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Abstract—Deep learning applied to computer vision has differ-
ent applications in agriculture, medicine, marketing, meteorology,
etc. In agriculture, plant diseases can cause significant yield
and quality losses. The treatment of these diseases depends on
accurate and rapid classification. Olive leaf diseases are a problem
that threatens the crop quality of olive growers. The objective of
this work was to classify olive leaf diseases with Deep Learning in
olive crops of the La Yarada-Los Palos area in the Tacna region,
Peru. Disease classification is a critical task, nevertheless, for
the most common diseases in the region: virosis, fumagina, and
nutritional deficiencies, there is no dataset to train deep learning
models. Due to the latter, a novel dataset of RGB olive leaf images
is elaborated and published. Then, an extensive comparative ex-
perimental study was conducted using all possible configurations
of Learning from Scratch, Transfer Learning, Fine-Tuning, and
Data Augmentation state-of-the-art methods to train a modified
VGG16 architecture for the classification of Olive Leaf Diseases.
It was demonstrated experimentally: (i) The ineffectiveness of
Data Augmentation when the model Learning from Scratch, (ii)
A high improvement by using Transfer Learning vs Learning
from Scratch, (iii) Similar performance using Transfer Learning
vs Transfer Learning + Fine-Tuning vs Transfer Learning + Data
Augmentation, and (iv) Very high improvement using Transfer
Learning + Fine-Tuning + Data Augmentation. This led us to
a Deep Learning Model with an accuracy of 100%, 99.93%,
and 100% in the training, validation, and test sets and F1-Score
on the validation set of 1, 0.9901, and 0.9899 in the Nutritional
Deficiences, Fumagina, and Virosis olive leaf diseases respectively.
Replication of the results is ensured by publishing the novel
dataset and the final model on GitHub.

Keywords—Olive; leaf diseases; disease classification; deep
learning; data augmentation; transfer learning; fine-tuning;
VGG16

I. INTRODUCTION

Tacna is the leading nationally producer of olives [1].
Peru is the second-largest exporter of olives and third-largest
exporter of olive oil in South America [1]. With over 22,897
hectares under olive cultivation and an average yield of 7,995
kg/ha, olive production and processing is critical to the local
and regional economy [2]. Tacna accounts for 81.4% of the
olive area that exists in Peru [3]. Despite its importance, olive
cultivation is still managed traditionally and the use of data
is incipient. Pests and diseases such as Orthezia Olivicola and
fruit borer can significantly reduce the number of fruits per
harvest [4]. This and other problems will be exacerbated by
impending climate change [5].

The problems derived from pests and diseases affect the
production and the production cycle as they affect leaves,
flowers, and fruits and can initiate neighboring cycles [6]. In
addition, the scarcity of diagnostic tools in underdeveloped

countries has a devastating impact on their development and
quality of life. Therefore, there is an urgent need to automat-
ically classify plant diseases with affordable and easy-to-use
solutions.

To reduce olive harvesting diseases, it is necessary to
create and modernize technologies for efficient productivity.
Adequate and fast classification of olive leaf diseases could
prevent quality and crop losses. There is research related
to the classification of olive leaf diseases [7] with datasets
collected in countries such as Saudi Arabia [8], [9] or Turkey
[10], [11], [12]. However, for the most common diseases in
the region of Tacna-Perú: virosis, fumagina, and nutritional
deficiencies, there is no dataset to train computer vision models
for classification.

Deep Learning has become the artificial intelligence
method by excellence for solving a variety of problems,
including those related to computer vision [13]. The area of
computer vision encompasses a large number of tasks such as
segmentation, detection, and classification, among which are
those related to diseases. In disease problems, Deep Learning
has been shown to be state-of-the-art in both agricultural and
medical applications using CNN architectures [14], [15], [16].
Deep Learning models learn directly from data and require
large datasets to obtain good accuracies. To avoid the latter,
some techniques have been well proven to obtain models with
better results, such as Data Augmentation [17], [18], [19],
Transfer Learning [20], [21], [22], and Fine-Tuning [23], [24].
But there is no study on the impact of each and combination
of these techniques.

