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Abstract—The Motif Finding Problem (MFP) is the problem
of finding patterns in sequences of DNA. This paper discusses
and presents an enhanced scheduling approach to solve the motif
problem on the Heterogeneous Cluster by making a comparison
between exact algorithms. The method that was followed is to
analyze several exact algorithms, compare them within specific
points to measure, and improve performance by comparing
the number of devices and peripheral units used in every
situation and running time in every method. Our experimental
results show that the use of the scheduling approach that use
different algorithms on Heterogeneous Cluster make a significant
difference in the speed of completing the problem and in a shorter
record time with less resources, and that this proposed approach
is more effective than the traditional method of distributing tasks
to solve the motif problem.
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I. INTRODUCTION

Motif finding is a well-known problem in bioinformatics
that involves identifying patterns or motifs within a set of
DNA or protein sequences [1]. These motifs, which can be
as short as a few base pairs or amino acids, can provide
important insights into the function and regulation of genes
and proteins [2]. The motif finding problem is computationally
intensive, as it requires analyzing large datasets and generat-
ing many potential motif candidates. To accelerate the motif
finding process, researchers have increasingly turned to high-
performance computing (HPC) techniques, which involve the
use of specialized hardware and software tools to distribute and
parallelize the computational workload [3]. Within this paper,
we present our proposed approach, which not only improves
time performance but also requires fewer resources, making it
a valuable contribution to the field.

HPC clusters can be constructed with a variety of com-
puting resources, including Central Processing Units (CPUs),
Graphics Processing Units (GPUs), Many Integrated Core
(MIC) Architecture, and other computing resources. As the
domain of processors continues to evolve, that will lead to
more heterogeneity among them.

One HPC approach for solving the motif finding problem
is the use of CPUs and GPUs [4, 5]. By using CPUs and
GPUs in combination, researchers can harness the power of
both types of processing units to analyze large datasets and
search more efficiently for motifs.

Das and Dai [6] proposed another HPC approach where the
use of many integrated core (MIC) architectures, such as Intel’s

Xeon Phi. MIC architectures are designed to provide high
levels of parallelism and are well-suited for tasks that can be
easily parallelized, such as motif finding. Zymbler and Kraeva
[7] explained that by using MIC architectures, researchers can
further increase the computational power available for solving
the motif finding problem by following the proposed algorithm
which showed high scalability, especially in the case of high
computational load due to greater motif length.

Durbin et al. [8] found that effective use of HPC techniques
for motif finding requires the implementation of appropriate
scheduling strategies. Scheduling strategies determine how the
computational workload is distributed among the available
processing units and can significantly impact the efficiency of
the motif finding process. For example, a scheduling strategy
may involve dividing the dataset into smaller chunks and
distributing them among the available CPUs, GPUs and MICs
for parallel processing. Alternatively, Jones and Pevzner [9]
determined that scheduling strategy may involve using machine
learning techniques to optimize the allocation of computational
resources.

HPC users may not always fully utilize the resources
available to them on a cluster. This can be due to a variety
of factors, including a lack of knowledge about the cluster’s
capabilities, the complexity of the HPC environment, limited
time and resources, insufficient data, incorrect configuration,
and inefficient algorithms. To overcome these challenges and
fully utilize a cluster in their experiments, HPC users can
seek support from experts, optimize their algorithms and
data processing pipelines, and allocate sufficient resources.
Additionally, HPC users can take advantage of cluster man-
agement tools and techniques, such as job scheduling and
resource allocation, to better utilize the cluster’s resources and
improve the efficiency of their experiments. By addressing
these challenges, HPC users can effectively leverage the power
of HPC to solve complex problems and advance their research.
Due to the difficulty of installing programs, as most software
packages are not available by default for this environment,
and the programs must be improved to take advantage of the
capabilities of this device and match its high specifications,
the same problems and challenges may be present through
the administrator’s view of the high-performance computer
system. But, as software engineering advances, these problems
are overcome by allowing software to optimize how it operates
in a HPC environment. Another problem that is encountered
from the point of view of the system administrator is that most
users use by default one type of available resource, and this
leads to a long waiting time in the queue for it to be released
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for use by another user. This problem can be overcome by
enabling scheduling algorithm that will direct users through
different channels from resources to reduce waiting time in
queue.

