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Abstract—To address the problem of insufficient coverage of 

WSN and poor network coverage in obstacle environments, the 

study proposes an improved particle swarm optimization (PSO) 

combined with a hybrid grey wolf algorithm. The speed and 

position of the PSO particle's search for superiority are enhanced 

through the guiding nature of the superior wolf in the grey wolf 

optimization (GWO), thus the convergence speed and search 

precision are improved. Based on this, the study applies the 

improved PSO to a wireless sensor networks (WSO) coverage 

optimization model and uses model comparison to test the 

effectiveness and superiority of the algorithm. According to the 

results, the node network coverage of PSO, genetic algorithm 

(GA), data envelopment analysis (DEA), GWO, and grey wolf 

particle swarm optimization (GWPSO) reach 85.97%, 87.24%, 

88.76%, 89.31%, and 91.05% respectively in the trapezoidal 

obstacle environment. And the node network coverage of the 

research-designed GWPSO algorithm reaches the highest value 

of its kind. This shows that the research-designed GWPSO has 

superior performance in the optimization control of sensor 

coverage deployment compared with similar algorithms. The 

design provides a new path for optimizing wireless sensor node 

network coverage. 

Keywords—Particle swarm optimization; wireless sensor 

networks; network coverage; grey wolf optimization; grey wolf 
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I. INTRODUCTION 

As a communication transmission technology under the 
development of modern network technology, wireless sensor 
networks (WSN) can freely connect and combine a large 
number of sensor nodes through wireless communication, 
forming a communication network. It integrates three 
information functions through information collection module, 
information transmission module, and information processing 
module to achieve coverage and integrated information 
processing [1-3]. So far, in order to improve the coverage 
effect of wireless sensor networks, a variety of different types 
of intelligent algorithms have been used as optimization tools. 
Among them, the particle swarm optimization algorithm, as an 
algorithm with strong practicability and robustness, has also 
received many adaptive improvements in application [4-5]. 
However, particle swarm optimization (PSO) itself has certain 
flaws. PSO has the problem of local optimal solutions, which 
is easily affected by initial values, resulting in inaccurate 
search; PSO is sensitive to parameter settings and requires 
multiple experiments to obtain suitable parameter 
combinations, making parameter tuning difficult; The current 
research is mostly limited to the improvement of PS itself, 
lacking research on the combination of PSO algorithm and 

other optimization algorithms. Therefore, it is necessary to 
introduce other algorithms to improve the PSO algorithm and 
enhance its practicality in WSN coverage optimization [6-8]. 
By introducing the grey wolf optimization (GWO) and 
combining it with the PSO for wireless sensor network 
coverage optimization, it can effectively avoid the local 
optimal solution problem of the PSO algorithm and improve 
the accuracy and stability of the search. The research will 
design and implement an adaptive algorithm for wireless 
sensor network coverage optimization based on GWO and 
PSO, effectively improving its optimization effect in practical 
application scenarios. At the same time, experimental 
verification will be conducted to further enhance its 
effectiveness and practicality. 

II. RELATED WORK 

The hybrid PSO model, an improvement of the particle 
swarm algorithm, has been gaining ground in various fields in 
recent years. Şenel F A's team proposes a hybrid model that 
combines the PSO with GWO, which uses the particles of 
GWO to replace the relatively underperforming particles of 
PSO, and then applies the model to leather nested industrial 
technology problems. After evaluation by the researchers, this 
model has a performance advantage, being able to obtain the 
optimal solution faster with fewer iterations than its swarm 
and social spider counterparts [9]. Chen S's team proposes a 
new hybrid PSO algorithm model to predict pollutant 
concentration in air pollution detection. This model combines 
PSO with a support vector machine (SVM) and uses the 
pollutant influencing factors as the main model input variables. 
This hybrid PSO model has superior performance compared to 
similar models with the same variable elements [10]. Corazza 
M's team proposes a particle swarm hybrid heuristic algorithm 
for the portfolio decision problem, which uses a penalty 
function to redefine the portfolio problem as an unconstrained 
problem and uses adaptive updates in the optimization process 
of the unconstrained penalty parameters. This algorithm 
performs superior to PSO with constant penalty parameters 
and is more efficient overall [11]. In their study of lateral 
loading problems for pile-like structures, Khari M et al. 
proposed a hybrid PSO model that integrates artificial neural 
networks with particle swarm algorithms, which can 
effectively predict the lateral deflection of pile-like structures. 
The results of 183 simulations conducted by the researchers 
show that the model has higher accuracy in predicting the 
lateral deflection of pile-like structures compared to similar 
models, while the systematic error is smaller and it shows 
higher performance on both the training and test sets.[12] The 
Sohouli A N team combined the particle swarm algorithm with 
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a genetic algorithm to form a new evolutionary hybrid PSO 
and applied the algorithm to the modeling of geological 
models. This algorithm is applied to the modeling of 
geological models and geological exploration. The method 
uses a particle swarm algorithm for magnetic data 
improvement and a genetic algorithm for model parameter 
estimation. The algorithm can offer valuable results for 
estimating model parameters under a 25% noise level [13]. 

