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Abstract—The earth’s population is growing at a rapid rate,
while the availability of water resources remains limited. Water
is required for various purposes, including drinking, agriculture,
industry, recreation, and development. Accurate forecasting of
river flows can have a significant economic impact, particularly
in agricultural water management and planning during water
resource scarcity. Developing precise river flow forecasting models
can greatly improve the management of water resources in
many countries. In this study, we propose a two-phase model
for predicting the flow of the Blackwater river located in
the South Central United States. In the first phase, we use
Multigene Symbolic Regression Genetic Programming (MG-GP)
to develop a mathematical model. In the second phase, Particle
Swarm Optimization (PSO) is employed to fine-tune the model
parameters. Fine-tuning the MG-GP parameters improves the
prediction accuracy of the model. The newly fine-tuned model
exhibits 96% and 94% accuracy in training and testing cases,
respectively.

Keywords—River flow; forecasting; genetic programming; evo-
lutionary computation; particle swarm optimization

I. INTRODUCTION

In recent decades, river flow forecasting has become a key
research topic because it has substantial practical applications
in various fields. Forecasting indicates predicting or estimating
future events, conditions, or trends based on accessible data
from previous events. Forecasting aims to offer a reliable guess
about what could happen. River flow forecasting can help 1)
the effective management of floods by delivering an early alert
and permitting arrangements to be made to avoid damages
[1] 2) assist in the supervision of water resources by offering
data on the accessibility and timing of water supply to allow
for better optimization of water allocation and guarantee that
water resources are used effectively [2] 3) offer farmers with
adequate data on the timing and amount of water accessibility,
permitting them to plan their implanting and harvesting plans
[3] 4) improve the supervision of hydropower generation by
offering information on the likely flow of water, permitting
power plants to be driven more economically [4], [5] and 5)
the management of environmental matters, such as the safety
of wetlands and fish habitats, so we may identify regions that
require protection and plan healthy ecosystems [6].

A. Statistical Models and their Limitations

Developing time-series forecasting models for river flows
were explored using statistical models [7], [8]. Forecasting
models such as the regression and neural network were

presented in [9], [10]. For example, in Equation 1, y(k) is
predicted based on the values of y(k−1), . . . ,y(k−n), n is the
delay in time [11], [12].

y(k) = a0 +a1y(k−1)+ · · ·+any(k−n) (1)

Some forecasting tools are developed based on statistical
models, especially if the seasonal prediction of the water flow
is needed as in [7], which forecasts the availability of the
water resources supplied by the mountains in central Asia.
Another work was introduced in [8], which used the River
Vouga Basin in Portugal as a case study utilizing a statistical
time series model that analyzed and predicted the water quality.
The study showed that for such complex database models, it
is challenging to use statistical analysis.

Although statistical models have some advantages in river
flow forecasting, there are also several potential drawbacks to
consider, such as:

• Statistical models are likely developed utilizing histor-
ical data, which means they consider specific features
for model design, such as precipitation patterns, land
use changes, and climate variability. Thus, they might
not accurately predict the flow with extreme weather
events or environmental changes.

• Statistical models are susceptible to data outliers that
can affect the accuracy of the forecast. The model may
not accurately predict future river flow if the historical
data includes outliers.

• Statistical models overfit the data; this can happen if
the model fits the noise in the data rather than the
underlying patterns. Overfitting can lead to poor model
generalization ability and unsuccessful predictions.

Therefore, assessing the statistical model’s limitations and
probable weaknesses is essential while developing forecasting
models.

B. Why Evolutionary Computation Models?

Recently, Evolutionary Computation (EC) models have
been presented to handle modeling and optimization problems
[13]. Some well-known EC models are genetic algorithms
(GAs) and genetic programming (GP). EC-based models show
many advantages in the field of forecasting. Some of these
abilities are:
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• They can handle nonlinear relationships between river
flow and other factors that traditional statistical models
may not easily capture. This is because they can
manage various functions with multiple variables si-
multaneously.

• EC-based models can adapt to varying environmental
circumstances, such as climate variability or land use
changes, by adjusting the model’s parameters over
time.

