-fold cross-check method, i.e. the 
data were equally divided into 10 parts, of which 9 parts were 
used as training data and 1 part was used as test data. The 
activities in the ADL dataset and the Interwoven ADL dataset 
are shown in Table II. 

TABLE II.  LIST OF ACTIVITIES IN THE ADL DATASET AND 
INTERWOVEN ADL DATASET 

The performance evaluation indicators of other methods 
use the common F1 score, which is calculated as shown in 
formula (15). 

2 Precision Recall1
Precision Recall
× ×

=
+

F
   (15) 

In Equation (15),
( ) ( )Recall / Precision /= + = +TP TP FN TP TP FP , TP  is 

the number of correctly identified activities, FN  is the number 
of unidentified activities, and FP  is the number of incorrectly 
identified activities. The experiments started with event 
pre-processing of the data, and the average duration of the 
activities and the number of triggered sensors in the CASAS 
dataset is shown in Fig. 5. 
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Fig. 5. Average duration of activity and number of triggered sensors in the 
CASAS dataset. 

ADL dataset Interweaved ADL Dataset 
Number Activity Number Activity 

SA1 Make a phone 
call AC1 Fill medication 

dispenser 
SA2 Wash hands AC2 Watch DVD 

SA3 Cook AC3 Water plants 

SA4 Eat AC4 Answer the 
phone 

SA5 Clean AC5 Prepare birthday 
card 

/ / AC6 Prepare soup 

/ / AC7 Clean 

/ / AC8 Choose outfit 
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According to Fig. 5, the sensor corresponds to a window 
length in the range of [43, 54]. Then, event merging and 
uncertainty calculation are performed to transform the sensor 
data into probabilistic events. After defining the activity rules 
of the model, the PSL activity model is generated by learning 
the weights of the soft rules based on the training data. Finally, 
test data and PSL activity model are input, MAP inference is 
performed and the identification results are compared with the 
correct results. Experiment 1 verifies the ability of PSL method 
to handle data uncertainty, and the experimental results under 
ADL dataset and ADL-E dataset are shown in Fig. 6. 
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Fig. 6. Results to verify the ability of PSL method to deal with data 

uncertainty. 

According to the experimental results of each method in 
Fig. 6(a) and Fig. 6(b) on the ADL dataset, it can be seen that 
the PSL method has good recognition performance for various 
activities, especially for activities SA1, SA2, and SA4. The 
average recognition rate for the three activities on the ADL 
dataset reached 87.44%, and even on ADL-E, it can maintain 
an average recognition rate of 83.42%. The execution methods 
of activities SA3 and SA5 have diversity, while the rules of 
PSL and MLN are manually defined, so the recognition 
performance of these two methods for SA3 and SA5 is slightly 
worse. The method of HMM is to establish recognition models 
based on training data, so the recognition rates for activities 
SA2 and SA5 are both above 70%. According to the 
experimental results on the ADL-E dataset in Fig. 6(b), it can 
be seen that the recognition rates of all methods have 
decreased, especially the Ontology method which decreased by 
8.38%, followed by the MLN method which decreased by 
5.76%, while the PSL method has the least significant 
decrease, with an average recognition rate of only 2.54%. The 
experimental results show that PSL has the best comprehensive 
recognition performance and can maintain good recognition 
performance even in the presence of erroneous activities, with 
a certain degree of recognition stability. The average 
recognition rate of each activity in two datasets using different 
recognition methods is shown in Fig. 7. 

 
Fig. 7. Average recognition rate of activities in two data sets by different 

methods. 

In Fig. 7, the PSL method achieved the highest average 
recognition rate, with an average recognition rate of 82.87% 
and 80.33% on the ADL and ADL-E datasets, respectively, 
while the Ontology method had the lowest recognition rate, 
with 74.73% (ADL) and 68.20% (ADL-E), respectively. 

The average recognition rates of the four recognition 
methods on two datasets were 71.47% (Ontology), 79.39% 
(HMN), 74.47% (MLN), and 81.60% (PSL), respectively. The 
experimental results further demonstrate that the PSL method 
can maintain excellent recognition performance even in the 
presence of erroneous data, and verify the effectiveness of PSL 
in dealing with data uncertainty. The validation results of the 
ability of different algorithms to deal with temporal complexity 
are shown in Fig. 8. 
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Fig. 8. Results of verifying the ability of different algorithms to deal with 

temporal complexity. 

As shown in the experimental results of each method on the 
Sequential dataset in Fig. 8(a), PSL has the highest recognition 
rate among the four methods for 7 activities other than activity 
AC8, and the recognition rate for all other activities except for 
activity AC3 is above 80%. In the experimental results of each 
method on the interleaved dataset in Fig. 8(b), although the 
recognition rate of PSL for activities decreased under 
alternating and concurrent execution, the average recognition 
rate for activities is still the highest among the four methods, 
with an average recognition rate of 81.16%. The average 
recognition rate of each activity in two datasets using different 
recognition methods is shown in Fig. 9. 

 
Fig. 9. Average recognition rate of each activity in two data sets by different 

recognition methods. 

From Fig. 9, When there are alternating and concurrent 
recognition actions, the average recognition rate of the four 
activity recognition methods has decreased, with the HMM 
method showing the greatest decrease in recognition rate, with 
the average recognition rate decreasing from 80.32% to 
74.65%. Although the average recognition rate of PSL on the 
Interleaved dataset has also decreased, it only decreased by 
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2.17%, and the decrease is not significant. It is still the highest 
average recognition rate among the four methods, maintaining 
an average recognition rate of 81.02%. The experimental 
results show that PSL can maintain the stability of activity 
recognition even when there are alternating and concurrent 
actions in recognition, verifying the effectiveness and 
superiority of PSL in processing temporal complexity data. 

V. CONCLUSION 
With the emergence and rapid development of smart cities 

and smart homes, ambient intelligence is widely used in 
various fields as an important part of artificial intelligence 
research. The study proposes a PSL-based activity recognition 
framework for human activity recognition in smart home 
scenarios, gives an evaluation method for sensor event 
uncertainty using DS evidence theory, and proposes an activity 
modeling method PSL-EC in conjunction with EC. the PSL 
method is compared with three other common recognition 
methods Ontology, HMN, and MLN on a publicly available 
dataset for experiments. to verify the ability of PSL to handle 
data uncertainty and temporal complexity. the ability of PSL to 
handle data uncertainty is far superior to the other three 
algorithms, with average recognition rates of 82.87% (ADL) 
and 80.33% (ADL-E) on the two sub-datasets. the average 
recognition rate of PSL decreases in the presence of concurrent 
and alternating activities is the least significant among the four 
methods, with declined by 2.17% and maintained the average 
recognition rate of 81.02%. The comprehensive experimental 
results show that the PSL-based human activity recognition 
method has excellent performance for both data uncertainty 
and temporal complexity. The different perception modes in 
the current smart home environment have their own 
advantages, so there is a trend towards a mixed use of multiple 
perception modes. However, these different patterns of 
scenario information exhibit heterogeneity, and current 
methods lack effective measures for processing these 
heterogeneous information. As an effective tool for eliminating 
information heterogeneity, ontology methods have been widely 
applied in other fields. However, the ability of ontology 
reasoning to handle uncertain information is poor, so future 
research can focus on the combination of ontology with 
methods such as MLN and PSL. 
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