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Abstract—Wood species identification (WoodID) is a crucial
task in many industries, including forestry, construction, and
furniture manufacturing. However, this process currently requires
highly trained individuals and is time-consuming. With the recent
advances in machine learning and computer vision techniques,
automatic WoodID using macro-images of cross-section wood
has gained attention. Nevertheless, existing works have been
evaluated on ad-hoc datasets with pre-fixed magnification levels.
To address this issue, this paper proposes an evaluation of
deep learning-based methods for WoodID on multiple datasets
with varying magnification levels. Several popular Convolutional
Neural Networks, including DenseNet, ResNet50, and MobileNet,
were examined to identify the best network and magnification
levels. The experiments were conducted on five datasets with
different magnifications, including a self-collected dataset and
four existing ones. The results demonstrate that the DenseNet121
network achieved superior accuracy and F1-Score on the 20X
dataset. The findings of this study provide useful insights into
the development of automatic WoodID systems for practical
applications.
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I. INTRODUCTION

Wood species identification (WoodID) is a critical aspect
in various industries, including forestry, construction, and
furniture manufacturing [1], [2]. The identification process
involves determining the type of wood based on its unique
physical and anatomical characteristics such as growth rings,
knots, ray patterns, and texture [3]. In many countries, this
process is currently performed manually by forestry experts.
The manual process not only poses a challenge in terms of cost
and time, but also limits the ability to scale up the identification
process to meet the demands of the growing timber industry.
This highlights the need for a more automated and accessible
approach to WoodID, which could have a significant impact
on the efficiency and effectiveness of the forestry industry.

Recently, with the development of machine learning and
computer vision techniques, automatic WoodID has received
increasing attention. Numerous deep-learning-based methods
have been proposed in the literature, which rely on the unique
visual characteristics of wood cross-sections [4]. Owing to the
widespread availability of low-cost portable digital cameras
and stereo microscopes, most of these works used macroscopic
images of transverse sections of wood. For example, these
studies have been applied to automatic identification of North
American hardwood species [5], European tree species [6],
Chinese wood species [7], Japanese wood species [8], or

Indonesian commercial wood [9]. They have demonstrated
their high accuracy, robustness, and efficiency compared to
traditional methods that involve manual feature extraction.

Among the deep learning methods applied for WoodID,
Convolutional Neural Network (CNN) based approaches have
gained widespread use. Examples of these networks include
VGG16 [10], ResNet50 [11], DenseNet [12], and MobileNet
[13]. The advantage of using CNNs is that they can automati-
cally identify relevant features in the input images, eliminating
the need for manual feature extraction. The availability of large
annotated datasets and advancements in hardware and software
have further driven the application of CNNs in this field.

These networks have proven their ability to effectively
handle the complex macroscopic characteristics of wood and
accurately recognize species, as demonstrated, for example,
in studies focusing on Pacific and Colombian Amazon wood
species [14] and Brazilian flora species [15]. This makes them
suitable for practical application in countries where illegal
logging is a prevalent issue, such as Vietnam.

Although of the high performance in WoodID, there is
no concrete recommendation as to which magnification level
is most suitable. These studies applied various magnification
levels with different wood species datasets. Besides, the ap-
plication of these advanced techniques is still limited in many
underdevelopment countries, such as Vietnam, where access
to resources and data might be scarce. Therefore, there is
a need for suitable solutions that consider the best network
architecture and magnification level of macroscopic images of
wood cross-sections. This would not only aid in better forestry
management, but also support efforts to curb illegal logging.

In this study, we evaluated the performance of different
convolutional neural networks (CNNs) for WoodID using
macro-images of wood cross-sections at various magnification
levels. Our objective was to propose a practical and effective
CNN-based method for this task. To the best of our knowledge,
this is the first attempt to evaluate WoodID on different
magnification levels, which has led to the development of a
more accurate and practical method not only in Vietnam but
also in other countries.

We examined the proposed method’s performance on
five datasets with different magnifications, including a self-
collected dataset of popular imported wood species in Vietnam
and four existing ones. The study’s results provided insights
into the effectiveness of different networks and magnification
levels for WoodID.
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The remainder of this paper is structured as follows.
Section II discusses relevant previous studies. Section III
provides the details regarding the evaluated networks. The
experimental evaluation is presented in Section IV, and finally,
some concluding remarks and a brief discussion are provided
in Section V.

II. RELATED WORKS

Convolutional Neural Networks (CNNs) have been widely
used in previous studies for WoodID using images of trans-
verse cross-sections of wood. Popular CNN architectures,
such as VGG16, ResNet, DenseNet, and MobileNet, have
been proposed and trained on various datasets with different
magnification levels. In this study, we focus on the methods
that employ two main image levels, namely microscopic and
macroscopic transverse cross-sections of wood, to investigate
the effectiveness of CNNs for WoodID.

For the first level, previous studies have typically utilized
dedicated microscopic devices to capture wood cross-section
images [16]. For example, Silva et al. [17] presented a method
to automatically classify wood species using microscopic
images of 77 commercial Central-African timber captured at
25x magnification with an Olympus BX60 microscope and an
Olympus UC30 digital camera. Geus et al. [18] introduced
a wood image dataset consisting of 281 species, with three
sets of 20 samples each, corresponding to transverse, radial,
and tangential sections, taken on an Olympus SZX7 stereo
microscope at 20x magnification. V. Stagno et al. [19] con-
ducted a study using NMR to capture samples, including one
softwood and four hardwood species. The samples were boiled
in distilled water until saturation, and microscopy images were
captured using a Zeiss EVO LS10 Environmental Scanning
Electron Microscope (ESEM) with EDS. Low vacuum mode
was chosen to obtain cross-sectional images of the wood, with
a working distance ranging from 4.5 to 5.0 mm and an electron
high tension of 20.00 kV. Magnifications of 300x and 1000x
were used. The data were acquired using a Bruker Avance-400
spectrometer operating at 9.4 T with a 10 mm micro-imaging
probe and XWINNMR and ParaVision 3.2 software.