• EC-based models are immune to noise and missing
values

Many forecasting models were presented in the past based
on Artificial Intelligent (AI) methods such as Artificial Neural
Networks (ANN) in different areas such as in [14] and some
models are specifically for river flow forecast as in [15], [16].
In [1], the author used data on flooding in the city of Jakarta
and developed a model that will be used to predict the rainfall
and prevent any possible future damage in the surrounding
area using ANN. Another study shows that ANN can be used
to predict the water flow of dams that have much flood data,
while regression models are better for dams that have limited
flood data [10]. The author in [17] introduced a forecasting
method that combined both ANN and general regression. In
[18]–[21], the authors presented several forecasting models
for the Nile river flow in Egypt using GP, ANN, and FL.
In [22], authors contributed a hybrid radial-basis function
network with weight-tuning GAs for time-series forecasting.
A comparison between Auto Regression (AR) modeling, gene
expression programming (GEP), radial basis function network
and FeedForward (FF) neural networks, and adaptive neural-
based fuzzy inference system (ANFIS) methods to forecast the
average monthly flow for a River in Turkey was introduced in
[23].

EC-based models have shown better outcomes in river flow
forecasting than traditional statistical models. In [24], the au-
thors provided a comparison between support vector regression
(SVR) and artificial neural network (ANN) models, which
are both evolutionary-based models, with traditional statistical
models for river flow forecasting in the southwestern United
States. The results show that both SVR and ANN models
outperform the statistical models. Another comparative study
shows that a three-layer ANN model outperforms Multivariate
Linear Regression Analysis (MLRA) model when predicting
the water flow in the watershed of Tarim [9].

C. Goals

In this paper, we present a Multigene GP mathematical
model that can be used for forecasting the flow of the
Blackwater river. The model is optimized using the PSO
algorithm to improve its accuracy. To train the model, we used
flow measurements from 1975 to 1984 and tested them using
different measures from 1984 to 1993. The structure of the
paper is as follows. In Section I, we provided an introduction
and motivation for solving the river flow forecasting problem.
Section II discusses the importance of the Blackwater river in
the USA. Steps for developing a forecasting model are shown
in III. Section IV describes the newly developed forecasting
model together with the evolutionary computational methods

used to build the model. Section V lists our evaluation criteria,
and we conclude our work with Section VII.

II. THE BLACKWATER RIVER IN USA

The Blackwater river, which originates in Reynolds County,
Missouri, in the Ozark Mountains, runs through southeastern
Missouri and eastern Arkansas before eventually joining the
White River near Newport, Arkansas, after covering a distance
of 280 miles (450 km) with a southeasterly flow towards Poplar
Bluff, Missouri. Due to different reasons, the Blackwater river
holds significant value to the United States. Some are the
following:

• The Blackwater river is a vital water source for
irrigation, industrial use, and recreation in Missouri
and Arkansas. The river also supports a prosperous
fishing industry, donating to the local economy.

• The Blackwater river is the residence of many rare
species, including the Missouri bladderpod, the eastern
massasauga rattlesnake, and the Ozark cavefish. The
river also delivers essential habitats for migratory birds
and other wildlife.

• The Blackwater river is a famous terminus for recre-
ational activities such as fishing, boating, and swim-
ming. It draws visitors from throughout the region.

• The Blackwater river has played an essential role in
the history and culture of the region. Native American
tribes used the river for transportation and trade,
later serving as a significant transportation route for
steamboats and other vessels.

The Black Water River’s flow data was recorded and
gathered by the U.S. Geological Survey (USGS) at station
number 02047500 whose location is shown in Fig. 1, as
reported in [25]. The first 6 years of this dataset, spanning
from October 1st, 1990, to September 30th, 1996, was used
as the training data, and the final year spanning from October
1st, 1996, to September 30th, 1997, was used as the testing
data.

Fig. 1. The location of station no. 02047500 operated by the USGS.

III. FORECASTING MODEL

Developing a forecasting model involves several steps.
Here is a general framework to follow steps:

1) Identify the scope of the problem, including the data
sources and any constraints.
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2) Collect the data required to build the model. Clean
the data as needed.

3) Choose a forecasting model suitable for the data
under study. Many models in the literature can be
used, such as regression models, time series models,
neural networks, and evolutionary models. In our
case, we are adopting the MG-GP model.