The effectiveness of using various types of resources in a
heterogeneous environment depends on the parallel approaches
chosen by the developer. The implementation of a scheduling
strategy is a crucial aspect of performance. However, HPC
users often utilize only one computing resource at a time for
their experiments due to their expectations and behaviors. This
paper presents a modified scheduling strategy for the planted
motif finding problem that can achieve significant performance
while using fewer computational resources.

II. MOTIF FINDING PROBLEM AND ALGORITHMS

The Motif-Finding problem (MFP) is the problem of
finding patterns in sequences of DNA. Finding the common
patterns in sequences is challenging as the DNA is a huge
set [10]. This common pattern is called Motif and is usually a
short segment that occurs frequently, see Fig. 1. These patterns
considered a scientific interest in bioinformatics domain and
those Motifs can be correspond to sequences of DNA that
control the activation of specific genes [11]. MFP discovery
algorithms can be classified into three categories based on
its variants as Simple Motifs Search (SMS), Edited Motif
Search (EMS) and Planted (l,d)-Motif Search (PMS)[12, 13].
This paper will consider (PMS) exact algorithms due to its
high complexity [12] which makes it suitable to be solved on
HPC systems as MFP is well known to be computationally
intensive problem [14].To detect a Motif of length L with
allowed mutation d and all possible L-mers (4L) is compared
for all possible Motifs of length L and a sequence with size N
we will get (N−L+1) using Brute-Force Algorithm. We will
present our parameters same as used in [14, 15] and for such
intensive resources computations could be implemented using
heterogenous platforms [4], [16]-[21] and for our experiment
it will be conducted on a cluster containing CPUs, GPUs and
MIC.The DNA constructed of nucleotides which is cytosine
[C], guanine [G], adenine [A] or thymine [T] and can be
represented using the regular expression in (1) . The length
L and its possible Lmers represented in (2). The sequence set
on (3) and the match function used to compare Motifs A and
B each of them has a size L represented on (4) the ith position
is represented where AiBi for A and B Motifs. The counting
of existence of L-mer in T sequences done by using score
function shown in (5).

Motif finding problem can be solved in many algorithms
that researchers have investigated in the past two decades [12,
13] and these algorithms are influenced by the length and the
allowed mutations [6]. Some techniques are using variants
of brute force algorithm that requires hundreds of hours.
Faheem et al. [15] proposed an algorithm that can benefit
from different architectures to split the MFP into smaller sub
problems that can be solved on heterogeneous architectures
with minimal communications. They proposed a speed-based
scheduling algorithm to split the work and they proved that the
problem is a data parallel problem given that they are using
only brute force algorithm which may not be the most suitable
algorithm for such problem; also it’s hard to for a normal user
to reserve a full cluster due to the fact that most of HPC centers

are a shared resource and they apply some resource limitation
per user.

A Brute Force Algorithm solves this problem by consid-
ering all possible sets all 4l possible l − mers. Compute
the total distance of each l − mer in that set from all other
l−mers in all t sequences. The correct Motif is the one with
the smallest distances along all other l −mers. The running
time of this algorithm is O (4lnt). To find a motif of l = 11
is about 5 hours and longer motifs cannot be processed in a
reasonable amount of time [4]. Although the execution time
of the brute force algorithm is clearly too long to solve the
challenge problem, but it’s of the exact algorithms that never
fail to find the motif [4, 12].

The original Brute Force can be improved to be an up-
graded version of Brute-Force algorithm called “SKIP Brute-
Force” (SKIP BF) [4, 5, 22] as proven by Faheem [4] by
using a grid computing and the enhanced version of Skip
Brute Force has better execution time. This approach can be
implemented in parallel on different compute recourses as done
by M. Al-Qutt et al. [5]. They implement the Skip Brute
Force and solve MFP on CPU,GPU and MIC and the parallel
version of their solution has significant execution time. The
core enhancement on this SKIP BF Algorithm (Fig. 2) is to
skip all iterations that won’t lead to a correct solution. The
algorithm behaves as Brute-Force algorithm by generating all
possible 4l l − mers then a generated l − mer of length
L with d permitted mutations is considered matched if at
least (L – d) + 1 identical positions at both are matched.
Then the algorithm starts looking to the next sequence and
excludes any unmatched l − mers from the search for the
next sequence [5, 23]. SKIP BF leads to a better running time
against the original Brute-Force Algorithm by skipping those
irrelevant iterations and it’s shown a high speedup performance
on hardware accelerators like FPGA and shown a good chance
for parallelization due to its fact of repetitive nature [22]. The
complexity of this algorithm is O (4lnt) at its worst case [4].