For macroscopic level studies, digital magnifying glasses
connected to smartphones or computers are often used to cap-
ture images of wood cross-sections [20]–[22]. These images
are taken at different levels of magnification, typically ranging
from 10-50X. For example, Saenz et al. [23] captured images
of 11 forest species using a smartphone with a CMOS sensor
and a magnification of 3.9 microns per pixel (about 20x of
magnification). The area of interest was 2.5mm x 1.9mm, and
lighting was provided by the device.

Lee et al. [24] proposed a dataset of 25 species from
Yunnan Province, China. The woodblocks were first collected
and cut by an electric moto saw into 1 cm3 pieces and flattened
with sandpaper (400 grit, 800 grit, 1000 grit). The images were
taken using a mobile phone (OnePlus 3, China) and a 20X
magnifying glass, with the original image size being 2048 ×
1024 pixels. The central 300 × 300 pixels were selected as the
experimental material, as they were clearer and less fuzzy than
the other areas. A total of 3000 images were obtained, with
which each species including 120 images.

In another study, Filho et al. [25] used a Sony DSC T20
camera to capture images of 46 species with a resolution of 150
dpi using artificial lighting. Meanwhile, Sun et al. [7] used a
mobile phone and a 20X magnifying glass to capture images of
25 wood species with a resolution of 2048x1024 pixels. The
images were polished and the middle 300x300 pixels were
cropped for clearer results. The dataset was divided into two
parts for training and testing, with 2498 images for training
and 502 images for testing.

In a study conducted by Souza et al. [15] in 2020,
46 Brazilian wood species were collected from the Wood
Anatomy and Quality Laboratory (LANAQM) at Federal Uni-
versity of Paraná (UFPR) in Curitiba, Paraná. The transversal
surfaces of the samples were sanded with a 120 sandpaper, and
macroscopic images were taken using a Zeiss Discovery V 12
stereo microscopes with a resolution of 2080 × 1540 pixels and
a 10× magnification. This resulted in a total of 1,901 images.

Additionally, in 2021, de Geus et al. [14] introduced a
new dataset of 11 Brazilian wood species with high commer-
cial value, with all images being taken from the transverse
section using a low-cost portable microscope connected to a
smartphone with a resolution of 640 × 480 pixels. The dataset
consists of 440 images, with 40 images for each of the 11
species.

Various methods have been proposed in the literature,
including traditional machine learning (i.e., k-NN, SVM,
ANN) and deep learning (i.e., VGG16, ResNet50, SqueezeNet,
DenseNet). Traditional methods require fewer data but rely on
handcrafted features, while deep learning models demand more
data, but perform automatic feature extraction, resulting in
higher accuracy. Among these methods, CNN-based networks
have been the most successful for WoodID, with several studies
achieving high accuracy rates using different networks such as
VGG16, ResNet50, SqueezeNet, and DenseNet. For example,
de Geus et al. [14] obtained an accuracy of 98.13% with
DenseNet, while Lee et al. [24] achieved an accuracy of 99.6%
with ResNet50. However, each proposed method has specific
parameters, such as network architecture and magnification
levels, and no concrete recommendation has been made regard-
ing the optimal magnification level for CNN-based WoodID.
Therefore, this study aims to evaluate the performance of
common CNN-based networks for WoodID using macroscopic
images of wood cross-sections at different magnification levels,
with a focus on evaluating their practicality for use in Vietnam.

III. MATERIALS AND METHODS

This section provides a comprehensive overview of the
data collection process and the Convolutional Neural Network
(CNN) based methods applied in the recognition of wood
species. To provide a comparative and objective measure
of different wood species, we collected five datasets from
different regions, including Vietnam, Pacific and Colombian
Amazon, and China. Three popular CNN architectures were
examined and evaluated on these datasets, including ResNet50,
MobileNetV2, and DenseNet121.

A. Data Preparation and Collection

The study utilized five datasets, including (i) VN 26, a
self-collected dataset, (ii) WRD 21, a Southeast Asia wood
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TABLE I. THE VN 26 DATASET (10X, 20X AND 50X)

ID Family Scientific Name ID Family Scientific Name
1 Fabaceae Afzelia africana Smith 14 Fabaceae Guibourtia coleosperma (Benth.) Leonard
2 Fabaceae Afzelia pachyloba Harms 15 Fabaceae Guibourtia demeusei J.Leon.
3 Sapotaceae Autranella congolensis A.Chev. 16 Fabaceae Julbernardia pellegriniana Troupin
4 Fabaceae Berlinia bracteosa Benth. 17 Moraceae Milicia excelsa (Welw.) C.C.Berg
5 Fabaceae Brachystegia laurentii (De Wild.) Hoyle 18 Fabaceae Millettia laurentii De Wild.
6 Fabaceae Cylicodiscus gabunensis Harms 19 Fabaceae Monopetalanthus coriaceus Mor.
7 Fabaceae Dalbergia melanoxylon Guill. et Perr. 20 Rubiaceae Nauclea diderrichii Merr.
8 Fabaceae Daniellia thurifera Benn. 21 Fabaceae Pachyelasma tessmannii (Harms) Harms.
9 Fabaceae Detarium macrocarpum Harms 22 Fabaceae Piptadeniastrum africanum Brenan
10 Fabaceae Distemonanthus benthamianus Baill. 23 Fabaceae Pterocarpus angolensis DC.
11 Meliaceae Entandrophragma cylindricum Sprague 24 Fabaceae Pterocarpus Jacq.
12 Fabaceae Erythrophleum suaveolens Brenan 25 Fabaceae Pterocarpus soyauxii Taub.
13 Meliaceae Guarea cedrata Pellegr. 26 Sapotaceae Tieghemella africana Pierre