4) Use the historical data to train the model; this in-
volves selecting an appropriate model structure and
evaluation criteria that fulfill the error minimization
to fit the data best.

5) Once the model is trained, use a testing data set to
evaluate the development model quality.

6) Fine-tune the model parameters and make any nec-
essary adjustments. This may involve tweaking the
model parameters. In our case, we are adopting PSO
for better tuning the MG-GP model.

7) Once the model has been trained and validated, it can
be used to forecast new data.

Developing a forecasting model demands careful planning,
data preprocessing, model selection and tuning, and ongoing
monitoring and refinement (See Fig. 2). There are many
forecasting models developed in the literature as the models
in [9]–[12]. Moreover, the author in [26] includes a study
comparing different preprocessing techniques and shows how
to partition the complex forecasting problem into more minor
sub-problems to solve.

Begin

Data Collection

Model Development Using MG-GP

Tuning MG-GP parameters using PSO

Performance Evaluation

Stop

Fig. 2. Flowchart for the system identification process.

IV. METHODOLOGY

A. What is Genetic Programming?

Genetic programming (GP) is a kind of evolutionary com-
putation that uses algorithms inspired by biological evolution
to generate computer programs automatically. GP was intro-
duced by J. Koza in 1992 [27] at Stanford University. GP
is a population-based approach where computer programs are
evolved over multiple generations using parameters inspired by
nature, such as selection, reproduction, and mutation operators
[27]–[29]. GP involves several evolutionary phases, such as:

• Initialization: A population of randomly generated
programs is created.

• Fitness Evaluation: Each program in the population
is evaluated based on a user-selected fitness function
that calculates the performance of each solution to a
given problem.

• Selection: The best-performing programs are selected
for reproduction based on their fitness value.

• Reproduction: The selected programs are used as
parents to generate new offspring programs using
crossover and mutation operators.

• Replacement: The offspring programs replace the
least-fit programs in the population, creating a new
generation of programs.

• Termination: The GP process resumes until a stop-
ping criterion is satisfied, such as a maximum number
of generations or a satisfactory fitness level. In GP, the
programs are represented as a tree structure, where
each node denotes a function or operation, and the
branches illustrate the operands or arguments. GP can
develop favorably optimized programs by evolving the
population of programs over multiple generations. The
GP algorithm can be presented as given in Algorithm
1.

Algorithm 1 Genetic Programming Algorithm
Input: Training data D, population P, number of genes G,

number of individuals N, maximum depth d, crossover
rate pc, mutation rate pm, fitness f , T terminal condi-
tion

Output: Optimal solution
initialization;
while ¬T do

1) Evaluate fitness of each individual in P;
2) Select parents using f ;
3) Apply pc and pm to generate new offspring;
4) Replace old population with new population;

end
return Best individual in P

GP has been successfully used in a variety of applications
such as manufacture process modeling [30]–[32], fermentation
process modeling [33], timetabling problem [34] and stock
market prediction [35].
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1) Crossover in GP: Let’s consider two parent trees T1 and
T2, and we want to perform a crossover operation to create two
new offspring trees T3 and T4.

T1 =

[
+
× 2
x 3

]
T2 =

[−
÷ 4
y 5

]

First, we randomly select a crossover point in each tree.
Let’s assume we chose the second node in T1 and the third
node in T2:

T1 =

[
+
× 2
x 3

]
T2 =

[−
÷ 4
y 5

]

We swap the subtrees rooted at the crossover points to
obtain the offspring trees:

T3 =

[
+
÷ 4
x 3

]
T4 =

[−
× 2
y 5

]

The resulting trees can then be evaluated and selected based
on their fitness values.

2) Mutation in GP: Let’s consider a parent tree T1, and we
want to perform a mutation operation to create a new offspring
tree T2.

T1 =

[
+
× 2
x 3

]

First, we randomly select a node in the tree to mutate. Let’s
assume we selected the second node in T1:

T1 =

[
+
× 2
x 3

]

We randomly select a new function or terminal node
to replace the selected node. Let’s assume we selected the
terminal node 4:

T2 =

[
+
4
x 3

]

The resulting tree can then be evaluated and selected based
on its fitness value.