The other algorithm to solve MFP was proposed by [3]
called Recursive Brute Force Algorithm (RBF) and simply
considered a searching technique that aims to search among
the highest occurrence of the patterns of length L in set of
characters and in some cases this algorithm allow us to accept
the result of allowed mutation which means a non-exact match
which is valid for MFP. RBF shown good time performance
but its required a huge memory to be implemented using
parallel methods as shown by Marwa Radad et al. [16, 25],
Memory allocation for recursive algorithms is major point
and for RBF proposed by [24] they use the static memory
allocation technique to avoid memory management and it was
implemented in two phases- the initialization phase begins
with candidate initialization as shown in Fig. 4; then test the
candidate’s list to search for possible candidates. Then extend
the target for a good Motif and all motifs that have grater
mutations than d are called bad candidates. The second phase
is candidate generation phase and the extension and addition
phase. RBF algorithm use a parallelization layer and distribute
the workload using parallel paradigms MPI (Fig. 3). The search
is finished in (level 1) with no expansion in time of O (4lnt).
It has same complexity as the original Brute Force Algorithm
[16].

Nikolaos et al. [28] introduced a parallel algorithm aimed at
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efficient Top-k Motif Discovery in Weighted Networks. Their
approach demonstrated commendable scalability and speedup,
especially with an increase in the number of CPU cores.
In a separate study, Theepalakshmi et al. [29] developed an
enhanced solution for planted motif by applying the Freezing
FireFly (FFF) algorithm. Their method outperformed existing
state-of-the-art optimization algorithms in terms of time effi-
ciency. Despite these advancements, this paper will primarily
concentrate on the work referenced as [4], [5], [15], [16]
given that the same platform was used for our experimental
procedures.

V → A|C|G|T (1)

Possible Lmers → V l (2)

S = {s1, s2, . . . , sT} (3)

match(A,B, l, d) =

1, l − d ≥
∑

i

{
1, Ai = Bi

0, else
0, else

(4)

score(Lmers, S, d) =
T∑

i=1

N−l+1∑
k=0

match(L mer, si[k, . . . , k + l], l, d) (5)

motif = {m | m =

MAX (score(L mer, S,m) ∀ L mer

∈ Possible Lmers)} (6)

Fig. 1. Example of founded planted motif-[10, 2].

III. PERFORMANCE ANALYSIS OF MOTIF FINDING
ALGORITHMS ON DIFFERENT ARCHITECTURES

To evaluate the performance of HPC for solving planted
motif finding problems, we conducted a series of experiments
using CPUs, GPUs, and MIC architectures. The experiments
were designed to compare the performance of different algo-
rithms on each type of resource. We used three different exact
algorithms for solving the planted motif finding problem: Brute
Force (BF), Skip Brute Force (SBF) and Recursive Brute Force
(RBF).

Fig. 2. Pseudo code algorithm for SBF.

For the experiments, we used a Synthetic DNA sequences
[13] as database with a data parameters that proposed by
Pevzner [14] for Planted (l, d) Motif where the input sequences
of size N = 600 each from the set of alphabets (1) and a motif
M of size l = 15 and d = 4 allowed mutation.

For the CPU experiments, we used a cluster that with a
limited recourses per user of eight nodes, each equipped with
two Intel Xeon processors. For the GPU experiments, we used
a cluster of 2 nodes, each equipped with one NVIDIA GPGPU
K20 graphics card. For the MIC experiments, we used a cluster
of two nodes, each equipped with one Intel Xeon Phi 7250
processor. We measured the performance of the algorithms by
running time in seconds that reflected the time required to
complete the planted motif finding process.