TABLE II. THE WRD 21 DATASET (20X)

ID Family Scientific Name Number of
images ID Family Scientific Name Number of

images
1 Fabaceae Cassia siamea 28 12 Calophyllaceae Mesua ferrea 36
2 Lauraceae Cinnamomum camphora 45 13 Fabaceae Pterocarpus erinaceus Poir 32
3 Fabaceae Dalbergia bariensis 96 14 Fabaceae Pterocarpus indicus 24
4 Fabaceae Dalbergia cochinchinensis 50 15 Fabaceae Pterocarpus macrocarpus 91
5 Fabaceae Dalbergia fusca 59 16 Fabaceae Pterocarpus santalinus 39
6 Fabaceae Dalbergia latifolia 36 17 Cupressaceae Taiwania flousiana 42
7 Fabaceae Dalbergia odorifera 25 18 Lamiaceae Tectona grandis 74
8 Fabaceae Dalbergia oliveri 145 19 Combretaceae Terminalia myriocarpa 63
9 Ebenaceae Diospyros ebenum 43 20 Combretaceae Terminalia tomentosa 52
10 Malvaceae Excentrodendron hsienmu 42 21 Fabaceae Xylia dolabriformis 54
11 Fabaceae Intsia spp 50

dataset published by Sun [26], (iii) BFS 46, the Brazilian
flora species dataset collected in 2020 [15], (iv) BD 11, the
Brazil dataset collected in 2021 [14], and (v) PCA 11, a
dataset containing wood from Pacific and Colombian Amazon
region [23]. The datasets include macro-images of wood cross-
sections captured by different devices at various magnifications
and resolutions. Wood samples were sometimes sanded and
polished to improve image quality.

The VN 26 dataset contains 26 wood species imported to
Vietnam, as presented in Table I, with samples collected from
different locations on the wood cross-section. We captured the
images at three magnification levels (10x, 20x, and 50x) with
three different types of microscopes. Each image set has a
different resolution and image size. The surfaces of the samples
were treated by sanding and polishing before being captured.

The WRD 21 dataset includes 1,126 macro-images of 21
Southeast Asia wood species [26], as presented in Table II.
To create the dataset, the authors polished the cross-section
of each wood block using 200 grits and 400 grits sandpaper
in sequence and then cleared any remaining dust with a
toothbrush. Next, they marked a circular area on the wood
block to serve as the fingerprint area, which ensured that the
same location for subsequent captures could be chosen. They
then used a 20X magnifying glass to acquire an image of the
marked area. Finally, the macro-images were captured by a
Huawei Honor 8 cellphone.

The BFS 46 dataset, as presented in Table III, was col-

lected in 2020 and contains 1,901 images of 46 Brazilian
flora species with two different sizes (640x480 pixels and
2080x1540 pixels). The wood samples were obtained from
the Wood Anatomy and Quality Laboratory (LANAQM) at the
Federal University of Paraná (UFPR) in Curitiba, Paraná. They
were then sanded with 120 grit sandpaper. The authors used a
Zeiss Discovery V 12 stereo-microscope at 10x magnification
to capture the macro-images with a resolution of 150 dpi.

The BD 11 is another Brazilian dataset collected in 2021,
consisting of 11 high-commercial-value wood species, as
shown in Table IV. The timber samples were not polished;
instead, the authors used a pocket knife to cut them to expose
the anatomical characteristics. The samples were captured
using a low-cost portable microscope connected to a smart-
phone with a resolution of 640x480 pixels. To account for
variance in anatomical characteristics, each species comprises
40 images, with four image samples extracted from 10 different
specimens.

The PCA 11 dataset contains 10,792 images of 11 wood
species captured using a digital microscope device at 20x mag-
nification, as presented in Table V. First, timber samples from
the Pacific and Colombian Amazon region were aggregated
and moistened to increase contrast. Next, they were captured
with a digital microscope device at a resolution of 640x480
pixels.

In general, these datasets were collected by capturing
images of wood samples using either microscopes or digital
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TABLE III. THE BFS 46 DATASET (10X)

ID Family Scientific Name Number of
images ID Family Scientific Name Number of

images
1 Fabaceae Acrocarpus fraxinifolius Arn. 17 24 Fabaceae Hymenaea sp. L. 32
2 Araucariaceae Araucaria angustifolia (Bertol.) Kuntze 55 25 Fabaceae Hymenolobium petraeum Ducke 28
3 Apocynaceae Aspidosperma polyneuron Mull. Arg. 20 26 Fabaceae Hymenolobium sp. Benth. 28
4 Apocynaceae Aspidosperma Mart. & Zucc. 41 27 Fabaceae Inga vera Willd. 40
5 Moraceae Bagassa guianensis Aubl. 52 28 Lauraceae Laurus nobilis L. 36
6 Rutaceae Balfourodendron riedelianum (Engl.) Engl. 61 29 Fabaceae Machaerium paraguariense Hassl. 37
7 Lecythidaceae Bertholletia excelsa Bonpl. 35 30 Fabaceae Machaerium sp. Pers. 15
8 Fabaceae Bowdichia sp. Kunth 68 31 Sapotaceae Manilkara elata (Allemão ex Miq.) Monach. 39
9 Moraceae Brosimum parinarioides Ducke 25 32 Meliaceae Melia azedarach L. 47
10 Meliaceae Carapa guianensis Aubl. 21 33 Lauraceae Mezilaurus itauba (Meisn.) Taub. ex Mez 83
11 Lecythidaceae Cariniana estrellensis (Raddi) Kuntze 36 34 Sapotaceae Micropholis venulosa (Mart. & Eichler) Pierre 71
12 Meliaceae Cedrela fissilis Vell. 22 35 Fabaceae Mimosa scabrella Benth. 30

