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Abstract—Software engineering effort estimation plays a sig-
nificant role in managing project cost, quality, and time and
creating software. Researchers have been paying close attention
to software estimation during the past few decades, and a great
amount of work has been done utilizing a variety of machine-
learning techniques and algorithms. In order to better effectively
evaluate predictions, this study recommends various machine
learning algorithms for estimating, including k-nearest neighbor
regression, support vector regression, and decision trees. These
methods are now used by the software development industry for
software estimating with the goal of overcoming the limitations
of parametric and conventional estimation techniques and ad-
vancing projects. Our dataset, which was created by a software
company called Edusoft Consulted LTD, was used to assess the
effectiveness of the established method. The three commonly used
performance evaluation measures, mean absolute error (MAE),
mean squared error (MSE), and R square error, represent the
base for these. Comparative experimental results demonstrate
that decision trees perform better at predicting effort than other
techniques.

Keywords—Software effort estimation; K-nearest neighbor re-
gression; machine learning; decision tree; support vector regression

LIST OF ABBREVIATION
ML Machine Learning KNN K-nearest neighbour
SVR Support Vector Regression DT Decision Tree
ANN Artificial Neural Network RF Random Forest
CBR Case Base Reasoning LR Linear regression
MSE Mean Square Error MAE Mean Absolute Error

RMSE Root Mean Square Error SEE Software Effort estimation
COCOMO Constructive Cost Model LASSO Least Absolute Shrinkage and Selection

I. INTRODUCTION

Software teams and businesses have long had substantial
difficulty with software effort estimation, which should be
taken into account at the outset of a software project[1]. For
software project success and risk reduction, accurate software
work estimation is essential. The practice of estimating the
amount of time and money it will take to produce a software
process or product is known as effort estimation. In order
to effectively budget, plan, control, and manage the project,
proper estimating may require accurately projecting software

costs. In order to allocate resources effectively and prepare for
the development of software, precise cost and time estimation
are crucial. Project planning determines whether a project will
succeed or fail because during this stage, the time and financial
restrictions necessary to finish the project successfully are
estimated [2]. Since the 1940s, when the computer industry
first started to take off, the idea of software effort estimation
has gained popularity. Research in this area is still ongoing
[3].

Numerous estimation methods are categorized into three
broad groups in the literature on software effort estimation:
algorithmic, non-algorithmic, and machine learning [4]. Al-
gorithmic approaches utilize statistical and mathematical con-
cepts for software project estimation. COCOMO-II, Putnam
Software Life cycle Management (SLIM), SEER-SEM, and
True Planning are some examples of estimate techniques. The
fundamental input to these models is the size of the software
being evaluated, It is usually quantified in a metric like func-
tion points, source lines of code, or use case points. Models
that don’t rely on algorithms rely on subjective evaluations
and interpretations of data. Data from prior projects are ana-
lyzed by these models. Expert judgment, planning poker, wide-
band Delphi, and the work breakdown structure (WBS) are all
examples of non-algorithmic approaches. Machine learning is
an alternative to algorithmic model building. Artificial neural
networks (ANN), case-based reasoning (CBR), support vector
regression (SVR), decision trees (DT), fuzzy models, Bayesian
networks, and genetic algorithms are all examples of machine
learning estimation approaches [5].

Several datasets have been proposed that are used to
measure the effort estimation of software development. These
datasets were proposed quite a long time ago. At present
the effort engagement in software development has changed
a lot. One perspective is that in this post-COVID era, many
companies have moved to a hybrid development approach.
In hybrid mode, developers are not bound to come to the
office physically every day. They can work from home. The
office visit is expected only if there is a need for so. Another
perspective is that an extreme level of change requirements
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is needed due to the dynamic nature of clients’ businesses,
updates to new technology, and extreme competition in the
business. Considering these two scenarios, In this study, we
have developed a new dataset and we have successfully shown
that this new dataset is capable of providing future insight into
software efforts. We have used three machine learning models,
namely, SVM, KNN, and DT. We have shown that both these
models are able to predict the software effort for the future. We
claim that this is the first instance of using such a dataset in
the prediction of effort in software development. We have also
shown that these new parameters are perfectly able to predict
the future.

