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Abstract—Fruit classification is a computer vision task that
aims to classify fruit classes correctly, given an image. Nearly
all fruit classification studies have used RGB color images as
inputs, a few have used costly hyperspectral images, and a few
classical ML-based have used colorized depth images. Depth
images have apparent benefits such as invariance to lighting, less
storage requirement, better foreground-background separation,
and more pronounced curvature details and object edge discon-
tinuities. However, the use of depth images in CNN-based fruit
classification remains unexplored. The purpose of this study is to
investigate the use of colorized depth images in fruit classification
with four CNN models, namely, AlexNet, GoogleNet, ResNet101,
and VGG16, and compare their performance and computational
efficiency, as well as the impact of transfer learning. Depth images
of apple, orange, mango, banana and rambutan (Nephelium
Lappaceum) were manually collected using a depth sensor with
sub-millimeter accuracy and subjected to jet, uniform, and
inverse colorization to produce three sets of dataset. Results show
that depth images can be used to train CNN models for fruit
classification with ResNet101 achieving the best accuracy of 96%
on the inverse dataset. It achieved 100% accuracy after transfer
learning. GoogleNet showed the most significant improvement
after transfer learning on the uniform dataset, at 12.27%. It also
exhibited the lowest training and inference times. The results
show the potential use of depth images for fruit classification
and similar computer vision tasks.
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I. INTRODUCTION

The depth output of a depth sensor is converted into a three-
dimensional RGB image to provide a colorized depth image.
To create colorized images, specific colorization procedures
are used to the depth data. A colorized depth image stores the
depth information per pixel as opposed to a color image, which
typically stores red, green, and blue intensity values per pixel.
As a result, in a colorized depth image, the intensity of each
pixel indicates how far an object is from the camera. Depth
image is also known as range image.

The use of colorized depth images has continuously gained
attention in the research community. They are used in soybean
canopy analysis through 3D point clouds [1], action recogni-
tion [2], human posture analysis [3], 3D semantic segmentation
[4], object recognition [5], and kangaroo detection [6]. In
these studies, depth images were used either exclusively or
in combination with RGB through fusion. These studies have
shown that colorized depth images are helpful for solving
complex computer vision problems.

Certain colorized depth-image characteristics are beneficial
for both simple and complex computer-vision problems. For
example, depth images are good at separating 3D objects from

the horizontal plane [4], which is beneficial for object detec-
tion. They can provide an outline of the strong discontinuities
at the edges of an object, which is advantageous for object
classification [5]. Curvature information is also more prevalent
in depth images than in color images [5]. In addition, they
require less storage than colored images (see Table II). They
are more useful in edge cases of machine learning problems
[7], such as differentiating between a hotdog food and a
hotdog balloon. They are also invariant to extreme variations in
lighting conditions and scale [7]. However, it is widely known
that depth images require a lot of pre-processing as opposed
to color images because of their tendency to contain missing
depths [5], as well as their low contrast property [6]. Additional
processing is required to improve the contrast and accuracy in
highly complex and wide-area applications.

For less complex and more constrained applications such
as fruit image classification, the benefits of using depth images
can be leveraged. Fruit image classification is a computer
vision task in which fruit images are classified according
to their class. Here, it is assumed that the images do not
contain more than one class of fruit. Applications for fruit
image classification include supermarket self-checkouts and
fruit sorting in factories.

Several studies on fruit image classification have been
conducted. However, most of these studies used color images
as inputs. Only a few studies have explored the use of depth
images for fruit classification. In particular, one study [8]
trained six machine learning algorithms, including Sequential
Minimum Optimization (SMO), k-nearest neighbors (KNN),
bagging based on REPTree, Decision Trees (DT), and Random
Forests (RF) in the Waikato Environment for Knowledge
Analysis (Weka) using visual features from color images and
object shape representations from depth images. The shape
descriptors extracted from the depth images include com-
pactness, symmetry, local convexity, smoothness, and image
moments. The results showed that RF trained on a combination
of scalable color and edge histogram descriptors yielded the
best performance at 99% accuracy. The problem with this
classical approach is the need to perform segmentation in color
images and manually extract features from the depth images.
Depth images cannot be processed without their corresponding
color images.