In this context, CNNs such as the well-known VGG16
architecture [25] could be trained to classify olive leaf diseases.
VGG16 model was the winner of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [26], which consists
of classifying 1.2 million labeled images into a hundred classes
using a 133GB dataset. The model already trained on this
gigantic dataset is available, and through techniques such as
Transfer Learning and Fine-Tuning, one can take advantage
of feature extraction to train another classifier, if the new task
and dataset have similarity to the initial task and dataset.

In this paper, our main contributions are: (i) A novel
and public olive leaf disease classification dataset for the
classification of virosis, fumagina, and nutritional deficiencies
diseases that affect olive harvests in Tacna-Perú. (ii) Conduct
an extensive comparative experimental study using all possible
configurations of Data Augmentation, Transfer Learning, and
Fine-Tuning techniques to train a modified VGG16 archi-
tecture for olive leaf disease classification. (iii) Obtain and
publish a Highly Accurate Deep Learning model trained using
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Data Augmentation, Transfer Learning, and Fine-Tuning that
solves the olive leaf disease classification task.

The rest of this paper is organized as follows: Section II
provides the necessary background to understand the work.
Section III presents the novel olive leaf disease classification
dataset. Section IV defines the materials and methods used to
carry out the experiments. Section V sets the experimental
setup and pipeline of experiments. Section VI presents the
experimental results and performance analysis of them. Section
VII presents the discussion. Finally, Section VIII provides the
conclusion and further work.

II. BACKGROUND

A. Deep Learning

Deep Learning is a sub-field of machine learning that
consists of using multiple layers of non-linear processing to
learn data representations with multiple levels of abstraction
[27].

B. CNNs

Convolutional Neural Networks (CNNs) are designed to
process multiple types of data, especially two-dimensional
images, and are directly inspired by the visual cortex of the
brain. In the visual cortex, there is a hierarchy of basic cells:
simple and complex [28]. A CNN can extract the image
features without the need for this process to be performed by
hand as before 2011, finally, adding a neural network at the
end allows the classification task to be performed.

Fig. 1 shows a typical CNN architecture. Feature extraction
consists of convolution layers (C1, C2, C3) and pooling layers
(P1, P2). The classification consists of fully connected layers
(FC) and an output layer [29].

Fig. 1. Typical CNN architecture, based on [29].

C. VGG16 Architecture

The VGG16 architecture [25] was proposed by Simonyan
and Sisserman in 2014, they developed the convolutional neu-
ral network in the Oxford Visual Geometry Group (VGG16).
This architecture is constituted of 13 convolutional layers, each
group of convolution layers is followed by a max pooling
layer composing the feature extraction or base model, which
is followed by three fully connected layers as classification
or top model, hence the name includes 16. Finally, a softmax
layer is added to the classifier.

VGG16 is a classification model which is able to classify
14M images of 1000 different categories (Imagenet dataset -
ILSVRC 2014) with 92.7% accuracy. Despite the existence of
more recent models, the simplicity of this architecture makes

it perfect for applying techniques such as Transfer Learning
and Fine-Tuning. The network (model and trained weights) is
available in Keras. Fig. 2 shows the architecture of VGG16.

Fig. 2. VGG-16 architecture overview, based on [30].

D. Underfitting and Overfitting

Underfitting is a scenario where the model is not adjusted
to the training dataset, causing a high error rate. In training
across epochs, this happens when the model is not sufficiently
capable of modeling the relationship between input and output.

When a model performs well with training data, it is
necessary to consider a control group to ensure that the model
performs well with data with which it has not been trained.
That control group is better known as the validation set. It is
possible for the model to perform very well on the training data
but poorly on the validation data, which is known as overfitting
(lack of generalization) [13].

E. Transfer Learning

Transfer Learning is a machine learning technique that
seeks to leverage an already trained model for one task (pre-
trained) into another [13], based on the assumption that the
data with which the model has been initially trained are in the
same feature space and have the same distribution as the new
data. In cases where the latter is true, one could use the freeze
feature extraction base of a pre-trained model and link it to a
new classification network (with weights randomly initialized)
to train only the latter and obtain good results.

This process results in a fast convergence of the model,
either due to the constraints of feature extraction that have
been frozen or due to the good compatibility of the dataset
domains. When this is not sufficient, it is also necessary to
train the feature extraction base, through a technique called
Fine-Tuning.