Khalaf O I applied the honeybee algorithm to wireless 
sensor coverage optimization and compared the results with 
those of a genetic algorithm. The results show that compared 
to the genetic algorithm, the honeybee-based wireless sensor 
coverage optimization has better optimal coverage and 
consumes fewer resources in the computing process [14]. Cao 
L et al. proposed a WSN coverage strategy based on the social 
spider optimization algorithm, which decomposes the 
combined optimization problem by building and WSN model. 
The insufficient search capability and convergence speed of 
the social spider algorithm are improved and finally combined 
to form an optimization model. The results show that the 
model is effective in preventing blind spots and redundant 
spots in the network coverage [15]. Hoffmann R's team 
proposes a meta-cellular automata approach that solves the 
optimal wireless sensor coverage problem with smaller sensor 
tiles to achieve a 2D spatial coverage, which in turn forms a 
sensor-centered pixel envelope. The results show that the 
model rules formed by this method can evolve to a more 
stable optimal coverage state and allow more time for model 
evolution after the optimal coverage is found.[16]. Li Q's team 
developed a mathematical model to improve the low overall 
coverage of wireless sensors and designed a mobile node 
scheme to improve the coverage optimization of the target 
area, which can effectively enhance the optimal coverage 
problem in the detection area. The results show that the 
strategy designed in the study can effectively enhance the 
network coverage and prolong the network service time [17]. 
ZainEldin H's team proposed a dynamic deployment 
technology based on a genetic algorithm and applied it to the 
optimization of WSN coverage, which is used to reduce the 
overlapping area between adjacent nodes by optimizing the 
minimum quantity of nodes, thus forming the coverage effect. 
The results of the study show that the designed method is 
compatible with the proposed method. The results of the study 
show that the method designed in the study has higher stability 
compared to other methods [18]. 

III. WSN COVERAGE OPTIMIZATION MODEL 

CONSTRUCTION BASED ON GWPSO HYBRID ALGORITHM 

A. PSO Optimization based on the Standard GWO 

WSN is a distributed large-scale network, mainly 
composed of micro-nodes that can sense and process 
information and communication capabilities, and through a 
decentralized and self-organizing form of network, its network 
structure mainly consists of aggregation nodes, sensors, 
networks, etc. WSN on the target environment, such as 
temperature, humidity, and image information is collected and 
processed, and transmitted to the sensor terminal device, for 
the need of information. The WSN collects and processes 
information such as temperature, humidity, and images from 

the target environment and transmits it to the sensor terminals 
to serve the users who need the information. Multiple sensor 
nodes are placed in the target area, which collects temperature, 
humidity, and image information and sends it to the gateway 
or aggregation node via multi-hop routing. The WSN 
architecture is shown in Fig. 1. 
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Fig. 1. WSN STRUCTURE. 

Typically, a WSN node consists of a sensing unit, an 
energy unit, a processing unit, and a communication device, 
all of which work together to sense, collect and transmit target 
data. The sensing unit is responsible for converting the sensed 
analogue signal into a digital signal, which consists of sensors 
and A/D converters; the processing unit processes and 
compresses the collected data; the communication unit is 
responsible for data transmission and exchange of control 
information in the network; and the energy unit is responsible 
for providing energy to the other units, which are usually 
powered by micro batteries. The WSN node structure is shown 
in Fig. 2. 
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Fig. 2. WSN NODE STRUCTURE. 