Another study [9] used depth images to render a 3D point
cloud of fruits for classification. Similar to [8], [9] developed
a multi-feature classification framework utilizing both color
and depth images. It uses a color layout descriptor, viewpoint
feature histogram, and point feature histogram as descriptors
in the classification problem. Similarly, this approach is labor
intensive and requires manual extraction of features from

www.ijacsa.thesai.org 1023 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 5, 2023

images.

Based on [8] and [9], depth images can be beneficial
for fruit-image classification. However, no study has explored
the use of depth images yet, particularly in CNN-based fruit
classification. Therefore, the goal of this study is to explore
the use of purely depth images based on simple colorization
techniques in fruit classification using CNN. The researcher
used three different types of depth images, namely color-
jet, uniform, and inverse hue colorization, and compared the
performance of each type in four CNN models, namely,
AlexNet, GoogleNet, RestNet101 and VGG16. The effect of
transfer learning on the type of depth image with the lowest
error rate in each CNN model was also investigated. Because
depth sensors are gaining popularity in the sensor market, it
would be beneficial to explore the use of depth images in
computer vision problems, particularly in fruit classification.

The remainder of this paper is organized as follows. After
the introduction, Section II discusses the background of the
study. Section III discusses the methodology of the study. The
findings are presented in Section IV followed by future work
and conclusions in Sections V and VI, respectively.

II. BACKGROUND

A. Fruit Classification

Fruit image classification is the process of identifying
a specific type of fruit in an image. This task is typically
performed using convolutional neural networks (CNNs), a type
of deep learning model that has become dominant in various
computer vision tasks. CNNs are trained on large datasets of
labeled images and learn to recognize features that are relevant
to the task of fruit classification. The trained model can then be
used to classify new images of fruits based on learned features.

Almost all studies tackling fruit classification using CNN
use RGB color images as their dataset, except for a few that
use hyper-spectral images. Hyperspectral images are captured
using expensive hyper-spectral imaging which is a technique
that collects and processes information from across the elec-
tromagnetic spectrum to obtain the spectrum for each pixel in
an image of a scene. Table I shows a summary of the dataset
types used in training the CNN models for fruit classification
from 2015. [10] summarized the CNN-based fruit classification
studies conducted from 2015 to 2020. This summary was
manually checked by the researcher, and the outcome was
plotted in the table mentioned above. For 2021-2023, the
researcher manually searched the Scopus database using the
keyword “fruit classification” for relevant papers. As shown in
Table I, there is only one paper [11] that used the other type
of dataset, i.e. hyper-spectral, from 2015-2020 and another
one [12] in 2022. Evidently, the research community on fruit
classification has extensively used RGB color images, and has
not substantially explored other image types, including depth
images.

The most popular benchmarks used for fruit classification
are ImageNet, VegFru [13] and Fruit 360 [14]. ImageNet
is a large visual database designed for use in visual object
recognition software. It contains over 14 million images that
have been hand-annotated to indicate what objects are pictured,
and bounding boxes are provided in at least one million

TABLE I. NUMBER OF CNN-BASED FRUIT CLASSIFICATION STUDIES PER
DATA TYPE

Year Color (RGB) Other (Hyper-spectral)
2015-2020 20 1

2021 27 0
2022 29 1

2023* 5 0

images. VegFru is a domain-specific dataset for fine-grained
visual categorization of vegetables and fruits based on their
eating characteristics. Each image in the dataset contained at
least one edible part of vegetables or fruits with the same
cooking usage, and all images were labeled hierarchically. It
is closely related to the daily lives of people and is aimed
at domestic cooking and food management. Fruit 360 is a
dataset of images containing fruits. It is a high-quality dataset
that includes 131 fruits and vegetables. The images are color
(RGB) and 100 pixels × 100 pixels in size, with three values
for each pixel. It contains a total of 90,380 images, with 67,692
images in the training dataset and 22,688 images in the test
dataset.