F. Fine-Tuning

Fine-tuning is a technique that is applied over Transfer
Learning to finish adjusting the model to the new dataset [13],
for that purpose the feature extraction layers are unfrozen and
the complete model is trained. It is important that this process
is carried out after having trained the model classification
layers and selected the best epoch for Fine-Tuning.
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Fine-tuning allows the model to improve the feature ex-
traction to obtain a better result in the classification task. The
need to use Fine-Tuning, indicating that the feature space
and distribution of the datasets (pre-trained and new) are
not exactly the same, the distance between the feature space
and distribution of datasets can be reflected in the model
improvement.

G. Data Augmentation

Data augmentation is the generation of synthetic data by
perturbing the original data [13], this artificially allows to
have a larger amount of data and avoids biases related to the
perturbations performed. The use of this technique reduces the
need for large amounts of data to train Deep Learning models.
In addition, when data are difficult to obtain, it is possible
to use Data Augmentation as a regularization technique to
generalize better.

Data augmentation also prevents model overfitting by
adding diversity and some randomness to the dataset, which
allows models to be trained over more epochs. The most
used deformations or transformations are related to rotation,
zoom, width and height shift, and horizontal and vertical
flips. It is very important to use these transformations taking
into consideration the problem domain in order not to obtain
undesired results.

H. Learning from Scratch

Learning from Scratch is the process of training a model
with randomly initialized parameters or weights. This is the
usual process when pre-trained models are not used. When
pre-trained models are used, the weights are not randomly
initialized, but rather those that have been fitted to a pre-
training dataset are loaded. This process may be necessary in
cases where a pre-trained model compatible with the dataset
being worked with is not encountered.

I. Confusion Matrix

A confusion Matrix is an NxN table that summarizes the
number of correct and incorrect predictions that a classification
model made, where N is the number of classes. The following
values are calculated: TP are True Positive, FP False Positive,
FN False Negative, and TN are True Negative. Taking these
values into account, different classification metrics can be
calculated.

J. Classification Metrics

1) Accuracy: Number of correct predictions over the total
number of predictions.

2) Loss: It is a measure of how much error is being
made in the prediction. Specifically, this value will be 0 when
the prediction is equal to the desired output. For multiclass
classification, the categorical cross-entropy loss is often used,
the definition of which is as follows:

LCE = −
n∑

i=1

ti log (pi) , for n classes (1)

where ti is the truth label and pi is the Softmax probability
for the ith class.

3) Precision: Try to answer the following question: What
proportion of positive identifications was correct? In the case
of multi-class classification, one metric per class is obtained;
is defined as follows:

Precision =
TP

TP + FP
(2)

4) Recall: Try to answer the following question: What
proportion of real positives was correctly identified? In the case
of multi-class classification, one metric per class is obtained;
is defined as follows:

Recall =
TP

TP + FN
(3)

5) F1-Score: It is a single score defined as the harmonic
mean of precision and recall. In the case of multi-class
classification, one metric per class is obtained; is defined as
follows:

F1 = 2
precision · recall

precision + recall
=

2TP

2TP + FP + FN
(4)

III. NOVEL OLIVE LEAF DISEASE CLASSIFICATION
DATASET

A. Data Acquisition and Processing

Images of olive leaves found in crops at La Yarada-Los
Palos in the Tacna region of Peru were collected in August of
2019 with the next most common diseases in the region.

1) Virosis: The name is descriptive of this disease of olive
foliage due to the curved or sickle shape shown by the leaf
affected with this disease. The disease is common in all
commercial varieties of olives grown in South America [31].

2) Fumagina: It is a species of fungi, blackish in color,
that covers plant tissues as a layer of soot, which hinders pho-
tosynthesis so that the affected olive trees see their productive
capacity diminished. This layer comes off when passing the
finger over the affected parts [32].

3) Nutritional Deficiency: Leaves with abnormal col-
orations at the terminal end of the leaves such as phosphorus
and potassium [33].