Suppose there are n  sensor nodes in WSN, and the set 

is
 1 2, , , , ,i nS s s s s

, these nodes are identical and all 

have a radius of r , and the target detection area is a rectangle 

with an area of Z  m2. This grid monitoring area is 

transformed into Z  a small rectangular grid of equal size 
whose geometric centre represents the monitoring position of 
the wireless sensor node in the target area. A monitoring action 
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is successful when the range between the target point and any 
node shall not be greater than the monitoring radius of the 
node. The set of monitoring target points 

is
 1 2, , , ,j ZM m m m m

, the two-dimensional 

spatial coordinates of is
 in the set are

 ,i ix y
, the 

two-dimensional spatial coordinates of jm
 are

 ,j jx y
, and 

the Euclidean distance between two nodes is shown in 
equation (1). 

   
2 2

( , )i j i j i jd s m x x y y   
 (1) 

The joint probability of all sensor nodes denoted 

as alls
, alls

 to the target monitoring node jm
 is shown in 

equation (2). 

    cov

1

, 1 1 ,
n

p all j i j

i

C s m p s m


  
 (2) 

In equation (2), covp
 represents the probability of a node 

sensing a target monitoring point is jm
. Calculate the joint 

sensing probability of all target points, and the altogether joint 
sensing probability of target points is the coverage area, and 

the coverage rate rC
 is as in equation (3). 

 
1

,
Z

p all j

j

r

C s m

C
Z






 (3) 

A prerequisite for the self-organisation of sensor nodes to 
form a WSN is that the network remains connected. The nodes 

in the study have a sensing radius of r  and a maximum 

communication distance of 2r . When the range between 

nodes is
 and js

 does not exceed the sensing length, the two 
nodes are adjacent and the edge between nodes is 1. When the 

range between is
 and js

 exceeds the sensing radius, the two 
nodes are not adjacent and the edge between nodes is 0. 

Accordingly, the nodes' corresponding adjacency matrix AM  
is constructed and the connectivity of the network is judged 

using AM . The matrix N  is shown in equation (4). 

2 1nN AM AM AM      (4) 

In equation (4), n  represents the number of sensors, 
determining whether the elements in this matrix are all 1, if 
yes, the network is connected, otherwise the network is not 
connected. 

The GWO imitates the hunting mechanism of grey wolves 
and has the advantage of being plain, flexible, and scalable, 
and uses fewer parameters in the algorithm. The mathematical 

model of the algorithm simulates a wolf pack divided into four 

classes ,


,  and , with a structure similar to that of a 
pyramid, as shown in Fig. 3. 
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Fig. 3. RANKING STRUCTURE OF WOLVES. 

The wolves are ranked according to the fitness value of 
individual grey wolves, and the top three grey wolves in the 

pack are ranked in the ,


 and  levels respectively.  
has the highest rank and indicates the current optimal solution. 
 The grey wolf individuals with the highest rank are the 

candidate in this group.  In the iteration of the algorithm, 
the grey wolves in the first three levels are responsible for 

guiding the grey wolves in the  level to search for prey, and 

the grey wolves in the  level improve their fitness value by 
searching for prey. Assuming that the actual location of the 
prey is unknown to individual grey wolves during the hunting 

process, the wolves with the highest to lowest ranks of ,


 

and  are closest to the prey, so the wolves in the  layer 
can surround the prey according to the positions of the wolves 

in the ,


 and  layers, and keep approaching the prey 

and finally find the prey.  The distances between the wolves 

in the, and    layers are shown in equation (5). 

   

   

   

1

2

3

D C X t X t

D C X t X t

D C X t X t

  

  

  

   


  


    (5) 

t In equation (5),
D ,

D  and
D  represent the distances 

between  ,


 and   and   

respectively,
 X t ,

 X t ,
 X t  and

 X t  are the 

positions of  ,


,   and respectively, and  1C
, 2C

 

and 3C
 represent the orientation variables of  when the 

layer wolves move towards  ,


 and respectively. 

  After calculating the distance between the layer wolves 
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and the positions of the ,


 and  layer wolves during the 
hunt, the layer wolves kept approaching them in certain steps 
respectively and finally reached the predetermined position. 

The position of the  wolf was updated as shown in equation 
(6). 

1 1

2 2

3 3

X X A D

X X A D

X X A D

 

 

 

   


  


    (6) 

In equation (6), 1X
, 2X

 and 3X
 indicate the position of 

the wolf in the  layer when it is guided by the wolves in 

the ,


 and   layers, respectively, and t  indicates the 

current iterations. 1A
, 2A

, 3A
 indicate the step length of 

the  layer wolf as it approaches the prey under the guidance 

of the ,


 and  layers, respectively. When, 1 1A    
wolves will conduct a fine search around the prey, and 

when 1 1A 
,  wolves will expand their search around the 

prey. 1A
The formulae for 2A

 and 3A
 are shown in equation 

(7). 