Similar to other computer vision tasks, fruit classification
tasks extensively use color images, perhaps because of ubiqui-
tous color sensors. However, RGB images obtained from color
sensors have issues when used in fruit classification. There is a
high rate of misclassification of fruits that are of similar colors,
such as avocado and watermelon, banana and papaya, orange
and carrot, as shown in [15]; passion fruit and blackberries,
red grapes and passion fruits in [16]; and peach and apple
red, pear and apple green, and pomegranate and apple in [14].
It was also found in [17] that shape feature also resulted in
high misclassification between apples and oranges. A similar
result was found in [18] which suggested that the color feature
alone does not provide a good classification outcome. One very
recent study [19] used MobileNetV2 with attention module
in the classification. The attention module worked well in
non-smoothed fruits but provided low precision in smoothed
fruits like orange (at 81.75%). The researcher argues that
it might be beneficial to explore other types of images for
fruit classification, one that is independent of color. This is
especially because fruit classification task is constrained and
not complex, where special imaging sensors such as a depth
sensor can easily be set up.

B. Depth Sensing

Depth sensing refers to the process of measuring the dis-
tance between a device and an object. Depth-sensing cameras
are used for this purpose, and they automatically detect the
presence and measure the distance of an object within its field
of view. There are three types of depth-sensing cameras based
on their method of calculating depth: (a) structured light and
coded light, (b) stereo depth, and (c) time of flight and LIDAR
[20].

(a) is a type of technology that uses projected light, usually
infrared light, in the scene for a sensor to obtain its pattern
and estimate its depth. This type of technology is the best
indoors and within a short range. However, it is vulnerable to
interference from nearby devices that emit infrared light. As
opposed to (a), which uses projected light, (b) uses any light to
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Fig. 1. Basic principle of stereo vision.

estimate depth but uses two sensors at a small distance apart.
This technology works well both indoors and outdoor. Fig. 1
shows the basic operation of the stereo vision system. Similar
to (a), (c) also emits light in the scene and calculates the time
it returns to the sensor by which the depth is computed. As in
(a), it is vulnerable to interference and is not ideal for outdoor
conditions. The most common depth sensor uses a stereo vision
mechanism for depth sensing. The depth sensor used in this
study was a stereo-vision camera.

C. Depth Colorization

Depth colorization is a subset of image colorization [21]
which is the process of estimating RGB colors for grayscale
images to enhance perceptual quality. In the context of depth
images, a grayscale image is a 2D depth map, where each
pixel contains depth measurements from the depth sensor.
Depth colorization is a method that adds colors to a depth
map. This involves compression and coding [22]. It is not
yet as developed as in compression and encoding in color
images, but the ultimate goal is essentially the same: efficient
storage, reduced artifacts, and reduced system bandwidth. To
achieve this goal, various approaches have been developed.
[23] suggested that there are two primary categories of rep-
resenting colorized depth images, namely, hand-crafted depth
colorization and ML-based depth colorization.

Some hand-crafted approaches include depth-to-surface
normals [5], geocentric embedding (a.k.a. HHA encoding)
[24], rendered mesh [25], quadtree decomposition & plane
approximation [26], color-jet [27], and uniform and inverse
colorization [22].

The surface normals [5] approach uses two cross-multiplied
orthogonal tangent vectors and is normalized using the Eu-
clidean norm, but introduces a recursive median filter to
estimate the missing depth values and a bilateral filter to
reduce noise. The geometric embedding approach encodes the
height above ground and the angle with gravity for each pixel
on top of the horizontal disparity [24]. The rendered mesh
approach [25] first performs tabletop segmentation to extract
the relevant depth map, missing depth values are filled in,

the mesh is extracted from the point cloud, and the mesh
is re-projected to a canonical camera pose. All the three
approaches are computationally expensive. Despite this, they
only result in minimal to no improvement in some benchmarks
for object recognition tasks. The quadtree decomposition and
plane approximation approaches [26] achieved a low bit rate.
However, this approach requires proprietary software for en-
coding and decoding and does not take advantage of the
hardware acceleration modules present in modern computers.