13 Fabaceae Cedrelinga cateniformis (Ducke) Ducke 65 36 Fabaceae Muellera campestris (Mart. ex Benth.)
M.J. Silva & A.M.G. Azevedo 39

14 Boraginaceae Cordia goeldiana Huber 36 37 Fabaceae Myroxylon balsamum (L.) Harms 53
15 Lecythidaceae Couratari sp. Aubl. 41 38 Lauraceae Nectandra megapotamica (Spreng.) Mez 28
16 Fabaceae Dipteryx sp. Schreb. 27 39 Lauraceae Ocotea indecora (Schott) Mez 36
17 Vochysiaceae Erisma uncinatum Warm. 58 40 Lauraceae Ocotea porosa (Nees & Mart.) Barroso 46
18 Myrtaceae Eucalyptus sp. L’Hér. 27 41 Fabaceae Peltogyne sp. Vogel 60
19 Myrtaceae Eugenia pyriformis Cambess. 35 42 Pinaceae Pinus sp. L. 42
20 Rutaceae Euxylophora paraensis Huber 66 43 Sapotaceae Pouteria pachycarpa Pires 47
21 Goupiaceae Goupia glabra Aubl. 32 44 Simaroubaceae Simarouba amara Aubl. 30
22 Proteaceae Grevillea robusta A. Cunn. ex R. Br. 48 45 Meliaceae Swietenia macrophylla King 70
23 Bignoniaceae Handroanthus sp. Mattos 33 46 Vochysiaceae Vochysia sp. Aubl 43

TABLE IV. THE BD 11 DATASET (50X)

ID Family Scientific Name Number of
images

1 Lecythidaceae Allantoma decandra 40
2 Calophyllaceae Caraipa densifolia 40
3 Lecythidaceae Cariniana micrantha 40
4 Caryocaraceae Caryocar villosum 40
5 Moraceae Clarisia racemosa 40
6 Fabaceae Dipteryx odorata 40
7 Goupiaceae Goupia glabra 40
8 Bignoniaceae Handroanthus incanus 40
9 Malvaceae Lueheopsis duckeana 40
10 Myristicaceae Osteophloeum platyspermum 40
11 Sapotaceae Pouteria caimito 40

TABLE V. THE PCA 11 DATASET (20X)

ID Family Scientific Name Number of
images

1 Anacardiaceae Campnosperma panamensis 823
2 Meliaceae Cedrela odorata 1128
3 Fabaceae Cedrelinga cateniformis 1189
4 Boraginaceae Cordia alliodora 929
5 Myristicaceae Dialyanthera gracilipes 1100
6 Myrtaceae Eucalyptus globulus 1105
7 Bignoniaceae Handroanthus chrysanthus 1106
8 Humiriaceae Humiriastrum procerum 1001
9 Oleaceae Fraxinus uhdei 1025
10 Cupressaceae Cupresus lusitanica 815
11 Pinaceae Pinus patula 571

cameras. In some cases, the samples were treated by sanding
and polishing to improve the image quality. The resolution and
size of the images varied among the datasets.

B. Convolutional Neural Network Architecture

In this study, we focus on deep learning techniques to
recognize wood species based on macro-images of wood
cross-sections. To achieve this, we utilized several well-known
Convolutional Neural Network (CNN) architectures, namely

ResNet [11], DenseNet [12], and Mobilenet [13], which have
been widely applied in the field. Each of these models has its
strengths and weaknesses. We compared their performance to
determine the most effective architecture for WoodID on the
studied datasets. In this section, we provide an overview of
each network and its specific characteristics.

TABLE VI. RESNET50 ARCHITECTURE

Layer Type Output shape No
parameters

1 Input layer (224,224,3) -
2 Convolutional (112,112,64) 1792
3 Max pooling (56,56,64) -

4. Res block
Convolutional (56,56,256) 89600

Batch normalization (56,56,256) 1024
Identity mapping (56,56,256) -

5. Res block
Convolutional (56,56,512) 354944

Batch normalization (56,56,512) 2048
Identity mapping (56,56,512) -

6. Res block
Convolutional (28,28,1024) 1407584

Batch normalization (28,28,1024) 4096
Identity mapping (28,28,1024) -

7. Res block
Convolutional (14,14,2048) 5621248

Batch normalization (14,14,2048) 8192
Identity mapping (14,14,2048) -

Average pool Average pooling (2048) -
FC Fully connected (1000) 2097000

1) ResNet50: ResNet50 is a deep convolutional neural net-
work architecture that was introduced by Microsoft researchers
in 2015 [11]. It is part of a family of ResNet models that were
designed to address the problem of vanishing gradients in deep
neural networks. The authors introduce shortcut connections
that allow the gradient signal to bypass some layers during
training.

ResNet50 has been widely used in various computer vision
tasks, including object detection, image segmentation, and im-
age classification. It has achieved state-of-the-art performance
on several benchmark datasets, including ImageNet, which
contains over one million images from a thousand different
classes. ResNet50 has shown remarkable accuracy and ef-
ficiency in recognizing different types of objects, including
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wood species, making it a popular choice for many practical
applications.