1

2

3

2

2

2

A a rand a

A a rand a

A a rand a

  


  
     (7) 

In equation (7), a  is the convergence factor, which 
represents the iterative process of decreasing from 2 to 0. The 

convergence factor a  is calculated by equation (8). 

max

2 2
t

a
t

 
   

   (8) 

maxt
The GWO algorithm generates the initial wolf pack, 

divides the pack into four classes: ,


,  and , gauges 
the range between individual grey wolves and their prey, then 
updates their respective positions according to the measured 
lengths, with each individual grey wolf in the pack 
representing a solution that is continuously updated during the 
search process. The GWO process is shown in Fig. 4. 
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Fig. 4. FLOW OF GWO. 

B. WSN Coverage Optimization Model for the GWPSO 

Hybrid Optimization Algorithm 

The PSO always moves in the direction of the optimal 
individual's position, so its convergence velocity is relatively 
fast but the ability to balance the global search is still deficient, 
which leads to the inability of the algorithm to precisely seek 
the global optimal solution when solving complex 
optimization problems; GWO does not learn from the 
experience of others when searching for the optimal solution, 
so it is easy to ripe untimely. To address the shortcomings of 
both algorithms, the DEA algorithm is incorporated into PSO, 
and at the beginning, the chaos multi-way learning strategy is 
used to improve the population variance, and the convergence 
factor is dynamically adjusted to consider the global and local 
optimization. The properties of chaotic mapping can be able to 
properly enrich the variety of the initial population so that the 
particles can find the optimal solution, and the study uses Tent 
mapping to create the initial population [19-20]. Multi-way 
learning strategy can generate corresponding solutions by 
evaluating upper and lower-bound solutions and original 
solutions; the optimal solution of fitness value is selected from 
these solutions. The improved differential evolution PSO uses 
a mixed multidirectional learning strategy, according to which 
a multidirectional population is generated, the individuals of 
the generated multidirectional chaotic population are 
compared with the individuals of the original chaotic 
population in terms of their fitness values, and the individuals 
with the best fitness values are set as the initial population. 

Assuming that the population size is N  and the spatial 

dimension of it is D , a chaotic sequence is generated in the 
space using the Tent chaos 

mapping
 , 1, 2, ,jW W j D 

 

and
 , , 1, 2, ,j i jW W i N 

. The Tent chaos mapping 
function is shown in equation (9). 
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, ,

1,

, ,

/ 0.65, 0.65

(1 ) / 0.35, 0.65

i j i j

i j

i j i j

Z Z
W

W Z



 

   (9) 

The chaotic sequence generated by the chaotic mapping is 
mapped to the solution space to obtain the 

population
 , 1,2, ,j iY Y i N 

,

 , , 1, 2, ,i i jY Y j D 
, and the population 

individuals ,i jY
 denoted as shown in equation (10). 

, min, , max, min,( )i j j i j j jY Y Y Y Y  
 (10) 

In equation (10), min, jY
 and max, jY

 are the bounds on the 

particle finding solution, and ,i jY
 is the value of the i  th 

particle in the space corresponding to the
j

 th dimension. The 

multidirectional populations jOY
 and iOY

, jMY
 and iMY

 
are calculated as shown in equation (11). 

, min, max, ,

, max, min, ,

i j j j i j

i j j j i j

OY Y Y Y

MY Y Y Y

  


    (11) 

The fitness values of the primitive population and the 
multi-way population individuals are further calculated, and 
the particles with more favourable positions are selected from 
the population individuals based on the fitness values. The 

value of the coefficient A  changes with the distance control 

parameter a  during the iterative process, so setting the 

distance control parameter a  to a reasonable value can 
effectively provide a solution to the balance between the speed 
of particle population search and the accuracy of particle local 
search. In the particle search process, the distance control 

parameter a  needs to be set to a larger value in the first stage 
to expand the search range, which is beneficial to the particle 

search. In the later stage, the distance control parameter a  
needs to be set to a smaller value to concentrate the particle 
population around the optimal solution for fine searching. The 

linearly decreasing distance control parameter a  cannot be 
adapted to the actual solving situation. To address this 
drawback, a cosine convergence factor strategy incorporating 
state coefficients is proposed to effectively take into account 
the overall optimization efficiency of the algorithm. Under this 

strategy, the distance control parameter a  is non-linearly 
decreasing and its value is dynamically adjusted according to 
the properties of the random variables. With this strategy, the 
algorithm will search more vigorously at the initial stage of 
the iteration, and at the final stage of the iteration the particles 
will focus on the fine search around the optimal value, 
increasing the probability of finding the global optimum. The 
dynamic adjustment strategy for the convergence factor is 
shown in equation (12). 