A more advanced colorization technique, ML-based depth
colorization, was developed in [23]. It uses a CNN architecture
that is pre-trained on ImageNet. However, despite the use
of neural networks, the results show that the model did not
significantly improve the classification accuracy compared to
color-jet and surface normals [27]. In fact, it performs worse in
some models and benchmarks. It can be deduced from [23] that
the encoding used does not significantly impact performance
and high accuracy in computer vision tasks is still achievable
even with a simple colorization approach.

It is for this reason that simple colorization approaches
have been adopted in this study, namely, color-jet [27], uniform
and inverse colorization [22].

1) Color-Jet: This is a common approach in depth col-
orization [27] where depth data is applied with a jet colormap
to transform it from a single channel to a three-channel 2D
depth image. This approach was found to be effective and
computationally inexpensive and was shown to outperform
HHA for object recognition. In this approach, the depth
values are first normalized between 0 and 255, and then a
jet color map is applied to the one-channel image to make it
a three-channel image. A jet is a colormap [28] used for data
visualization. It is a rainbow map that is commonly used to
create false color images. Typically, the depth image is derived
for each pixel (i, j) by mapping the distance to color values
ranging from red (near) over green to blue (far). Sometimes,
this mapping is reversed, i.e., blue is near, which is the case
in this study.

2) Uniform and Inverse Colorization: [22] also developed
a similar approach to [27] which uses the Hue colorspace with
6 gradations and 1529 discrete levels. It has two variations:
uniform and inverse. The former directly encodes the depth
value whereas the latter encodes the disparity value (reciprocal
of the depth value). The latter is suitable for closer distances
because it can capture finer details and information. The
equations below show the mapping between the normalized
depth (dn) to the Red (pr), Green (pg) and Blue (pb) channels
respectively in case of uniform colorization.

dn =
d− dmin

dmax − dmin

pr =


255, 0 ≤ dn ≤ 255 ∪ 1275 < dn ≤ 1529

255− dn, 255 < dn ≤ 510

0, 510 < dn ≤ 1020

dn − 1020, 1020 < dn1275
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pg =


dn, 0 < dn ≤ 255

255, 255 < dn ≤ 510

765− dn, 510 < dn ≤ 765

0, 765 < dn1529

pb =


dn, 0 < dn ≤ 765

dn − 765, 765 < dn ≤ 1020

255, 510 < 1020 ≤ 1275

1529− dn, 1275 < dn1529

In case of inverse colorization, the mapping is done on the
disparity value (disp) which is the reciprocal of depth.

disp =
1

d
, dispmin =

1

dmin
, dispmax =

1

dmax

dn =
disp− dispmin

dispmax − dispmin

It is imperative that a simple and computationally efficient
colorization approach be employed especially for real-time
classification.

D. CNN Models

Convolutional neural networks (CNNs) is a deep learning
network that automatically learns from visual data. In contrast
to classical machine learning algorithms, CNN offers end-to-
end model development without the need to manually extract
features. CNN models learn patterns from input data via
the convolution and pooling of multidimensional matrices.
Four common models were considered in this study: AlexNet,
VGG16, GoogleNet, and ResNet101.

1) AlexNet: AlexNet [29] is a convolutional neural net-
work (CNN) architecture that was introduced in 2012 by
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. It was
designed to compete in the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) and achieved a significant
improvement in accuracy over previous methods. AlexNet
consists of five convolutional layers and three fully connected
layers, with multiple convolutional kernels extracting features
from the images. The architecture also includes max-pooling
layers and ReLU activation functions to improve performance.
AlexNet’s success in ILSVRC helped popularize deep learning
and CNNs, leading to many more papers and applications in
computer vision.

2) GoogleNet: GoogleNet [30], also known as Inception
v1, is a convolutional neural network architecture that was
introduced in 2014 by researchers at Google. The architecture
was designed to improve the performance of neural networks
by making them deeper while avoiding the complications that
arise with an increasing number of layers. GoogleNet uses a
unique architecture called the inception module that consists
of multiple convolutional layers with different filter sizes and
pooling operations. The Inception module allows the network
to capture features at different scales and resolutions, thereby
improving its ability to recognize objects in images. GoogleNet
also includes auxiliary classifiers that help combat the vanish-
ing gradient problem and improve training performance.