B. What is Symbolic Regression?

Suppose we have a data set of input-output pairs (xi,yi),
where xi is the input variable, and yi is the corresponding
output variable. We want to find a function f (x) that best
approximates the relationship between the input and output
variables. The symbolic regression problem J can be formu-
lated as:

J = min
f

n

∑
i=1

(yi − f (xi))
2 +λC( f ) (2)

Where C( f ) is a measure of the complexity of the function
f , and λ is a regularization parameter that balances the trade-
off between accuracy and complexity.

In symbolic regression, the function f (x) is typically
represented as a tree structure, where each node in the tree
corresponds to a function or operator, and the leaves corre-
spond to the input variables or constants. The tree structure is
evolved using GP to find the best function that fits the data.
Fig. 3 shows a symbolic regress tree. This expression can be
presented using the following equation:

y = x sin(5x)+ cos(7x) (3)

+

×

x sin

×

x 5

cos

×

x 7

Fig. 3. Symbolic regression tree for expression.

C. What is Multigene Symbolic Regression GP?

Multigene Genetic Programming (MGGP) is an evolu-
tionary algorithm used for symbolic regression to discover a
mathematical expression that best fits a given dataset. MGGP
boosts the basic GP algorithm by allowing multiple functions
or genes to evolve simultaneously.

In MGGP, each individual in the population is represented
by a set of genes, each of which can be an independent
mathematical expression. The algorithm evolves these genes
through genetic operations such as mutation, crossover, and
selection, seeking to optimize the fitness function, which
measures how well the set of genes fits a given dataset.

MG-GP has been known to be a powerful tool for solving
complex regression problems, such as those found in model-
ing and optimization of manufacturing processes [36], [37],
software effort estimation [38], image reconstruction [39], and
many others [40], [41]. It can address problems with datasets
that have a complex and noisy relationship. However, MGGP
can be computationally expensive, especially when dealing
with large datasets or complex models requiring significant
computational resources and optimization methods.

The following equation can represent the multigene sym-
bolic model:

yt =
n

∑
i=1

wi fi(xt)+b (4)

where yt is the predicted value at time t, n is the number
of genes, wi is the weight of gene i, fi(xt) is the expression
level of gene i at time t, xt is the input data at time t, and b
is the bias term.

The expression level of gene i at time t can be further
defined as:

fi(xt) = φi(gi(xt)) (5)
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where φi is the activation function of gene i and gi(xt) is
the regulatory function of gene i at time t.

The regulatory function gi(xt) can be modeled using a
polynomial function:

gi(xt) =
d

∑
j=0

ci jx
j
t (6)

where d is the degree of the polynomial and ci j is the
coefficient of the j-th term of gene i. Finally, the activation
function φi can be defined as a sigmoid function:

φi(z) =
1

1+ e−αiz
(7)

where z is the input signal and αi is the slope parameter of
gene i. These equations can be combined to form a multigene
symbolic model for predicting the flow of the Blackwater river.

D. Particle Swarm Algorithm

PSO is a metaheuristic search algorithm inspired by so-
cial organisms’ collective behavior, particularly the flocking
of birds and schooling of fish. Kennedy and Eberhart first
introduced it in 1995 [42].

In PSO, a group of particles (representing candidate solu-
tions to a problem) progress through the search space, adjust-
ing their velocities according to their own best-known position
and the best-known position of the swarm. Each particle holds
its position and velocity and adapts by comparing its fitness
value with the best fitness value found by the swarm. The
algorithm gradually converges toward an optimal solution by
iteratively modifying the velocities of the particles.

The equations that govern the PSO process of evolution to
update both the velocity v and position x are given as follows:

vi,t = wvi,t−1 + c1r1(pi,t−1 − xi,t−1)+ c2r2(gt−1 − xi,t−1) (8)

xi,t = xi,t−1 + vi,t (9)

where w is the inertia weight, c1 and c2 are the cognitive
and social learning coefficients, r1 and r2 are random values
between 0 and 1, pi,t is the best position of particle i in
dimension t, and gt is the best position of the swarm in
dimension t. The PSO algorithm is shown in Algorithm 2.

PSO has been successfully applied to various optimization
problems, including computer network design [43] optimiza-
tion of PID Controller [44]. It is beneficial when the search
space is large and complex, and traditional optimization meth-
ods such as gradient descent and genetic algorithms may need
to be more efficient.