The network consists of a series of convolutional and
pooling layers, followed by multiple residual blocks, and
finally a global average pooling layer and a fully connected
layer, as shown in Table VI.

2) DensenNet: DenseNet121 is a deep convolutional neural
network that was introduced in 2017. It is part of the DenseNet
family of models, which is based on the idea of densely
connecting each layer to every other layer in a feed-forward
fashion [12]. This architecture allows for a deeper and more
efficient network that can achieve higher accuracy with fewer
parameters compared to traditional architectures like VGG or
ResNet.

DenseNet121 consists of 121 layers, with a total of 8.06
million parameters. It has a similar structure to other DenseNet
models, where each layer is densely connected to every
other layer in a feed-forward fashion. The difference with
DenseNet121 is that it uses smaller filters and less dense
connections between layers, which allows for better memory
usage and faster training. The model also includes skip connec-
tions, which help to mitigate the vanishing gradient problem
and improve the flow of information throughout the network.
Overall, DenseNet121 is a powerful deep learning model that
has shown excellent performance in a variety of computer
vision tasks, including WoodID.

3) MobileNet: MobileNet is a deep learning architecture
designed for mobile and embedded devices with limited com-
putational resources. It was introduced by Google in 2017
and has gained significant popularity due to its efficient and
lightweight design [13]. The network uses depthwise separable
convolutions that separate the spatial and channel-wise convo-
lutions in a standard convolutional layer, as presented in Table
VII. This design reduces the number of computations required
while maintaining a high level of accuracy.

MobileNet has several variants, including MobileNet v1,
v2, and v3. MobileNetV1 was the first version of the architec-
ture and was introduced in 2017. It uses depthwise separable
convolutions with a width multiplier, which reduces the num-
ber of channels in the network, making it more lightweight.
MobileNetV2, introduced in 2018, builds upon the original
architecture and introduces several improvements, including
linear bottleneck layers and inverted residuals. These changes
improve the accuracy and reduce the number of computations
required. MobileNetV3, introduced in 2019, focuses on im-
proving the speed and accuracy of the architecture further. It
uses a combination of channel and spatial attention modules
to improve the network’s performance while maintaining its
lightweight design. In this study, we evaluated the performance
of MobileNetV2.

IV. EXPERIMENTS

A. Dataset

In this study, we utilized a total of five datasets, of which
the VN 26 dataset was self-collected while the remaining
four were obtained from existing sources. For the VN 26
dataset, wood samples measuring 1 inch (2.54 cm) in size
were collected from different locations on the cross-section

TABLE VII. MOBILENET ARCHITECTURE

Layer Output Shape Kernel
size Stride

Input 224 × 224 × 3 - -
Convolution 112 × 112 × 32 3 × 3 2
Depthwise Convolution 112 × 112 × 32 3 × 3 1
Pointwise Convolution 112 × 112 × 64 1 × 1 1
Depthwise Convolution 56 × 56 × 64 3 × 3 2
Pointwise Convolution 56 × 56 × 128 1 × 1 1
Depthwise Convolution 28 × 28 × 128 3 × 3 2
Pointwise Convolution 28 × 28 × 256 1 × 1 1
Depthwise Convolution 14 × 14 × 256 3 × 3 2
Pointwise Convolution 14 × 14 × 512 1 × 1 1
Depthwise Convolution 7 × 7 × 512 3 × 3 2
Pointwise Convolution 7 × 7 × 1024 1 × 1 1
Global Average Pooling 1 × 1 × 1024 - -
Fully Connected 1000 - -

of the wood. The collected samples were then processed by
surface sanding using sandpaper and polished with 600-grit
sandpaper to ensure that the surface texture of each sample
was uniform. A small blade was used then to cut this surface.
Fig. 1 presents the steps to prepare and collect this dataset.
This standardized process of sample preparation allowed us to
maintain consistency across the dataset and ensured that the
resulting images were of high quality, making them ideal for
use.

The dataset was captured using three different types of
microscopes at three magnification levels (10x, 20x, and 50x)
to obtain a comprehensive set of images. For the 10x dataset, a
PCE microscope equipped with a 0.3-megapixel CMOS sensor
was used to capture images with a magnification of 10x and
a resolution of 640x480 pixels. The 20x dataset was captured
using a handheld Dino-Lite electronic microscope, which had
a resolution of 1.3 megapixels, a magnification of 20x, and
resulted in images of size 1280x1024 pixels. To achieve focus,
a distance of 5 cm was maintained between the lens and the
sample. Lastly, the 50x dataset was captured using a Wi-
Fi Microscope with a magnification ratio of 50x-1000x and
resulting in images of size 640x480 pixels.

By using different types of microscopes, we were able to
capture images with varying levels of detail, which helped in
creating a diverse dataset. The VN 26 dataset thus obtained
serves as a valuable resource for studying wood characteristics.
The comprehensive set of images obtained at different magni-
fications provides ample opportunities to evaluate WoodID at
different levels of microscopy.

Table VIII presents an overview of five used datasets. The
datasets differ in the number of classes, the total number of
images, and the magnification levels, as well as in image
resolutions available. For example, the VN 26 dataset has the
highest number of classes and images, with images available
at 640x480 and 1280x1024 pixel resolutions. In contrast, the
WRD 21 dataset has fewer classes and images, with images
available at a lower resolution of 300x300 pixels. The BFS 46
dataset has a high number of classes but a relatively low
number of images, with images available at two different
resolutions of 640 x 480 and 2080 × 1540 pixels. Finally,
the BD 11 and PCA 11 datasets have similar characteristics,
with a lower number of classes but a high number of images
available at a resolution of 640 x 480 pixels. To ensure the
robustness and generalizability of the models, each dataset was
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(a) Cutting the transverse plane. (b) Capturing macro-images. (c) Macro-image results.