The RGB images of 3984 x 2656 px were taken using a
Canon EOS Rebel T6i 24.2MPX camera and fixed configu-
rations (55 mm focal distance, 1/200s aperture, ISO-400). To
highlight the characteristics of the leaves and keep the image
focused and stable, a device was used to stabilize and focus
the mobile device at a height of 30 cm. Each leaf was placed
showing its frontal area on a blank sheet of paper.

One way to distinguish between diseased leaves is to focus
on the level of green, brown, and yellow color. However, this
is a criterion that does not apply to all cases, and an agronomic
expert is usually required. Fig. 3 shows samples of the images
taken.

The procedure for the construction of the olive leaf diseases
dataset includes three phases. (i) First, images of olive trees
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Fig. 3. Samples of images and classes of dataset.

are captured, selecting three diseases according to the study.
(ii) Second, after the images are collected, they are given to
an agronomist specialist expert in olive disease images. (iii)
Finally, the specialist filtered the images and manually labeled
them according to their characteristics.

The total images acquired resulted in 773 useful images, of
which 258 are nutritional deficiency disease, 257 are fumagina,
and 258 are virosis. In order to have class balance, a 77:19:3
split was performed to form the training, validation, and test
sets. Table I specifies the final number of images per class and
dataset.

TABLE I. NOVEL OLIVE LEAF DISEASE CLASSIFICATION DATASET SIZE

Category Training
Set

Validation
Set

Test
Set Total

Deficiences 200 50 8 258
Fumagina 200 50 7 257

Virosis 200 50 8 258
Total 600 150 23 773

Finally, the novel olive leaf disease dataset is made avail-
able in our GitHub for further use and evaluation.

IV. MATERIALS AND METHOD

A. Experimental Platform

For the design of the experiments and their execution, the
following computer hardware was made available to us through
a Google Colab Pro subscription: GPU 1x Nvidia Tesla T4
with 15GB of RAM and CPU 1x Xeon Processors @2.3Ghz
with 12.7 GB of RAM.

Keras, one of the main Deep Learning APIs written in
Python, was used in this study. It is compatible with multiple
back-end neural network computation engines and runs on the
TensorFlow machine learning platform. Versions were: Keras
2.11.0 and Tensorflow 2.11.0 as the backend in a Python
version 3.8 environment. Each epoch of training takes 12
seconds and the total amount of time for 10 runs of all
experiments was 33.3 hours.

B. Deep Learning Architecture

The selected Deep Learning architecture was VGG16 [25],
chosen because it extracts features at a low level by using a
smaller kernel size, demonstrating a good feature extraction
capability for image classification. As a Deep Learning classi-
fication architecture, it is composed of 2 sub-models: feature
extraction (base) and classification (top). Feature extraction
was carried out by a convolutional neural network. Table II

TABLE II. VGG16 BASE MODEL ARCHITECTURE

Layer (type) Output Shape Number of
Parameters

input 1 (InputLayer) 224 x 224 x 3 0
block1 conv1 (Conv2D) 224 x 224 x 64 1,792
block1 conv2 (Conv2D) 224 x 224 x 64 36,928

block1 pool (MaxPooling2D) 112 x 112 x 64 0
block2 conv1 (Conv2D) 112 x 112 x 128 73,856
block2 conv2 (Conv2D) 112 x 112 x 128 147,584

block2 pool (MaxPooling2D) 56 x 56 x 128 0
block3 conv1 (Conv2D) 56 x 56 x 256 295,168
block3 conv2 (Conv2D) 56 x 56 x 256 590,080
block3 conv3 (Conv2D) 56 x 56 x 256 590,080

block3 pool (MaxPooling2D) 28 x 28 x 256 0
block4 conv1 (Conv2D) 28 x 28 x 512 1,180,160
block4 conv2 (Conv2D) 28 x 28 x 512 2,359,808
block4 conv3 (Conv2D) 28 x 28 x 512 2,359,808

block4 pool (MaxPooling2D) 14 x 14 x 512 0
block5 conv1 (Conv2D) 14 x 14 x 512 2,359,808
block5 conv2 (Conv2D) 14 x 14 x 512 2,359,808
block5 conv3 (Conv2D) 14 x 14 x 512 2,359,808

block5 pool (MaxPooling2D) 7 x 7 x 512 0
Total 14,714,688

presents the architecture of the feature extraction basis of
VGG16 and the number of parameters.