Examining the results in Table I gives an indication of the
improvement in total run time with different algorithms. For
instance, implementing the three algorithms using one regular
node with OpenMP will reduce the run time from 11368
seconds for brute force algorithm on a single regular node
to 2343 seconds for skip brute force algorithm with a speedup
factor of 4.8 and recursive brute force algorithm run time 420
seconds that’s comes with a speed factor of 28.2 to the original
brute force algorithm run time while using eight regular nodes,
will reduce the run time for brute force algorithm from 1416
seconds on pure 8 regular nodes to 73 seconds for skip brute
force algorithm with a speedup factor of 19.3 and recursive
brute force algorithm run time 40 seconds that’s comes with
a speed factor of 35.4 to the original brute force algorithm
run time. For MIC and GPU, architectures are designed to
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TABLE I. MFP RESULTS WITH DIFFERENT ARCHITECTURES

Trial No. Platform BF Results (sec) Skip Results (sec) RBF Results (sec)
1 1 Regular node (OpenMP) 11368 2343 420
2 1 Regular node (MPI+OpenMP) 11303 538 400
3 2 Regular node (MPI+OpenMP) 5627 273 120
4 4 Regular node (MPI+OpenMP) 2821 140 70
5 8 Regular node (MPI+OpenMP) 1416 73 40
6 MIC 11287 541 Not supported
7 GPU 10614 540 Not supported

Fig. 3. Pseudo code MPI algorithm for RBF.

Fig. 4. RBF steps to find candidate motif.

provide high levels of parallelism and well-suited for tasks

that can be easily parallelized. They are not well-suited for
tasks that require sequential execution or complex control flow
that use recursive function calls. Therefore, parallel recursive
algorithms are generally not supported on MIC architectures or
GPUs while results show that skip brute force algorithm has
better running time than original brute force algorithm with
speed up factor 5.9 to GPU and 20.8 for MIC.

The results of the experiments showed that the performance
of the algorithms varied significantly depending on the type of
resource and the algorithm deployed on each one of them.
Overall, the GPU and MIC architectures outperformed the
CPU architecture in terms of running time in some algorithms
while CPU has better running time for recursive brute force
algorithm, these results will provide valuable insights into
the performance of different algorithms on different types of
resources and will help to identify the most effective algorithm
for each architecture and generate the assign map Table II. We
will be able to optimize the use of computational resources in
Table I and II to improve the scheduling strategy efficiency of
the motif finding process in detail in the coming section.

TABLE II. ASSIGNED ALGORITHM TO EACH TYPE OF ARCHITECTURE

Architecture Assigned Algorithm
CPU RBF
GPU SBF
MIC SBF

IV. SCHEDULING STRATEGY AND PROPOSED APPROACH

A scheduling strategy is a plan or approach for distributing
computational tasks among the available resources in a HPC
environment. In the context of motif finding, a scheduling
strategy involve dividing the dataset into smaller chunks and
distributing them among the available CPUs, GPUs, and MICs
for parallel processing. There are several approaches that can
be used to develop a scheduling strategy for solving motif
finding problems on HPC systems that have different types of
computing nodes.

HPC systems are typically shared resources among mul-
tiple users, each with their own research goals and computa-
tional needs. In this context, it is often the case that one user
cannot fully utilize the entire cluster for their own use and must
share the resources with other users. This can lead to a lack of
access to the resources that a user needs for their research, or
to longer wait times for access to the resources. Furthermore,
HPC users often rely on only one type of computing resource,
such as CPU or GPU, for their experiments which can lead to
underutilization of other resources and less efficient use of the
available resources.
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A scheduling strategy can help to mitigate these issues by
more efficiently allocating the resources of the HPC system
among the different users and their tasks. By using a schedul-
ing strategy that takes into account the characteristics of the
tasks and the available resources, it is possible to improve
the overall performance of the HPC system and increase the
number of users that can be accommodated on the system.

We use a Task-based scheduling strategy that assigns
tasks to the computing node that is most suitable for solving
them based on the best performed algorithm from previous
results. These types of strategies are often used to optimize
the performance of HPC systems by ensuring that tasks are
executed on the most appropriate computing resources [26].

We have developed a scheduling strategy that can be
used to divide tasks based on the best-performed algorithm
for solving the motif finding problem on CPUs, GPUs, and
MICs with similar approach described in [15], [27] . The
PBS script used to construct the scheduler and designed to
optimize the performance of HPC systems by selecting the
best algorithm for each task on each type of resource based
on its performance, then will divide the workload among
other computing recourses as shown in Fig. 5. The scheduler
can help to ensure that tasks are executed efficiently and
accurately, improving the overall performance of the system.
In addition, the PBS script can be easily modified to support
new algorithms or to adapt to changes in the characteristics of
the data, making it a flexible and versatile tool for solving the
motif finding problem on HPC systems with different types of
resources.