Fig. 2. General CNN architecture with depth image input.

3) ResNet101: ResNet101 [31] is a convolutional neural
network architecture that was introduced in 2015 by re-
searchers in Microsoft. The architecture is 101 layers deep
and includes a unique feature called the “identity shortcut con-
nection,” which allows the model to skip one or more layers.
This approach helps to combat the vanishing gradient problem
and allows the network to be deeper without sacrificing its
performance. ResNet101 was designed to improve the accuracy
of image classification tasks and it achieved high performance
on the ImageNet dataset at the time of its introduction. The
architecture has since been widely used and studied in the field
of computer vision.

4) VGG16: VGG16 [32] is a convolutional neural net-
work architecture introduced in 2014 by researchers at the
University of Oxford. The architecture is unique in that it
has only 16 layers with weights, as opposed to relying on
a large number of hyper-parameters. VGG16 was designed
to improve the accuracy of image recognition tasks and it
achieved high performance on the ImageNet dataset at the time
of its introduction. The architecture consists of five blocks of
convolutional layers, each followed by a max-pooling layer,
and three fully connected layers. The convolutional layers
use small 3 × 3 filters, which help to reduce the number of
parameters in the model.

E. Transfer Learning

Transfer learning is a machine learning technique that
involves reusing a pre-trained model as the starting point for
a new model on a different task. The pre-trained model has
already been trained on a large dataset and has learned to
recognize a wide range of features. By using the pre-trained
model as a starting point, we can save time and computational
resources that would otherwise be required to train a new
model from scratch. Transfer learning is particularly useful
when we have limited data for the new task, as the pre-trained
model can provide a good starting point for learning the new
task. Transfer learning has become a popular technique in deep
learning, and it has been used in a wide range of applications,
including image classification, object detection, and natural
language processing. By leveraging the knowledge learned
from pre-trained models, we can improve the performance of
our models and reduce the time and resources required for
training.

III. MATERIALS AND METHODS

The general architecture of the CNN model in this study
is illustrated in Fig. 2.
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Fig. 3. Dataset samples: (left-right) RGB, jet (D1), uniform (D2), inverse
(D3).

A. Dataset

In this study, there was a need to gather depth images of
fruits from scratch. A depth camera based on stereo vision
matching, Intel RealSense D405, was used to collect depth
images in an indoor environment at an 848 × 480 resolution (30
fps). This depth camera is ideal for close-range applications,
providing sub-millimeter accuracy to capture small features in
an object that is suitable for this study. It was attached to a
tripod ∼10 cm from the platform, and the surroundings were
artificially lit with a 14 W LED ring light at 1600 lumens.
The camera was placed in the middle of the ring light for even
lighting. Fig. 3 shows a set of dataset samples with RGB and
depth images in three colorization: jet, uniform and inverse.

One important aspect of this study is the choice of
colorization for the depth images. Based on [23], there is
no significant benefit from using computationally expensive
approaches, as there is no evidence that this translates to high
performance. Therefore, three simple colorization approaches
were used. The researcher refers to these as D1, D2, and D3 for
the color-jet, uniform, and inverse colorization, respectively.
These datasets have one-on-one correspondence in samples,
i.e., each sample in each dataset was taken at the same time,
with the same fruit object and resolution, just a different
colorization. In this way, we can also make fair comparisons
of the performance of the three colorization methods.

The fruits considered in this study were apple, orange,
mango, banana, and rambutan (Nephelium Lappaceum). These
fruits were selected for the following reasons: (a) apples and
oranges are different in color and similar in shape; (b) mangoes
and bananas are similar in color and different in shape, and
apples and rambutans are similar in color and have different
shapes and textures.