Here is how the article progresses for the remainder. In
section II, we review the many methods of effort estimation
that have been published by scholars. The section III explains
how we conducted our research. In section IV, we detail
the performance evaluation of the several competing ML ap-
proaches we employed based on the trial outcomes. Thereafter,
the essay finishes with Section VI.

II. RELATED WORK

The majority of software effort estimates are made using a
variety of approaches that have been put out by scholars over
the past few decades. The first three methods to calculate the
effort required to create widely used software were the function
point-based model, the constructive cost model (COCOMO),
and the Putnam program life cycle model (SLIM), and they
each provided a specific formula for calculating the effort
required from historical data[6][7]. Machine learning (ML)
algorithms have been widely utilized to estimate the software
development effort [8]. These ML Algorithms allow profes-
sionals to devote more time to other client-pleasing aspects
of software systems and less time to analyzing new projects.
Many scholars have utilized machine learning to estimate effort
over the past ten years.

A systematic study to investigate the use of ML models
in predicting Software Development Life Cycle (SDLC) effort
reports CBR – Case Based Reasoning, Neural Network, and
Decision Tree as the most frequently used algorithms [9]. In
another report, the datasets that were considered are Albrecht,
China, Desharnais, Kemerer, Kitchenham, Maxwell, and Co-
como81. Here various stacking models were used. These are
stacking using generalized linear models (S-GLM), stacking
using S-DT, stacking using SVM, and stacking using RF [10].
A survey of 35 selected studies on effort estimation accuracy
implemented on both public and non-public domain datasets
suggests ensemble effort estimation as a better technique than
solo techniques [5]. The major goal of this research [11] is
to empirically compare the performance of several Machine
Learning (ML) algorithms in order to identify a performance
model for evaluating the software effort. Seven datasets have
been used for Effort Estimation, and various ML approaches
have been applied. The LASSO approach with the China
dataset gave the best performance when compared to the other
algorithms, according to the results and trials with several ML
algorithms for software effort estimation.

To determine the precise software effort, Abdelali et al.
[12] constructed an RF model and experimentally adjusted the
effectiveness by altering the important parameters. Specifically,

ISBSG, Tukutuku, and COCOMO datasets were employed.
The 30% hold-out validation approach was used to manage the
evaluation. Three performance indicators, such as the MdMRE,
MMRE, and Pred (0.25), are used to assess and identify the
well-performed technique. When the generated RF model was
compared to the traditional regression tree, it was clear that
the upgraded RF model outperformed it. Nassif et al. [13]
experiment with fuzzy models to estimate software effort. In
order to compare and implement three fuzzy logic models,
namely Sugeno, Mamdani with constant output, and Sugeno
with linear output, regression analysis was done. These models
were used to estimate the program effort. The ISBSG dataset
was used for model training and testing, and the Scott-Knott,
mean inverted balance relative error, and other performance
measures were used to assess the models’ effectiveness. The
Sugeno fuzzy model with linear output performed better when
compared to other fuzzy models created to help in regression
and analysis.

The soft computing techniques of linear regression (LR),
SVR, ANN, RF, DT, and bagging methodology were used
by Sharma and Vijayvargiya [14] to predict the time and
resources required for software projects using the benchmark
datasets. It was decided that the results from the RF and choice
tree were the most helpful. The cost-benefit analysis led to
enhanced cognitive performance. This strategy, however, was
not evaluated using a deep learning classifier.

A gradient boosting regressor model was suggested by [15].
The stochastic gradient descent, KNN, DT, bagging, RF, Ada-
boost, and gradient-boosting neighbors are all compared to the
model. MSE, root mean square error (RMSE), and R2 were
used to evaluate the model by authors. They displayed the
outcomes using the China and Cocomo81 datasets.