V. EXPERIMENT RESULTS AND VALIDATION

After running the scheduler on a heterogeneous cluster con-
sisting of CPUs, GPUs, and MICs, we obtained the following
results.

TABLE III. RESULTS OF THE PREVIOUS PAPERS

Platform CPU Ratio % CUDA Ratio % MIC Ratio % Results
1 Regular Node+
1 CUDA+1 MIC 40.321 29.867 29.812 2330.11

2 Regular Node+
1 CUDA+1 MIC 69.250 15.389 15.361 1978.20

4 Regular Node+
1 CUDA+1 MIC 79.427 10.296 10.277 1533.72

8 Regular Node+
1 CUDA+1 MIC 86.549 6.732 6.719 1056.87

TABLE IV. RESULTS OF THE PROPOSED APPROACH

Platform CPU Ratio % CUDA Ratio % MIC Ratio % Result
1 Regular Node+
1 CUDA+1 MIC 40.321 29.867 29.812 363

2 Regular Node+
1 CUDA+1 MIC 69.250 15.389 15.361 182

4 Regular Node+
1 CUDA+1 MIC 79.427 10.296 10.277 121

8 Regular Node+
1 CUDA+1 MIC 86.549 6.732 6.719 77

The scheduler was able to effectively divide the tasks based
on the best-performed algorithm for each type of resource,
resulting in an overall improvement in the performance of the
system. With more resources that selected the more workload,
is assigned as the case for CPU as shown in Table I .

Fig. 5. Pseudo code of scheduling algorithm to assign workload to
architecture.

TABLE V. COMPARISON BETWEEN RESULTS

Platform Previous Results Our Results Speed up
1 Regular Node+
1 CUDA+1 MIC 2330.11 363 6.42

2 Regular Node+
1 CUDA+1 MIC 1978.20 182 10.87

4 Regular Node+
1 CUDA+1 MIC 1533.72 121 12.68

8 Regular Node+
1 CUDA+1 MIC 1056.87 77 13.73

By comparing our results with Table III from [15] that
use the same cluster we can see with one Regular Node ,one
CUDA and one MIC, our approach managed to finish in 363
second instead of 2330 seconds with speedup factor 6.4 and
by using 8 Regular Node ,1 CUDA and 1 MIC, as this is the
maximum user limitation for the user in the cluster we gain a
speedup factor 13.7 in total time of 77 seconds while in Table
III its required full capacity that consist of 265 Regular Node
to gain total performance of 54.91 seconds.

A comparison of our results in Table IV with those pre-
sented in Table III from study [15] shows that our approach
was able to achieve a significant improvement in performance.
Using a configuration of one Regular Node, one CUDA Node,
and one MIC Node, our approach was able to complete the
planted motif finding problem in 363 seconds, compared to
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2330 seconds in Table III. This resulted in a speedup factor of
6.4. Additionally, by using a configuration of 8 Regular Node,
1 CUDA Node, and 1 MIC Node, which is the maximum user
limitation for our cluster, we were able to achieve a speedup
factor of 13.7 in a total time of 77 seconds as shown in Table
V. This is compared to the full capacity configuration of 265
Regular Node in Table III which took 54.91 seconds. The chart
in the Fig. 6 illustrates a comparison between previous studies
and the proposed approach.

Fig. 6. Comparison between previous studies and the proposed approach.

These results demonstrate the effectiveness of our approach
in achieving improved performance in motif finding problem
on heterogeneous cluster. Hence, it can be seen that the waiting
time has become significantly less, because the distribution of
users by placing them in different channels to use the resources
makes the available resources larger and does not require a
large launch time to make them available to the new user.

VI. CONCLUSION

In this paper, we propose a scheduling algorithm to make
better use of the heterogeneous cluster. It is based on the idea
of dividing tasks on multiple types of resources available on
the HPC. The results of this algorithm were compared with
previous results, but they were using only one type of resource,
which caused a burden and took a longer time to solve the
problem.

Overall, the use of the scheduler resulted in a significant
improvement in the performance of the system for solving the
motif finding problem on a heterogeneous cluster with different
algorithms. The scheduler was able to effectively select the
best-performed algorithm for each type of resource, resulting
in an efficient and accurate solution to the problem with much
more less resources.
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