Fig. 1. The VN 26 dataset preparation and collection.

split into three subsets with a ratio of 70:15:15 for training,
validation, and testing.

TABLE VIII. FIVE DATASETS USED IN THIS STUDY

Dataset Number of
classes

Total
images 10X 20X 50X Resolution

(pixel)

BFS 46 46 1,901 X 640x480 &
2080x1540

WRD 21 21 1,126 X 300x300
PCA 11 11 10,792 X 640x480
BD 11 11 440 X 640x480

VN 26 26 7,800 X X X 640x480 &
1280x1024

B. Preprocessing

Before training and evaluating the models, we performed
several pre-processing steps on the collected dataset. Firstly,
the wood identification experts filtered out the poor-quality
images, such as blurry and skewed images. The dataset was
then re-collected to ensure an adequate number of images for
each species (VN 26). Next, all images were normalized to
ensure that the pixel values were within the range of [0, 255].
We then applied techniques to resize them to avoid losing
important information.

To enrich the training dataset, we applied various data aug-
mentation techniques such as randomly rotating images within
a range of 10 degrees, flipping images randomly horizontally
and vertically. These techniques increased the diversity of the
training dataset and helped to prevent overfitting of the models.

Finally, we saved the images and their corresponding labels
in HDF5 format. HDF5, short for Hierarchical Data Format
version 5, is a data model, library, and file format for storing
and managing large and complex data. HDF5 provides a
flexible and efficient way to store and retrieve large numerical
arrays, metadata, and other types of data that are common in
scientific computing and data analysis.

Overall, these pre-processing steps played a crucial role
in improving the performance of the models and ensuring
accurate WoodID. The resulting dataset was of high quality
and was well-suited for training deep learning models.

TABLE IX. EXPERIMENTAL SCENARIOS

Purpose Network Dataset

1 Data augmentation
evaluation DenseNet121 PCA 11

2 CNN evaluation
on existing datasets

DenseNet121,
ResNet50,
MobileNetV2

WRD 21, BD 11,
BFS 46, PCA 11

3 CNN evaluation on dataset
mixed magnifications

DenseNet121,
ResNet50,
MobileNetV2 VN 26

4 CNN evaluation on dataset
with different magnifications

DenseNet121,
ResNet50,
MobileNetV2

10X, 20X, 50X
subsets

C. Experiment Scenarios

To evaluate the performance of studied deep learning
models on various datasets and configurations, we conducted
four experiment scenarios, as presented in Table IX. In the first
scenario, we evaluated the effect of data augmentation on the
PCA 11 dataset. We trained the DenseNet121 model with an
input image size of 224x224 pixels, and a batch size of 32 for
500 epochs using the Adam optimizer with a learning rate of
0.001 and the category cross-entropy loss function. We stopped
training if there was no improvement in the validation loss
after 200 epochs. Regarding the second scenario, we trained
DenseNet121, ResNet50, and MobileNetV2 on four datasets:
WRD 21, BFS 46, BD 11, and PCA 11. The input image
size was 224x224 pixels, and we performed training with a
batch size of 64 using the Adam optimizer with a learning
rate of 0.001. The category cross-entropy loss function was
used, and training was stopped if there was no improvement
in the model after 200 epochs.

For the third scenario, we trained the same three models
on the self-collected dataset, VN 26, which includes three
levels of image magnification. The input image size and other
parameters were identical to those used in the first scenario.
In the fourth scenario, these four models were separately
trained on three subsets of VN 26, corresponding to the three
magnification levels. The same parameters as the previous
scenarios were applied, but we stopped training if there was
no improvement after 300 epochs.
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Fig. 2. Experiment 1 – Training loss and accuracy progresses with and without data augmentation.

D. Results and Discussion

The obtained results from the first experiment are depicted
in Fig. 2, showing the progress of loss and accuracy during the
training process on both the non-augmented (the upper plots)
and augmented (the lower plots) datasets. It was observed that
without data augmentation, the gap between the training and
validation accuracy remained large and constant, while the gap
between the two loss progresses tended to increase, indicating
an overfitting trend. However, with data augmentation, the
overfitting was mitigated, as the gap between the two loss
progresses was small, and the accuracy gap was reduced.
Consequently, the model achieved a higher accuracy of over
95.9% on the validation dataset.

TABLE X. EXPERIMENT 2 - PERFORMANCE OF DEEP LEARNING MODELS
ON THE FOUR EXISTING DATASETS

Dataset Model Acc F1-Score Precision Recall
Resnet50 87.77% 87.89% 88.35% 87.46%

BFS 46 MobilenetV2 97.05% 97.08% 97.09% 97.08%
Densenet121 98.21% 98.22% 98.23% 98.21%
Resnet50 76.12% 76.43% 80.27% 73.28%

WRD 21 MobilenetV2 94.34% 94.67% 94.52% 94.85%
Densenet121 97.11% 97.56% 97.39% 97.55%
Resnet50 87.24% 63.67% 80.23% 53.91%

BD 11 MobilenetV2 96.82% 96.43% 96.16% 96.45%
Densenet121 97.26% 97.54% 97.37% 97.29%
Resnet50 87.36% 76.15% 80.86% 73.23%

PCA 11 MobilenetV2 96.25% 96.34% 96.23% 96.25%
Densenet121 97.78% 97.86% 97.35% 97.66%

Table X presents the outcomes of the second experiment,

demonstrating that all models achieved high accuracy levels
in most cases. The best accuracy of 98.21% was achieved
by DenseNet121 models on the BR 46 dataset, whereas the
Resnet50 model achieved lower accuracy levels ranging from
76% to 87% across different datasets. The F1-Score had a
similar trend to accuracy. Regarding precision and recall,
all models showed high values, indicating a good ability to
identify true positives and true negatives correctly. Notably,
MobileNetV2 and DenseNet121 models consistently achieved
higher precision and recall values than the Resent50. Overalls,
the results suggest that the choice of the CNN model can
significantly affect the accuracy and performance of Woo-
dID, with DenseNet121 being the most effective models in
this study. Additionally, the dataset choice could impact the
model’s performance, with some datasets being more challeng-
ing to classify than others.