The goal of this [16] work is to give an approach for accu-
rately estimating the time and resources required to complete
a software development project using only a subset of that
organization’s past project data. Two techniques, the correla-
tion matrix, and the decision tree were utilized to determine the
optimal prediction parameters. Each test’s results were double-
checked by using two different methods. The outcomes of the
two analyses were identical, and the same three parameters
were chosen for prediction. For certain variables, multiple
prediction models were constructed and trained. According
to the findings of the tests, Evolutionary SVM is the most
accurate predictor.

The AdaBoost ensemble learning method and RF are used
in this [17] study, while the Bayesian optimization method
is used to calculate the model’s hyperparameters. The SEE
model was built using the PROMISE repository and the
ISBSG dataset. Under 3-fold cross-validation, the created
model was thoroughly compared with four machine learning
approaches. The RF method based on AdaBoost ensemble
learning and Bayesian optimization clearly outperforms this
approach. Furthermore, the AdaBoost-based model assigns a
feature relevance rating, making it a viable tool for predicting
software effort.

III. METHODOLOGY

There has been extensive study into the use of machine
learning (ML) based prediction methods for software devel-
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opment effort estimation to improve predictions. The goal of
this machine learning method is to minimize the loss function
while simultaneously optimizing the support vector boundaries
by transferring non-linear separable patterns in the input into
higher feature space. Fig. 1 shows the methodology of software
effort estimation. Three common machine-learning techniques
are described below.

Fig. 1. Methodology of SEE.

A. Support Vector Regression (SVR)

A support vector machine (SVM) handles classification and
regression issues. In machine learning, a classifier is a model
built to make inferences about a class from additional features.
The term “classification” refers to the act of labeling an unla-
beled record with a unique value [18]. An SVM variant is an
SVR. The regression issues are transformed into classification
issues. A linear decision surface (known as a hyperplane)
divides two segments of vectors in the SVM training process.
The margin between the LDS and the vectors that are nearest

to it is maximum in this separation. They are known as support
vectors. The input vectors are nonlinearly mapped into a high-
dimensional space when the LDS is supposed to be non-linear.
In this feature space, the LDS is built using characteristics that
provide maximum margin and, thus, a low generalization error
for the machine. This LDS has the best generalization of all
speculative hyperplanes. Using this ideal hyperplane, classifi-
cation or regression models’ predictive ability is improved.

f(x) = ωTϕ(x) + b (1)

where x is the input vector, ϕ(x) is the feature mapping
function, ω is the weight vector, and b is the bias term.

B. K-Nearest Neighbor Regression (KNN)

KNN, one of the most straightforward estimation tech-
niques, was chosen for this study because of its perceived
resemblance to human-based expert opinion[19]. Technically,
KNN does not train a model[20] but rather uses Euclidean
distance [21] to calculate distances between locations. The
algorithm makes a prediction about the class to which a point
belongs by gathering the nearest samples. Regression involves
taking the average of the closest samples to a location to
determine its value. The effort of the target project is then
estimated by averaging the efforts of the k projects that are
the closest analogs.

Euclidean =

√√√√ k∑
i=1

(xi − yi)
2 (2)

Where k is the user-defined constant, i is the number of
instances x and y are the vectors of each instance

C. Decision Tree (DT)

To obtain insightful information that will help it achieve its
objectives, data mining uses DT. DT is an intelligent model
that looks like a binary tree with the root at the top that has
been turned on its side. The decision tree model is used to
turn the data into a tree structure to help with the machine
learning challenge. DT serves as an example of forecasting
a dependent variable using a set of predictor variables. The
decision-making process in this model is analogous to other
models, which facilitates understanding. Because a picture is
worth a thousand words, this approach makes it simple for
anyone to comprehend the essence of a complex problem by
simply looking at its schematic. The method used by DT
is comparable to how people make decisions. DT does have
certain disadvantages, though. Contrasted with other machine
learning models, the accuracy of the dataset predictions is
lower. Because DTs provide a collection of if-then-else rules,
they are easier to grasp and analyze when compared to
other machine learning techniques like neural networks and
Bayesian networks [10].