Classification was carried out by a dense neural network.
Original VGG16 architecture [25] uses three sequential dense
layers as classifier (top-model), that allow mapping the model
input to 1000 classes (because it was conceived for Imagenet).
The architecture was modified by replacing the top-model
with a max-pooling layer (to reduce the dimensionality of
the extracted features) connected to a dense layer that maps
the model input to 3 classes. Table III presents our modified
VGG16 architecture and the number of parameters.

It was hypothesized that only one dense layer is sufficient
to map features to classes, due to the complexity of our dataset
compared with ImageNet, and perform the problem task. This
hypothesis is proven through our experiments.

TABLE III. OUR MODIFIED VGG16 ARCHITECTURE

Layer (component) Output Shape Number of
Parameters

input 1 (Input Layer) 224 x 224 x 3 0
vgg16 base model 7 x 7 x 512 14,714,688

Base Model (Feature Extraction) 14,714,688
GlobalAveragePooling2D (new) 512 0

Dense (new) 3 1,539
Top Model (Classification) 1,539

Total 14,716,227

V. EXPERIMENTAL SETUP

Fig. 4 presents the complete pipeline of every experiment
carried out which is detailed below.

The following comparative objectives were considered in
order to achieve the objective of the study:

1) To determine the effect of Data Augmentation.
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Fig. 4. Pipeline of experiments.
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2) To determine the effect of Transfer Learning.
3) To determine the effect of Fine-Tuning.

For data preparation, the RGB images in the dataset were
resized to the input size of the selected architecture (224,224)
and each sample was scaled to mean 0. In addition, the labels
of each of the images are categorized as a dummy variable to
match the output size of the modified architecture. This was
done in all experiments.

For Data Augmentation, which is used in some experi-
ments, the images sent to the model for training are artificially
enhanced through the following random transformations:

1) 0-45 degree random rotation.
2) 0.8-1.2 zoom.
3) 0-0.2 of total width shift.
4) 0-0.2 of total height shift.
5) Horizontal flip.
6) Vertical flip.

We describe this configuration as “Aggressive Data Aug-
mentation” because it achieves a transformation that rotates
the image from 0º to 359º with a variety of zooms, shifts, and
flips.

Finally, for training models, the loss was Categorical Cross
Entropy and the optimizer was ADAM [34].

In order to obtain more trustworthy results, each of the fol-
lowing experiments of all possible setups of Transfer Learning,
Fine-Tuning, and Data Augmentation was run 10 times:

A. Learning from Scratch

For this experiment, the modified architecture was trained
up to 200 epochs and the best-performing epoch is selected.

B. Learning from Scratch + Data Augmentation

For this experiment, the images sent to the model for
training were artificially enhanced through Data Augmentation.
Then, the modified architecture was trained up to 200 epochs
and the best-performing epoch was selected.

C. Transfer Learning

For this experiment, pre-trained Imagenet weights were
loaded into the base model of our modified architecture. Then,
the base model was frozen and only the top model was trained
up to 100 epochs.

D. Transfer Learning + Fine-Tuning

For this experiment, the best epoch of the Transfer Learn-
ing experiment is taken to unfreeze the base model and train
the whole architecture up to 100 epochs.

E. Transfer Learning + Data Augmentation

For this experiment, the images sent to the model for
training were artificially enhanced through Data Augmentation,
and pre-trained Imagenet weights were loaded into the base
model of our modified architecture. Then, the base model was
frozen and only the top model was trained up to 100 epochs.

F. Transfer Learning + Data Augmentation + Finetuning

For this experiment, the best epoch of the Transfer Learn-
ing + Data Augmentation experiment is taken to unfreeze the
base model and train the whole architecture up to 100 epochs.

For all experiments, the evaluation for best epoch selection
was made taking into account the accuracy in the validation
set. Because the experiment was run 10 times, each selection
of the best model was stored in a database in order to finally
select the highest accurate model.

All numbers of epochs frame the underfitting and overfit-
ting processes of model training, so in none of the cases was
the number of training epochs insufficient.