2

2

max max

2 cos
2

t
a

t

 



 
    

   (12) 

In equation (12),  denotes the particle state coefficient, t  

is the current iteration and maxt
 is the maximum iteration. The 

study combines the convergence factor adjustment strategy of 
state coefficients and cosine transform, which effectively 
improves the speed of global particle search. The smaller 
change in the convergence factor at the end of the iteration is 
beneficial to the local fine search of the particle, thus 
improving the accuracy of the optimal solution. The GWO 
algorithm mainly adjusts its own position by combining the 
obtained position of individual grey wolves with the 
relationship between the first three levels of optimal solutions 
in the pack, enabling the exchange of information between the 
two. By introducing the idea of updating the position 
information in the GWO algorithm, the PSO's search 
capability is optimized so that the particles in space can 
expand the search space and enhance the search effort, thus 
finding the optimal solution more efficiently and accurately 

[21]. The updated formula for the particles ijV
 and ijX

 after 
the introduction of the GWO idea is shown in equation (13). 

          

    
     

1 1 1 1 2 2 3 3

2 2

1

1 1

ij ij

best ij

ij ij ij

V t V t c r X t X t X t

c r p t X t

X t X t V t

        


 


   
 (13) 

In equation (13), 1c
 represents the cognitive learning 

factor, which describes how much the finding of an optimal 
solution by an individual particle affects the finding of an 

optimal solution by all particles in the space; 2c
 represents the 

social learning factor, which describes how much the finding 
of an optimal solution by a population of particles affects the 

algorithm. 1c
Larger values indicate that particles are more 

likely to concentrate locally, and larger values of 2c
 indicate 

that particles are more likely to find a locally optimal solution 

early and converge on that solution. 1r and 2r  are random 

numbers in the range [0,1]. 1 , 2  and 3  denote the 
inertia weight coefficients of the grey wolf. To take into 
account the global and local optimality finding capacity of the 
particles, the grey wolf inertia coefficients are improved as in 
equation (14). 
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1

1

1 2 3

2

2

1 2 3

3

3

1 2 3

X

X X X

X

X X X

X

X X X










 




 


 

   (14) 

When searching for the optimal value, the particle will 
learn from the current global optimum. When the difference 
between the current value and the global optimum is large, the 
learning of the particle will lead to an error and the particle 
will sink into the local optimum. If the global historical 
optimal solution approaches the current optimal solution, 
using the perturbation strategy will increase the range between 
the particle and the optimal solution, so the perturbation 
strategy should be used for particles that fall into the local 
optimum or perform poorly. As the 'early' particles are located 
closer to the optimal solution in some dimensions of space, 
external forces are applied to these particles to move them 
from their current position and proceed with the search. To 
address the problem of large fluctuations in the particle 

population, the perturbation strategy is used to limit the 
perturbation operation to a distance of no more than 20%. The 
formula for updating the position of a particle after the 
perturbation is shown in equation (15). 

       1 21 1 1 0.2ij ij ijX t rV t r X t    
 (15) 

In equation (15) 1r  and 2r  are random numbers in the 
range [-1,1]. Applying GWPSO hybrid optimization algorithm 
to the optimal deployment of node coverage in WSN, by using 
the coverage function as the fitness value of the algorithm. 
The beginning of the algorithm introduces a chaotic multi-way 
learning strategy to initialize the population and combines the 
state coefficients to improve the convergence factor using the 
cosine variation principle, thus enabling the algorithm to gain 
an improvement in its optimization-seeking capability. The 
inertia weight coefficients of the grey wolf are improved to 
update the position and speed of the particles, and finally, the 
speed and position of them are perturbed to improve the 
population diversity and thus the search accuracy of the 
particles, which effectively improves its search capability. The 
optimal fitness value at the end of the algorithm iteration is the 
global optimal solution. The flow of the algorithm is shown in 
Fig. 5. 
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Fig. 5. FLOW OF GWPSO. 
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IV. ANALYSIS OF WSN COVERAGE OPTIMIZATION RESULTS 