f(x) =

J∑
j=1

cjI (x ∈ Rj) (3)

where x is the input vector, f(x) is the predicted output
label or value, J is the number of leaf nodes in the tree, Rj
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TABLE I. SETTING PARAMETERS FOR ALL TECHNIQUES TAKEN INTO
CONSIDERATION

Used method Values for the parameters

SVR kernel= ’rbf’, degree=3, gamma=’scale’,
cache size=200

KNN N neighbors=5, weights=’uniform’,
leaf size=30,metric=’minkowski’

DT Criterion=’gini’ splitter=’best’,
min sample split=2, min samples leaf=1

TABLE II. PROPERTIES OF DIFFERENT DATASETS

Dataset name Source No of attributes Output attributes
Albrecht PROMISE 8 Person-months

China PROMISE 16 Person-hours
Desharnais GITHUB 12 Person-hours
Kemerer GITHUB 7 Person-months
Maxwell PROMISE 27 Person-hours

Kitchenham GITHUB 9 Person-hours
Cocomo81 GITHUB 17 Person-months

UCP GITHUB 23 Person-months
ISBSG10 GITHUB 10 Person-months

Our dataset GITHUB 7 Person-hours

is the region of the input space that is assigned to the jth leaf
node, cj is the output value or class label assigned to the jth
leaf node, and I(·) is the indicator function that returns 1 if
the input condition is true and 0 otherwise

IV. EXPERIMENTAL DESIGN

A. Dataset

In this research, we use a real-world dataset compiled by
Edusoft Consultant Ltd. to conduct an empirical evaluation
of the presented models for estimating the time and effort
required for software development[22]. It’s worth noting that
this dataset includes quite a variety of characteristics, including
task history ID, project ID, Client ID, task types, task priority,
task overall state, total working time in hours, etc. our dataset
consist of 2000 real-time data samples.

For estimating effort, a number of databases are uti-
lized, including China, Kemerer, Cocomo81[23], Albrecht[24],
Maxwell[25], Desharnais, and Kitchenham, Nasa93, ISBSF10.
Along with our dataset, Table II shows repository information
for other datasets, such as the number of characteristics,
source, and an output unit for each dataset[26]. We won’t con-
sider all datasets in this research for performance evaluation,
but we will evaluate the performance of our dataset.

B. Dataset Pre-Processing

The data preprocessing methodology is an efficient method
for estimating the amount of work that will be required [27],
and it is an essential step in the process of enhancing the
performance of machine learning [28]. The first stage is to
eliminate irrelevant features from the dataset as stated in [29].
If unnecessary features are taken out of machine learning
algorithms, they will function better. Categorical data under-
goes further processing to become numerical. Each category
is given its own numeric code in ordinal coding, which has
the benefit of not expanding the problem space by displaying
each category as a separate input [30].

After the data collection, the dataset has been pre-processed
to eliminate inconsistencies, duplicates in data, or missing val-
ues, which can otherwise negatively affect a model’s accuracy.
The researchers have used different methods to achieve the
qualitative dataset [31]. The collected dataset also had some
missing values, and some missing data were eliminated by
inspecting the dataset, and features were chosen according
to the degree of correlation between each dataset’s values.
Furthermore, some of the missing information has been filled
in using the moving median method with a window of the
length of 10.

C. Performance Evaluation

Research has demonstrated the capabilities of software
development effort estimation models using a wide range of
performance indicators. Different aspects of performance are
being measured and/or represented by these different metrics.
Performance evaluation measures are crucial to the accuracy
of performance measurements [32]. However, no single metric
has gained widespread acceptance for use across all software
development effort estimation model comparisons without
some form of criticism. we employ more generic evaluation
metrics such as Mean Absolute Error (MAE) (2), Mean Square
Error (MSE) (1), and R Squared (3).