VI. EXPERIMENTAL RESULTS

A. Impact of Data Augmentation

From Fig. 5, the accuracy in the training set and validation
set over 200 epochs is presented with an interquartile range
on a model trained Learning from Scratch. The best validation
accuracy was 0.86 with a validation loss of 0.558051.

From Fig. 6, the accuracy in the training set and validation
set over 200 epochs is presented with an interquartile range
on a model trained Learning from Scratch. The best validation
accuracy was 0.8 with a validation loss of 0.641917.
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Fig. 5. Accuracy of learning from scratch.
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Fig. 6. Accuracy of learning from scratch + data augmentation.

Although the accuracy was higher without using data aug-
mentation, the loss was lower when using data augmentation,
which means that without data augmentation the model was
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less sure of its prediction. On the other hand, without the use of
data augmentation, the best validation accuracy was reached in
63 epochs, with the use of Data Augmentation it was reached
in 130 epochs, which shows that Data Augmentation allows for
avoiding overfitting in training. Moreover, both models achieve
similar performances.

It is worth mentioning that, while the model without data
augmentation remains stationary, the model trained without
data augmentation decreases in validation value. This denotes
that Learning from Scratch was not able to update the model in
such a way that it adjusts to the variability of the data caused
by our aggressive data augmentation.
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Fig. 7. Accuracy of transfer learning vs transfer learning with data
augmentation.

From Fig. 7, the accuracy in the training set and validation
set over 200 epochs is presented with an interquartile range
on a model trained Transfer Learning (left side), Transfer
Learning + Data Augmentation (left side), Transfer Learning +
Fine-Tuning (right side), and Transfer Learning + Fine-Tuning
+ Data Augmentation (right side).

For Transfer Learning the best validation accuracy was
0.93333 with a validation loss of 0.374403 and was reached
at epoch 18, for Transfer Learning + Data Augmentation the
best validation accuracy was 0.953333 with a validation loss of
0.178807 and was reached at epoch 76, for Transfer Learning
+ Fine-Tuning the best validation accuracy was 0.94 with a
validation loss of 0.300271 and was reached at epoch 101, and
for Transfer Learning + Fine-Tuning + Data Augmentation the
best validation accuracy was 0.993333 with a validation loss
of 0.018128 and was reached at epoch 176.

The accuracy was higher in the validation set using Data
Augmentation in Transfer Learning and Transfer Learning +
Fine Tuning. On the other hand, without the use of Data
Augmentation, the best validation accuracy was reached before
vs with the use of Data Augmentation. Moreover, both models
achieve similar performances.

Data Augmentation when applied improves accuracy by
2% in Transfer Learning and 5% in Transfer Learning + Fine
Tuning. This difference is consistent with the fact that Data
Augmentation generates a greater variety of input data and
Fine-Tuning is able to take advantage of this variety because
it has unfrozen feature extraction layers.

From Fig. 8, the loss in the training set and validation set
over 200 epochs is presented with an interquartile range on a
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Fig. 8. Loss of transfer learning vs transfer learning with data augmentation.

model trained Transfer Learning (left side), Transfer Learning
+ Data Augmentation (left side), Transfer Learning + Fine-
Tuning (right side), and Transfer Learning + Fine-Tuning +
Data Augmentation (right side).

It can be observed that training using Data Augmentation
avoids the rapid overfitting to which the model is prone due
to the low variability of the data.

Furthermore, the use of Data Augmentation in Fine-Tuning
did not show an improvement over 1% when Data Augmenta-
tion was not applied, where the model tends even more quickly
to fall into overfitting than in Transfer Learning.

B. Impact of Transfer Learning

Fig. 9 shows the average accuracy over all experiments.
The difference between using any configuration of Learning
from Scratch vs any configuration using Transfer Learning was
noticeable in the graph so that the lines do not overlap at any
point. The use of transfer learning, regardless of also using
data augmentation, improved the accuracy by at least 10% on
average.
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Fig. 9. Average accuracy of all experiments.