V. MODEL EVALUATION

Model evaluation is necessary for any forecasting process
that evaluates how well a model predicts the interest results.
It is essential to ensure that the model is correct and trust-
worthy before using it to make predictions and forecasting.
Some of the criteria we are adopting in this research include
the Variance-Accounted-For (VAF), the Mean Squares Error
(MSE), and the Manhattan distance (MD). The following

Algorithm 2 PSO Algorithm
Input: Objective function f (x), Swarm size N, Maximum

number of iterations T , Initial particle positions xi, and
velocities vi

Output: Optimal solution x∗
for i = 1 to N do

Initialize particle position xi and velocity vi within the
search space;
Evaluate particle fitness fi = f (xi);
Initialize personal best pi = xi and best fitness fpi = fi;

end
Find global best position g = argmin fi fi;

for t = 1 to T do
for i = 1 to N do

Update velocity: vi,t ;
Update position: xi,t ;
Evaluate fitness: fi,t = f (xi,t);
if fi,t < fpi then

Update personal best: pi = xi,t and fpi = fi,t ;
end
if fi,t < fg then

Update global best: g = xi,t ;
end

end
end
return g

equations describe the proposed mathematical formulation of
the adopted performance criteria.

1) Root Mean Square Error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (10)

2) Variance-Accounted-For (VAF):

VAF = [1− var(y− ŷ)
var(y)

]×100% (11)

3) Mean Squares Error (MSE):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

4) Euclidian distance (ED):

ED =

√
n

∑
i=1

(yi − ŷi)2 (13)

5) Manhattan distance (MD):

MD = (
n

∑
i=1

|yi − ŷi|) (14)

y and ŷ are the observed and the predicted river flow
values based on the proposed model, and n is the number of
measurements utilized in our experiments, respectively.

VI. DEVELOPED MULTIGENE GP MODEL

We utilized the GPTIPS 2 MATLAB toolbox to develop the
proposed forecasting model based on MG-GP. GPTIPS 2 is an
open-source software platform for symbolic data mining that
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delivers an easy-to-use code that can be customized frame-
work for GP. GPTIPS 2 permits users to perform symbolic
regression, classification, clustering, and feature selection on
complex data sets using GP [45].

To develop the Multigene GP model, a user has to setup
the following:

• The maximum number of genes, denoted as Gmax,
identifies the maximum number of genes allowed to
be used in the model.

• The maximum tree depth, denoted as Dmax, which
controls the complexity of the model. Limiting the
tree depth can result in a simpler model but may also
reduce performance.

• When using GPTIPS, we obtain the optimal weights
for the genes utilizing ordinary least squares to regress
the genes against the output data.

The evolutionary process of the MG-GP algorithm was
evolved using the parameters listed in Table I. The best
generated Blackwater river Multigene GP model forecasting
model is given in Equation 15. The adopted fitness function
to evaluate the MG-GP model was selected as the Root Mean
Squares Error (RMSE).

TABLE I. MULTIGENE GP TUNING PARAMETERS

Population size 100
Number of generations 200
Selection mechanism Tournament
Tournament Size 5
Max. tree depth 5

y(t) = 2.049 y(t −1)−1.524 y(t −2)+0.7478 y(t −3)
− 0.2646 y(t −4)−0.05178 y(t −2)y(t −4)
+ 0.04482 y(t −2)y(t −5)−0.05178 y(t −1)2

+ 0.04482 y(t −2)2 +0.01711 (15)

In Table II, we show the tuning parameters of MG-GP. The
convergence of GP with a population size of 100 trees over
200 generations is depicted in Fig. 4. The upper section of the
graph displays the log10 value of the population’s best Root
Mean Square Error (RMSE) achieved during each generation.
Meanwhile, the lower section shows the population’s mean
RMSE achieved over time.

TABLE II. TUNING PARAMETERS OF GP

Number of generations 3000
Popultaion Size 100
Tournament Size 5
Maximum Genes 5
Functions Set ×, -, +
Acceleration factor c1,c2 2

Scatterplots have several advantages, including displaying
the relationship between two variables, identifying outliers,
evaluating patterns or trends, assessing the distribution of
variables, and comparing groups. They provide a visual rep-
resentation of data points and allow for easy interpretation
of the data, making them a useful tool for data analysis and

visualization. The scatterplots in both training and testing are
given in Fig. 5. In training set the RMSE is calculated to
be 0.19959 and the R2 coefficient value is 0.96059 while in
testing set, the RMSE is calculated to be 0.23312 and the R2

coefficient value is 0.94296.