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (4)

where yi is the true value of the ith data point, ŷi is the
predicted value for the ith data point, n is the total number
of data points, and (·)2 denotes squaring. The MSE measures
the average of the squared differences between the predicted
values and the true values, which gives greater weight to larger
differences than smaller ones. This means that the MSE is
more sensitive to large errors than to small errors. A lower
MSE indicates that the model is better at predicting the true
values, while a higher MSE indicates that the model is less
accurate.

MAE =
1

N

N∑
i=1

|yi − ŷi| (5)

where yi is the true value of the ith data point, ŷi is the
predicted value for the ith data point, n is the total number
of data points, and | · | denotes the absolute value. The MAE
is a useful metric for evaluating regression models, as it gives
an idea of how far off the predictions are on average. A lower
MAE indicates that the model is better at predicting the true
values, while a higher MAE indicates that the model is less
accurate

R2 = 1−
SSRegression

SsTotal
= 1−

∑
i (yi − ŷi)

2∑
i (yi − ȳ)

2 (6)

where yi is the true value of the ith data point, ŷi is the
predicted value for the ith data point, ȳ is the mean of the
true values, and n is the total number of data points. A
higher R2 value indicates that the model explains more of
the variance in the dependent variable. However, a high R2

value does not necessarily indicate that the model is a good
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fit for the data, as it may be overfitting the data or failing to
capture important relationships between the independent and
dependent variables.

D. Parameter Setting

In Table I, a comprehensive list of all parameter values was
examined for each SDEE technique in this study.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this study, machine learning algorithms have been con-
ducted with our proposed dataset. Firstly, the preprocessed
dataset has been separated into a training and a testing set.
The training set has been used to train the models, and the
testing set has been used to test the performance of the models
with our dataset. In this experiment, we have used a total of
80% dataset for training, and the rest 20% dataset for testing
the models. The parameter values that have been examined for
each SDEE method in this study are all listed in Table I.

Table III shows the performance metrics (MAE, MSE, and
R-Squared) for ML algorithms in predicting our dataset’s data.
Table III illustrates that the Decision Tree Algorithm yields
more accurate outcomes with smaller MAE and MSE values.
Besides, based on the MSE value second best result was given
by the KNN algorithm. Finally, the third position is held by
SVR based on the performance evaluation matrix. Fig. 2 shows
the actual vs predicted result using SVM, Fig. 3 shows the
actual vs predicted result using DT, and finally, Fig. 4 show
the predicted results plot with respect to the actual data using
KNN. As we proposed a new dataset in this work so we did
not compare it with other datasets, we will compare the result
of our dataset with other existing datasets using various ML
algorithms in our next paper.

TABLE III. COMPARISON OF ALL MODELS’ EFFECTIVENESS IN TERMS OF
MSE, MAE AND R SQUARE

Model MSE MAE R Square
Decision Tree 20.54043 1.649842 -0.008089

SVM 148.4454 4.63788 -0.059185
KNN 135.3942 5.42981 0.033978

Fig. 2. SVM models’ actual effort and predicted effort.

Fig. 3. DT models’ actual effort and predicted effort.

Fig. 4. KNN models’ actual effort and predicted effort.

VI. CONCLUSION

At the beginning of software development, the project
manager must take care of an extremely important step called
effort estimation. To estimate effort, we used a real dataset
created by Edusoft Consultant Ltd. In this study, we imple-
mented the decision tree regressor, random forest, and KNN
machine learning models. Comparative experimental results
demonstrate that decision trees perform better at predicting
effort than other techniques. The MAE, MSE, and R-Squared
values are evaluated as evaluation metrics. In the future, we
will compare the result of our dataset with other existing
datasets using various ML algorithms.
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