Fig. 11 shows the run with the best validation accuracy
over all experiments. Again, the difference between using any
configuration with Learning from Scratch vs any configuration
using Transfer Learning is noticeable in the graph so that
the lines do not overlap at any point. The use of transfer
learning, regardless of also using data augmentation, improved
the accuracy by at least 7.33333% on the best experiment run.
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C. Impact of Fine-Tuning

From Fig. 7 (described above), for Transfer Learning (with
or without Data Augmentation) the best validation accuracy
was 0.953333 with a validation loss of 0.178807 and was
reached at epoch 76, for Transfer Learning + Fine-Tuning the
best validation accuracy was 0.993333 with a validation loss
of 0.018128 and was reached at epoch 173.

Fine-Tuning when applied improves accuracy by less than
1% in Transfer Learning and 4% in Transfer Learning +
Data Augmentation. This difference is consistent with the
fact that some specific-domain problems need an adjustment
in the feature extraction layers of the model to improve the
performance.

Additionally, without Data Augmentation the difference
between Transfer Learning and Transfer Learning + Fine-
Tuning was similar.
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Fig. 10. Boxplot of validation accuracy.

From Fig. 10, all experiments are presented in a boxplot
that resumes the best validation accuracies over 10 runs of each
experiment. It can be observed that the use of Fine-Tuning
over Transfer Learning without Data Augmentation gave sim-
ilar results. Additionally, there was a clear improvement and
separation between the values with respect to the combined
use of Transfer Learning + Fine-Tuning + Data Augmentation.
Furthermore, the range of values was lowest than in any other
experiment.

D. Highly Accurate Deep Learning Model

From Fig. 11, the best run of all experiments is presented.
The criterion used was to choose the model in whose: best
epoch with the highest accuracy and lowest loss in the val-
idation set has been obtained. Therefore, the model of run
0, epoch 173, loss 0.000008, accuracy 1.0, validation loss
0.018128, validation accuracy 0.993333 that made use of
Transfer Learning + Fine-Tuning + Data Augmentation was
selected as a Highly Accurate Deep Learning Model.

From Table IV, metrics of all experiments are presented,
and the best values are highlighted in bold. In the validation
set, the best result was obtained for all metrics in the combined
use of Transfer Learning + Fine-Tuning + Data Augmentation,
except for the interquartile range. However, taking into con-
sideration the Q4-Q1 range this result was still the best. This
demonstrates, due to the execution of 10 runs, that the result
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Fig. 11. Best run accuracy of all experiments.

is the product of a consistent improvement provided by the
experiment setup.

Once the model has been selected, is submitted to the test
set to corroborate the performance. Table V shows the con-
fusion matrix of the selected model over training, validation,
and test sets. In overall sets, only in the validation set, there
is one sample that belongs to the virosis class but is classified
as fumagina by the model.

Table VI shows additional metrics for each disease to be
classified. The average F1-Score over all diseases was 0.9933
on the validation set. The value coincides with the average
accuracy of the model in the validation set due to the fact that
the dataset is balanced with respect to its classes.

Finally, the highly accurate model is made available on our
GitHub for further use and evaluation.

VII. DISCUSSIONS

Regarding other studies related to the detection of olive
leaf diseases [7], [8], [9], [10], [11], [12], it is not possible to
make a direct comparison because those studies and the present
are case studies of different olive leaf diseases in different
countries. However, we agree with them that it is possible to
classify olive leaf diseases using Deep Learning.

The results obtained reaffirm the findings regarding the
use of Data Augmentation [17], [18], [19], Transfer Learning
[20], [21], [22], and Fine-Tuning [23], [24]. In addition,
our extensive experimental comparative study introduces new
findings on the combination of these techniques, which are
presented in the conclusions.

VIII. CONCLUSIONS

A novel and public olive leaf dataset for the classification
of Virosis, Fumagina, and nutritional deficiencies diseases that
affect olive harvests at La Yarada-Los Palos in Tacna Region,
Perú was presented.