For the third experiment, the results presented in Table
XI show that all three models achieved high accuracy levels,
ranging from 86.13% to 99.53%. Notably, the DenseNet121
model outperformed the other two models, achieving the
highest accuracy, F1-Score, precision, and recall, with a score
of 99.52% and 99.53% in all metrics. In contrast, the Mo-
bileNetV2 and ResNet50 models obtained lower accuracy
levels, with MobileNetV2 performing better than ResNet50. To
gain further insights, we also examined the loss and accuracy
progress of the MobileNetV2 and DenseNet121 models, as
shown in Fig. 3. The accuracy of both models increased
steadily, with validation accuracy closely following the training
accuracy. The loss progresses of MobileNetV2 showed a
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Fig. 3. Exp3: Training loss and accuracy progresses of DenseNet121 (the upper images) and MobileNetV2 (the lower images) on the VN 26 dataset.

slight overfitting trend, while those of DenseNet121 tended to
decrease and approached the training loss progress. It means
that MoblieNetV2 may not generalize well to new data, while
DenseNet121 has a better generalization ability in the model.
Overall, the results suggest that DenseNet121 is the most
effective model for WoodID on the VN 26 dataset, achieving
high accuracy and generalization ability. These findings are
consistent with previous studies that have shown the effective-
ness of DenseNet121 on other datasets.

TABLE XI. EXPERIMENT 3 - PERFORMANCE OF DEEP LEARNING
MODELS ON THE ALL VN 26 DATASET

Model Acc F1-Score Precision Recall
Resnet50 86.13% 86.30% 85.08% 87.34%
MobilenetV2 98.13% 98.15% 98.11% 98.10%
Densenet121 99.52% 99.53% 99.53% 99.53%

The fourth experiment aimed to evaluate the performance
of the three CNN models on the three magnification subsets of
the VN 26 dataset, including X10, X20, and X50. As shown
in Table XII, all three models achieved high accuracy levels
across all magnification levels. Specifically, DenseNet121 out-
performed the other models in all metrics, reaching an accuracy
of from 99.12% to 99.89% in all levels.

At the X10 magnification level, Densenet121 achieved

TABLE XII. EXPERIMENT 4 – PERFORMANCE OF DEEP LEARNING
MODELS ON THE DIFFERENT MAGNIFICATION LEVELS

X levels Model Acc F1-Score Precision Recall
Resnet50 86.11% 86.14% 86.61% 85.72%

X10 MobilenetV2 98.91% 98.82% 98.80% 98.15%
Densenet121 99.56% 99.61% 99.50% 99.52%
Resnet50 84.64% 83.75% 84.17% 83.34%

X20 MobilenetV2 99.67% 99.68% 99.68% 99.68%
Densenet121 99.89% 99.89% 99.89% 99.89%
Resnet50 85.70% 85.90% 86.60% 85.30%

X50 MobilenetV2 98.32% 98.13% 98.35% 98.31%
Densenet121 99.12% 99.15% 99.20% 99.14%

the highest accuracy, F1-Score, precision, and recall, with
values of 99.56%, 99.61%, 99.50%, and 99.52%, respectively.
Meanwhile, at the X20 magnification level, Densenet121 sig-
nificantly outperformed the other two models, achieving the
highest accuracy of 99.89% across all metrics. At the X50
magnification level, all three models achieved high accuracy
levels, with Densenet121 and MobilenetV2 achieving the high-
est accuracy of 99.12% and 98.32%, respectively.

Furthermore, the loss and accuracy progress of all three
models were analyzed, and no overfitting trends were observed,
as shown in Fig. 4. This indicates that the models were
able to generalize well to the test data and were not simply
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Fig. 4. Exp4: Training loss and accuracy progresses of DenseNet121 on the X20 subset.

memorizing the training data. Among the three magnification
levels tested, X20 was found to be the best magnification
level for WoodID, with all three models achieving the highest
accuracy levels at this magnification. This may be due to the
balance between image resolution and information content,
which is important for accurately identifying wood species.

TABLE XIII. PERFORMANCE COMPARISON BETWEEN MOBILENETV2
AND DENSENET121

Model Total
parameters

Predicted
time (s) Acc F1 score

DenseNet121 7,589,451 4.15 100% 100%
MobileNetV2 2,947,915 1.97 99.6% 99.6%

Table XIII provides a comparison between DenseNet121
and MobileNetV2 models. DenseNet121 has a larger num-
ber of parameters, which results in a longer predicted time.
However, it achieves a higher accuracy and F1 score. On the
other hand, MobileNetV2 has fewer parameters, leading to
a faster predicted time, but slightly lower accuracy and F1
score. Based on the differences in the number of parameters
and predicted time, MobileNetV2 is a suitable choice for
low-configuration devices where computational resources are
limited. Meanwhile, DenseNet121 can be used for powerful
servers where accuracy is critical, and the model’s complexity
is not a concern.

Overall, we observed that higher magnifications lead to
higher accuracy up to a certain level, after which the accuracy
can decrease. Specifically, the results indicated that the 20x
magnification level outperformed the 10x level in terms of
accuracy, F1-Score, precision, and recall for all three models:
ResNet50, MobileNetV2, and DenseNet121. This suggests that
a higher magnification level provides more information, which
allows for better differentiation of wood species.