Fig. 4. MG-GP convergence curves.

Fig. 5. Scatter plots in both training and testing cases.

The gene weights for symbolic regression are presented
in Fig. 6, with gene three and four identified as the most
significant for developing the forecasting model. The equations
for these genes are provided below:

M3 = f (y(t −3)− y(t −2))
M4 = f (y(t −1)−9.785)) (16)

As shown in Equation 16, the variables y(t − 1),y(t − 2),
and y(t−3) are used in the equations for genes three and four.
Fig. 7 shows the five symbolic GP models developed.

The simplicity and compactness of the final model make it
easy to evaluate. The performance of the model was evaluated,
and the results are presented in Table III.
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Fig. 6. Symbolic regression genes weights.

TABLE III. CALCULATED CRITERIA FOR THE GP AND PSO TUNED
MG-GP MODELS

Technique Case VAF MSE ED MD
GP Training 96.059 0.039838 9.026 0.074631

Testing 94.296 0.054344 5.2697 0.10413
PSO Training 96.297 0.03786 8.7017 0.080066

Testing 93.801 0.054755 5.2324 0.12237

A. Tuning GP Model Parameters Using PSO

In this section, we described the methodology we followed
in tuning the parameters of the developed MG-GP model
presented in Equation 15. We presented the structure of PSO
as a δ value to update the nine parameters of the model. Thus,
our particles are presented in Table IV. In Table V, we show
the tuning parameters of PSO.

TABLE IV. PSO PARTICLES REPRESENTATION

a1 +δ1 a2 +δ2 . . . a9 +δ9

In Table V, we show the tuning parameters of PSO. The
developed MG-GP model parameters were optimized using the
Euclidean distance (ED) as a fitness function, as expressed in
Equation 13. The convergence of the PSO evolutionary process
is demonstrated in Fig. 8.

TABLE V. TUNING PARAMETERS OF PSO

Maximum Iteration 150
Population Size 30
Maximum Inertia Weight 0.9
Minimum Inertia Weight 0.4
Acceleration factor c1 2
Acceleration factor c2 2

The Scatter plots between the actual and estimated river
flow after tuning the MG-GP is depicted for both the training
and testing cases in Fig. 9.

Furthermore, Fig. 10 exhibits the actual and predicted
Blackwater river flow based on the optimized PSO MG-GP

model for both the training and testing cases.

B. Comparison

We calculated the R-squared coefficient as the metric to use
to compare the performance of the MG-GP before and after
tuning its parameter using PSO. The closer the value of the
R-squared coefficient to one, the better the model performs in
forecasting the river flow values. The equation for R-squared
is given in Equation 17.

R2 =
∑

n
i=1(yi − ȳ)2 −∑

n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 (17)

where n is the number of observations, yi is the actual value
of the response variable for observation i, ȳ is the mean of the
response variable, and ŷi is the predicted value of the response
variable for observation i. Table VI gives the calculated R-
squared in training and testing cases.

TABLE VI. R-SQUARED CALCULATED BEFORE AND AFTER PSO FINE
TUNING

Technique Training Testing
MG-GP model 0.96059 0.94296
PSO Tuned MG-GP model 0.98713 0.97759

VII. CONCLUSIONS

This study employed a two-phase evolutionary computation
technique to forecast the Blackwater river flow. In the first
phase, Multigene Symbolic Regression Genetic Programming
was utilized to generate a mathematical model capable of
predicting future river flow values. The model’s parameters
were fine-tuned in the second phase using the Particle Swarm
Optimization algorithm. The data for our experiments was
obtained from the US Geological Survey station 02047500 for
the Black Water River near Dendron, Virginia. Various metrics,
such as VAF, MSE, ED, and MD, were calculated to assess
the techniques’ performance. The experimental results confirm
that the fine-tuned phase can produce significantly improved
outcomes, as evidenced by the increase in the R2 coefficient
value in training and testing cases.
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