In addition, extensive comparative experimental studies
were conducted using all possible configurations of Data Aug-
mentation, Transfer Learning, and Fine-Tuning with the next
conclusions: (i) Ineffectiveness of Data Augmentation when
the model Learning from Scratch, (ii) High improvement by
using Transfer Learning vs Learning from Scratch, (iii) Simi-
lar performance using Transfer Learning vs Transfer Learning

www.ijacsa.thesai.org 858 | P a g e

https://github.com/ichaparroc/OliveLeafDiseaseDatasetTacna


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 4, 2023

TABLE IV. METRICS OF ALL EXPERIMENTS

Set Metric Config: LFS LFS+DA TL TL+DA TL+FT TL+FT+DA

Training
Set

Loss

min _ 0.40205 0.64825 0.00002 0.03743 0.00016 0.00001
max _ 4.36961 2.36000 0.05210 0.07445 0.08969 0.03955

median _ 0.65133 0.92559 0.00060 0.05794 0.01349 0.00242
mean _ 1.20267 1.13607 0.00710 0.05766 0.02150 0.00854

iqr _ 0.63291 0.45144 0.00356 0.01647 0.01919 0.01357

Accuracy

min ^ 0.36833 0.42000 0.98167 0.97000 0.98167 0.99500
max ^ 0.94500 0.77000 1.00000 0.98500 1.00000 1.00000

median ^ 0.83250 0.69750 1.00000 0.97750 0.99667 0.99833
mean ^ 0.80983 0.64067 0.99800 0.97800 0.99450 0.99850

iqr _ 0.08542 0.21583 0.00000 0.00958 0.00500 0.00167

Validation
Set

Loss

min _ 0.37960 0.51447 0.30650 0.15781 0.30027 0.01813
max _ 1.50668 3.66409 0.51401 0.29471 1.06716 0.23049

median _ 0.75769 0.66646 0.39528 0.19313 0.50248 0.07109
mean _ 0.79619 0.99644 0.40222 0.20341 0.53828 0.07605

iqr _ 0.42499 0.32405 0.08068 0.03825 0.15090 0.04152

Accuracy

min ^ 0.62667 0.56667 0.91333 0.93333 0.92000 0.97333
max ^ 0.86000 0.80000 0.93333 0.95333 0.94000 0.99333

median ^ 0.82667 0.79333 0.92667 0.93667 0.93333 0.99333
mean ^ 0.81267 0.73333 0.92467 0.93933 0.93200 0.98933

iqr _ 0.03167 0.13667 0.01167 0.01167 0.01167 0.00667

TABLE V. CONFUSION MATRIX

Training Set
Class Deficiency Fumagina Virosis

True
Class

Deficiency 200 0 0
Fumagina 0 200 0

Virosis 0 0 200
Validation Set

Class Deficiency Fumagina Virosis
Deficiency 50 0 0
Fumagina 0 50 0

Virosis 0 1 49
Test Set

Class Deficiency Fumagina Virosis
Deficiency 8 0 0
Fumagina 0 7 0

Virosis 0 0 8
Predicted Class

+ Fine-Tuning vs Transfer Learning + Data Augmentation, and
(iv) Very high improvement using Transfer Learning + Fine-
Tuning + Data Augmentation.

Finally, a highly accurate Deep Learning model (100%,
99.33%, and 100% of accuracy in the training, validation, and
test set respectively) based on modified VGG16 architecture
using Data Augmentation, Transfer Learning, and Fine-Tuning
to solve the olive leaf disease classification task was obtained
and published. F1-Score was 1 for the diseases in training
and test sets, and 1, 0.9901, and 0.9899 in the Nutritional
Deficiences, Fumagina, and Virosis diseases.

Making the dataset and selected model public allows for
the reproducibility of the results. Future works could deploy
this trained model to a mobile or edge device for validation and
agricultural use, experiment with different Data Augmentation

TABLE VI. PRECISION, RECALL, AND F1-SCORE PER DISEASE

Training Set
Disease Precision Recall F1-Score

Deficiences 1.0000 1.0000 1.0000
Fumagina 1.0000 1.0000 1.0000

Virosis 1.0000 1.0000 1.0000
Validation Set

Disease Precision Recall F1-Score
Deficiences 1.0000 1.0000 1.0000
Fumagina 0.9804 1.0000 0.9901

Virosis 1.0000 0.9800 0.9899
Test Set

Disease Precision Recall F1-Score
Deficiences 1.0000 1.0000 1.0000
Fumagina 1.0000 1.0000 1.0000

Virosis 1.0000 1.0000 1.0000

configurations, and compare VGG16 with other models.
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