BASED ON THE GWPSO HYBRID OPTIMIZATION ALGORITHM 

The superiority of the GWPSO algorithm was 
demonstrated through simulation experiments in the 
MATLAB R2016a environment. Three different unimodal 
benchmark test functions and three different multimodal 
benchmark test functions were selected to test the convergence 
of the five algorithms. The population size in the test was 30, 
with 500 iterations. Any test function was independently run 
50 times to record its average value. The study demonstrates 
the performance of the GWPSO hybrid optimization algorithm 
and its advantages through simulation experiments. Six 
functions are used to test the convergence function of the 
algorithm and to compare the performance with PSO, GA, 
DEA, and GWO algorithms. The four algorithms are used to 
optimise the deployment of WSN node coverage in an 
obstacle-free environment and a trapezoidal obstacle 
environment respectively, and finally, the results obtained are 
analysed. There are three single-peak-based test functions and 
three multi-peak-based test functions among the six selected 
test functions, and the optimal values in the GWPSO test 
theory are all 0. The test functions are shown in Table I. 

The study compares the convergence of the PSO, GA, 
DEA, and GWO algorithms and the study's proposed GWPSO 
hybrid optimization algorithm under the test functions, and the 
algorithm's convergence under F1, F2, F3 and F4 is compared 

as shown in Fig. 6. 

In Fig. 6, the five algorithms converge gradually with an 
increasing number of iterations on the four functions, with the 
PSO, DEA, and GA algorithms showing poor convergence 
performance and the GWPSO algorithm showing the best 
convergence on the four functions. The convergence of the 
algorithms on F5 and F6 is shown in Fig. 7. 

The advantageous convergence function of the GWPSO 
owing to the chaotic multidirectional learning strategy that 
improves the initial population space dynamically adjusts the 
control parameters, and uses the optimization-seeking 
property of the GWO algorithm to expand the particle's global 
search range in the pre-optimization phase. The use of the 
perturbation strategy effectively prevents the particles from 
sinking into the local optimum and significantly enhances the 
search precision of the particles, thus effectively improving 
the particle search capability. Thirty-five WSN nodes were 
deployed in a 50m x 50m square region with a sensing radius 

of 5m and a communication radius of 10m, N  = 50 and t  = 
30. After the initial locations of the nodes were deployed, the 
nodes were unequally spread, and there was a large amount of 
coverage redundancy as the initial locations were randomly 
selected. Five algorithms were used to optimise the node 
coverage deployment and the coverage results are shown in 
Fig. 8. 

TABLE I. TEST FUNCTION 

ID Function Expression Type 

F1 Sphere   2

1

D

i

i

f x x


  Unimodal 

F2 Schwefel2.22  
1 1

DD

i i

i i

f x x x
 

    Unimodal 

F3 Rosenbrock       
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2 22

1

1

100 1
n

i i i

i

f x x x x
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i
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F6 Ackley 
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Fig. 6. CONVERGENCE CURVE OF F1, F2, F3 AND F4 TEST FUNCTIONS. 
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Fig. 7. CONVERGENCE CURVE OF F5 AND F6 TEST FUNCTIONS. 

In Fig. 8, the network coverage was all improved after the 
node coverage deployment was optimized by the algorithms. 
The node network coverage after optimization by the PSO, 
GA, DEA, GWO, and GWPSO algorithms reached 86.75%, 
88.24%, 89.54%, 90.48%, and 94.62% respectively. The node 
network coverage after optimization by the GWPSO algorithm 
was the highest among all algorithms and its optimization of 
node network coverage was the best, resulting in a significant 
coverage improvement. To further validate its availability, the 
study placed a trapezoidal obstacle in a 50m x 50m square 
monitoring area, which has an area of 500m2. A population 
size of 50 was set and 25 sensing nodes were deployed, of 
which 2 were fixed nodes and the rest were mobile nodes. The 
maximum sensing radius of the mobile nodes is 5m and the 
maximum communication range is 10m, while the maximum 
sensing radius of the fixed nodes is 7.5m and the maximum 
communication range is 15m. Five algorithms were used to 

optimize the coverage of the sensing nodes in the region, and 
the results are shown in Fig. 9. 
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Fig. 8. COVERAGE RESULTS IN BARRIER-FREE ENVIRONMENT. 
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Fig. 9. COVERAGE RESULTS IN A TRAPEZOIDAL OBSTACLE ENVIRONMENT. 