B. Post-Processing Filters

To improve the depth quality and accuracy, the depth data
from the depth camera underwent a series of post-processing
filters before colorization, except for jet. Both the uniform and
inverse colorized depth images underwent a series of filters,
namely, decimation, spatial, temporal, and hole filling. Depth-
to-disparity transformation and vice versa are required for
certain filters.

Fig. 4 presents a summary of the post-processing filters
used for each dataset. A decimation filter was used to minimize

Fig. 4. The post-processing pipeline for each dataset.

TABLE II. FILE SIZE STATISTICS (IN BYTES)

Min/Max Mean Median Mode
D1 111,255/187,947 153,930 162,560 152,809
D2 76,041/111,565 96,124 99,273 93,907
D3 68,367/110,659 88,971 90,198 89,373

RGB 659,071/836,928 759,140 762,023 722,643

depth scene complexity. This was achieved by running an N
× N median filter. A spatial filter was used to perform a 1D
edge-preserving filter using a high-order domain transform in
both the horizontal and vertical directions. A temporal filter
was applied to enhance the persistence of depth data by pixel
value manipulation over a number of previous frames. This is
done by implementing a single pass on the data and updating
the depth values while keeping track of the historical values.
The hole-filling filter is intended to complete missing depth
values and is performed by selecting neighborhood pixels to
replace the missing depth.

After colorization, the depth images were saved using
the PNG format, a type of lossless compression. Table II
summarizes the statistics of the sizes of the different depth
images, including their corresponding RGB color images in
bytes. As shown, the inverse colorization requires the least
storage among the three datasets used in this study. Generally,
depth images require less storage than RGB images do. The
RGB color image was almost 10 times the size of the inverse
depth image. This is one benefit of using depth images over
color images in computer vision tasks.

C. Experimental Flow

The activities of this study include data preprocessing,
data augmentation, data splitting, training and validation, and
performance evaluation as shown in Fig. 5. Each step is
described in the following subsections.
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Fig. 5. Flowchart of data processing and analysis.

TABLE III. DATASET DISTRIBUTION PER CLASS IN EACH DATASET TYPE

Raw Cleaned Augmented Cleaned + Augmented
apple 1,068 456 1,368 1,824

banana 1,057 534 1,068 1,602
mango 1,075 861 861 1,722
orange 1,077 301 1,204 1,505

rambutan 1,066 882 882 1,764
5,343 3,034 5,383 8,417

1) Data Pre-processing: A total of 5,343 depth images
were collected for each dataset type. However, all these cannot
be used because some are extremely noisy such as images
with large regions with missing depths. To clean the dataset,
a MATLAB program was developed to display and manually
check each image in color and depth formats. As a result of
the cleaning process, there are only 3,034 valid samples in the
dataset, as shown in Table III. Orange and mango produced
the most and least number of invalid samples, respectively.

After the dataset was cleaned, the images were cropped
∼80 pixels from the left border because of invalid depth [33].
Consequently, the dimensions of the image were reduced. This
is a known issue for stereo vision algorithms that utilize the left
imager as a reference because of the non-overlapping region
in the camera’s field of view.

2) Data Augmentation: Because the resulting dataset was
reduced after cleaning, there was a need to perform data
augmentation to increase the sample size. Transformations
used in data augmentation include rotation, translation, scaling,
and reflection. It is important to note that exactly the same
augmentation was performed on the same depth image of
each type to ensure uniformity across the different dataset. For
instance, the same transformation is applied to sample image
X across D1, D2, and D3. This ensures uniform transformation
across depth images and provides fairer performance compar-
isons later. The dataset (both the cleaned and augmented) now
totals 8,417 per type, i.e., 25,251 depth images across all three
datasets.

3) Data Split: To avoid possible overfitting in model train-
ing, the dataset was augmented and divided into 70% training,
15% validation, and 15% testing. To provide better and fairer
comparisons across types, the split was performed uniformly
across types and evenly between the cleaned and augmented
samples, i.e., each split contained a proportional distribution of
cleaned and augmented samples. To do this, each sample in the
cleaned and augmented dataset was numbered sequentially, and
a MATLAB program was developed to uniformly and evenly
divide the dataset.