However, the performance of the models on the 50x
magnification level was worse than the 20x and 10x levels.
This can be explained by the fact that the 50x level is too
close, which can miss important information about the wood
structure. At this magnification level, it is possible that the
image captures only a small portion of the wood, which may
not be representative of the entire sample.

Therefore, our study suggests that the optimal magnifica-
tion level for wood species recognition is 20x, as it provides
enough information without sacrificing accuracy due to the
over-saturation of details.

V. CONCLUSION

In conclusion, this study evaluated the performance of
three popular CNN models, MobileNetV2, ResNet50, and
DenseNet121, for wood species identification using datasets
at different magnification levels. The results demonstrated that
data augmentation and the choice of CNN model signifi-
cantly affected the accuracy and generalization ability of wood
species identification. Moreover, the datasets used in the study
also impacted the model’s performance, with some datasets
being more challenging to classify than others.

Overall, the DenseNet121 model consistently outperformed
the other models in terms of accuracy, F1-Score, precision, and
recall, making it the most effective model for wood species
identification across all experiments. Furthermore, the study
found that X20 magnification level was the best magnification
level for wood species identification, as all three models
achieved the highest accuracy levels at this magnification level.

Future work in this area may involve further exploring
the impact of different data augmentation techniques on wood
species identification. Additionally, the study may be extended
to include a larger and more diverse dataset to further test
the robustness of the CNN models. Moreover, future research
could investigate the transfer of learning techniques for wood
species identification to reduce the computational cost and
increase the efficiency of the training process. Lastly, it is
worth considering the combination of different image process-
ing techniques, such as texture analysis and segmentation, with
CNN-based networks to further improve the accuracy of wood
species identification.
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[6] A. Fabijańska, M. Danek, and J. Barniak, “Wood species automatic
identification from wood core images with a residual convolutional
neural network,” Computers and Electronics in Agriculture, vol. 181,
p. 105941, 2021.

[7] Y. Sun, Q. Lin, X. He, Y. Zhao, F. Dai, J. Qiu, and Y. Cao, “Wood
species recognition with small data: a deep learning approach,” Inter-
national Journal of Computational Intelligence Systems, vol. 14, no. 1,
pp. 1451–1460, 2021.

[8] T. Fathurahman, P. Gunawan, E. Prakasa, J. Sugiyama, et al., “Wood
classification of japanese fagaceae using partial sample area and con-
volutional neural networks,” Journal of the Korean Wood Science and
Technology, vol. 49, no. 5, pp. 491–503, 2021.

[9] M. Arifin, B. Sugiarto, R. Wardoyo, Y. Rianto, et al., “Development of
mobile-based application for practical wood identification,” in IOP Con-
ference Series: Earth and Environmental Science, vol. 572, p. 012040,
IOP Publishing, 2020.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4700–4708, 2017.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[14] A. R. de Geus, A. R. Backes, A. B. Gontijo, G. H. Albuquerque,
and J. R. Souza, “Amazon wood species classification: a comparison

between deep learning and pre-designed features,” Wood Science and
Technology, vol. 55, pp. 857–872, 2021.

[15] D. V. Souza, J. X. Santos, H. C. Vieira, T. L. Naide, S. Nisgoski, and
L. E. S. Oliveira, “An automatic recognition system of brazilian flora
species based on textural features of macroscopic images of wood,”
Wood Science and Technology, vol. 54, no. 4, pp. 1065–1090, 2020.

[16] M.-C. Timar, L. Gurau, M. Porojan, and E. Beldean, “Microscopic iden-
tification of wood species an important step in furniture conservation,”
European Journal of Science and Theology, vol. 9, no. 4, pp. 243–252,
2013.

[17] N. Rosa da Silva, M. De Ridder, J. M. Baetens, J. Van den Bulcke,
M. Rousseau, O. Martinez Bruno, H. Beeckman, J. Van Acker, and
B. De Baets, “Automated classification of wood transverse cross-section
micro-imagery from 77 commercial central-african timber species,”
Annals of forest science, vol. 74, pp. 1–14, 2017.

[18] A. R. de Geus, S. F. d. Silva, A. B. Gontijo, F. O. Silva, M. A. Batista,
and J. R. Souza, “An analysis of timber sections and deep learning
for wood species classification,” Multimedia Tools Appl., vol. 79,
p. 34513–34529, dec 2020.

[19] V. Stagno, F. Egizi, F. Corticelli, V. Morandi, F. Valle, G. Costantini,
S. Longo, and S. Capuani, “Microstructural features assessment of
different waterlogged wood species by nmr diffusion validated with
complementary techniques,” Magnetic Resonance Imaging, vol. 83,
pp. 139–151, 2021.

[20] X. J. Tang, Y. H. Tay, N. A. Siam, and S. C. Lim, “Mywood-id:
Automated macroscopic wood identification system using smartphone
and macro-lens,” in Proceedings of the 2018 International Conference
on Computational Intelligence and Intelligent Systems, pp. 37–43, 2018.

[21] R. Damayanti, E. Prakasa, L. Dewi, R. Wardoyo, B. Sugiarto, H. Pard-
ede, Y. Riyanto, V. Astutiputri, G. Panjaitan, M. Hadiwidjaja, et al.,
“Lignoindo: image database of indonesian commercial timber,” in
IOP Conference Series: Earth and Environmental Science, vol. 374,
p. 012057, IOP Publishing, 2019.

[22] G. Figueroa-Mata, E. Mata-Montero, J. C. Valverde-Otárola, D. Arias-
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