In Fig. 9, the network coverage in the trapezoidal obstacle 
environment was all improved after the algorithm was 
optimized for node coverage deployment. The node network 
coverage in the trapezoidal obstacle environment reached 
85.97%, 87.24%, 88.76%, 89.31%, and 91.05% after 
optimization by the PSO, GA, DEA, GWO, and GWPSO 
algorithms respectively. The node network coverage after 
optimization by the GWPSO algorithm was the highest among 
all algorithms and its optimization of node network coverage 
was the best, resulting in marked upgradation in coverage. 
Because the number of sensor nodes in the trapezoidal 
obstacle environment was 10 less than the number of sensors 
in the barrier-free environment, the overall node network 
coverage after algorithm optimization was worse than that in 
the barrier-free environment, and the algorithm's optimization 
of node network coverage was also worse than that in the 
barrier-free environment. The results demonstrate that the 
GWPSO algorithm has the most significant optimization effect 
among all algorithms in both the obstacle-free and trapezoidal 
obstacle environments, fully verifying that the algorithm has 
superior performance in the optimal control of sensor 
coverage deployment, and providing an effective path for the 
optimization of WSN node network coverage. 

V. DISCUSSION 

The research aims to solve the problem of insufficient 
coverage of wireless sensor networks and poor coverage effect 
in obstacle environments. By combining the Grey Wolf 
algorithm and PSO algorithm, this study designed a GWPSO 
wireless sensor network coverage optimization algorithm and 
applied it to the sensor network coverage optimization model. 
The research results show that the GWPSO algorithm has the 
best convergence performance on all functions, and it achieves 
the best results in optimizing node network coverage, and also 
has the best coverage effect in obstacle environments. This 
shows that the GWPSO algorithm has better search accuracy 
and convergence speed, and has a significant application effect 
in the coverage optimization model of wireless sensor 
networks, with higher practicability. This research result 
provides effective algorithm support for the deployment and 
optimization of future wireless sensor networks, and can better 
adapt to complex real application scenarios. Future research 
based on this algorithm can further optimize its performance 
and enhance its applicability in application fields. 

VI. CONCLUSION 

To solve the problems of insufficient coverage of WSN 
and poor coverage in obstacle environments, the study 
combines the GWO with the PSO algorithm, which in turn 
forms an optimization search algorithm with higher search 
accuracy and faster convergence. The study adopts the 
algorithm in an applicative design, applies it to a wireless 
sensor network coverage optimization model, and finally 
analyses the application of the model by way of model 
comparison and application validation. Five experimental 
models have been used for the optimization of WSN. The 
results demonstrate that the five algorithms tested converge 
gradually with an increasing number of iterations on six 
functions, and the GWPSO algorithm converges best on all 
functions. In the comparison of network coverage 
optimization results, the PSO, GA, DEA, GWO, and GWPSO 
algorithms achieved 86.75%, 88.24%, 89.54%, 90.48%, and 
94.62% of node network coverage after optimization, 
respectively. The GWPSO algorithm had the highest 
optimized network coverage. In the obstacle environment, the 
node network coverage of PSO, GA, DEA, GWO, and 
GWPSO algorithms reached 85.97%, 87.24%, 88.76%, 
89.31%, and 91.05% respectively. The optimized network 
coverage of the GWPSO algorithm was also the highest. This 
shows that the GWPSO network coverage optimization 
algorithm designed in the study has a superior performance 
and is more practical for the optimal control of sensor 
coverage deployment. 

REFERENCES 

[1] Abdulkarem M, Samsudin K, Rokhani F Z, et al. Wireless sensor 
network for structural health monitoring: a contemporary review of 
technologies, challenges, and future direction. Structural Health 
Monitoring, 2020, 19(3): 693-735. 

[2] Wei X, Guo H, Wang X, et al. Reliable data collection techniques in 
underwater wireless sensr networks: A survey. IEEE Communications 
Surveys & Tutorials, 2021, 24(1): 404-431. 

[3] Sah D K, Amgoth T. Renewable energy harvesting schemes in wireless 
sensor networks: a survey. Information Fusion, 2020, 63: 223-247. 

[4] Zhang Y. Coverage optimization and simulation of wireless sensor 
networks based on particle swarm optimization. International Journal of 
Wireless Information Networks, 2020, 27(2): 307-316. 

[5] Saheb S I, Khan K U R, Bindu C S. A Hybrid Modified Ant Colony 
Optimization-Particle Swarm Optimization Algorithm for Optimal Node 
Positioning and Routing in Wireless Sensor Networks. International 
journal of electrical and computer engineering systems, 2022, 13(7): 
515-523. 

[6] Su B, Lin Y, Wang J, et al. Sewage treatment system for improving 
energy efficiency based on particle swarm optimization algorithm. 
Energy Reports, 2022, 8: 8701-8708. 

[7] Keserwani P K, Govil M C, Pilli E S, Govil P. A smart anomaly-based 
intrusion detection system for the Internet of Things (IoT) network using 
the GWO–PSO–RF model. Journal of Reliable Intelligent Environments, 
2021, 7(1): 3-21. 

[8] Camacho-Villalón C L, Dorigo M, Stützle T. PSO-X: A 
component-based framework for the automatic design of particle swarm 
optimization algorithms. IEEE Transactions on Evolutionary 
Computation, 2021, 26(3): 402-416. 

[9] Şenel F A, Gökçe F, Yüksel A S, et al. A novel hybrid PSO-GWO 
algorithm for optimization problems. Engineering with Computers, 2019, 
35(4): 1359-1373. 

[10] Chen S, Wang J, Zhang H. A hybrid PSO-SVM model based on a 
clustering algorithm for short-term atmospheric pollutant concentration 
forecasting. Technological Forecasting and Social Change, 2019, 146: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 5, 2023 

991 | P a g e  

www.ijacsa.thesai.org 

41-54. 

[11] Corazza M, di Tollo G, Fasano G, et al. A novel hybrid PSO-based 
metaheuristic for costly portfolio selection problems. Annals of 
Operations Research, 2021, 304(1): 109-137. 

[12] Khari M, Jahed Armaghani D, Dehghanbanadaki A. Prediction of lateral 
deflection of small-scale piles using hybrid PSO-ANN model. Arabian 
Journal for Science and Engineering, 2020, 45(5): 3499-3509. 

[13] Sohouli A N, Molhem H, Zare-Dehnavi N. Hybrid PSO-GA algorithm 
for estimation of magnetic anomaly parameters due to simple geometric 
structures.. Pure and Applied Geophysics, 2022, 179(6): 2231-2254. 

[14] Khalaf O I, Abdulsahib G M, Sabbar B M. Optimization of wireless 
sensor network coverage using the Bee Algorithm. J. Inf. Sci. Eng., 2020, 
36(2): 377-386. 

[15] Cao L, Yue Y, Cai Y, et al. A novel coverage optimization strategy for 
heterogeneous wireless sensor networks based on connectivity and 
reliability. IEEE Access, 2021, 9: 18424-18442. 

[16] Hoffmann R, Désérable D, Seredyński F. Cellular automata rules solving 
the wireless sensor network coverage problem. Natural Computing, 
2022, 21(3): 417-447. 

[17] Li Q, Liu N. Monitoring area coverage optimization algorithm based on 
nodes perceptual mathematical model in wireless sensor networks. 
Computer Communications, 2020, 155: 227-234. 

[18] ZainEldin H, Badawy M, Elhosseini M, et al. An improved dynamic 
deployment technique based-on-genetic algorithm (IDDT-GA) for 
maximizing coverage in wireless sensor networks. Journal of Ambient 
Intelligence and Humanized Computing, 2020, 11(10): 4177-4194. 

[19] Shaheen M A M, Hasanien H M, Alkuhayli A. A novel hybrid 
GWO-PSO optimization technique for optimal reactive power dispatch 
problem solution. Ain Shams Engineering Journal, 2021, 12(1): 
621-630. 

[20] Senthil Kumar A M, Krishnamoorthy P, Soubraylu S, Venugopal J K, 
Marimuthu K. An Efficient Task Scheduling Using GWO-PSO 
Algorithm in a Cloud Computing Environment//Proceedings of 
International Conference on Intelligent Computing, Information and 
Control Systems. Springer, Singapore, 2021: 751-761. 

[21] Gul F, Rahiman W, Alhady S S, Ali A, Mir I, Jalil A. Meta-heuristic 
approach for solving multi-objective path planning for autonomous 
guided robot using PSO–GWO optimization algorithm with evolutionary 
programming. Journal of Ambient Intelligence and Humanized 
Computing, 2021, 12(7): 7873-7890. 