4) Training and Validation: Model training was performed
after the dataset was processed and split. The CNN models
used in the training were AlexNet, VGG16, GoogleNet, and
ResNet101, with a batch size of 32 and an epoch of 20. The
Adam optimizer was used, and the loss type was the categorical
cross-entropy. The training was run using the TensorFlow
framework on Macbook Pro M2 with 16GB memory, 8 CPU,
and 10 GPU cores. Prior to training, the images were rescaled
between 0 and 1 and resized to 224 × 224 for AlexNet and
227 × 227 for the rest. In addition, a random seed was set,
and TensorFlow op was enabled for deterministic output. A
total of 12 training sessions were performed, i.e., four models
were trained for each dataset. Retraining of the best-performing
dataset per model was performed to determine the effect of
transfer learning.

5) Performance Metrics and Evaluation: To evaluate the
performance of the trained model, we ran the trained models
on the test dataset and utilized standard performance measures.
The metrics used in this study were the average per-class
accuracy (A), precision (P ), recall (R), macro-average F1-
score (F1M ), weighted-average F1-score (F1µ), Kappa score
(k), training time, and inference time. A confusion matrix was
derived from each model after testing to compute the metrics.

A =

∑L
a=1

tpa+tna

tpa+tna+fpa+fna

L

P =

∑L
a=1

tpa

tpa+fpa

L

R =

∑L
a=1

tpa

tpa+fna

L

where tpa, tna, fpa, and fna represent true positive, true
negative, false positive and false negative for class a.

F1M =
1

|L|
∑
a∈L

F1a

F1µ =
1∑

a∈L Supp(a)

∑
F1a × Supp(a)

where Supp(a) denotes the number of samples in class a,
and F1a is the F1-score of class a

F1a = 2× Pa ×Ra

Pa +Ra

where Pa and Ra are precision and recall for class a
respectively.

k =
p0 − pe
1− pe

where p0 is the observed agreement ratio and pe is the
hypothetical probability of change agreement. k is a statistical
measure of inter-rater agreement for categorical data.
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Training and inference times are the times required for
the model to train and test, respectively. These are important
metrics for verifying the calculation efficiency of models
trained on depth images.

IV. RESULTS AND DISCUSSION

This section presents and discusses the findings of this
study. Here, the researcher aims to demonstrate the perfor-
mance of the models trained using different datasets. First,
the performance by model with the use of the three datasets
during training and validation is discussed, followed by the
performance of each model by dataset. Subsequently, the
performance of each trained model on the test dataset is
presented. The calculation efficiency of each model is also
discussed. Finally, the effect of transfer learning on model
performance is presented.

A. Comparison of Performance during Training and Valida-
tion

In this section, the performances of the model in terms
of training and validation accuracy and loss are compared. A
desirable CNN model should rapidly improve accuracy and
maintain stability as the number of epochs increases. Fig. 6
shows the training and validation performance of each model
on the three datasets. With AlexNet, the training performance
for all datasets showed a rapid and stable trend. This was
also evident from the training loss trend of the model. Its
validation accuracy was slightly lower than that of D2, show-
ing an early increase as opposed to D1 and D3. Both D1
and D3 tended to oscillate in their validation performances
during the early epochs. GoogleNet had a slower increase in
training accuracy compared to AlexNet in all three datasets,
although it stabilized well in later epochs. Its validation per-
formance was more stable than that of AlexNet, even at earlier
epochs. Compared with GoogleNet, ResNet101 showed a more
rapid increase in training accuracy, but was still slower than
AlexNet. It also exhibited a stable trend as the number of
epochs increased. However, it showed very unstable validation
performance across the three datasets. VGG16 has a better
training performance than GoogleNet, particularly for D1. Its
validation performance is comparable to that of GoogleNet,
which registered high validation at earlier epochs and stabilized
onwards. It showed the most stable validation performance for
all datasets among all models.

Next, we look at the performance of the models by dataset
as shown in Fig. 7. On D1, we can see that the quickest
to rapidly increase in training accuracy is AlexNet followed
by VGG16 and ResNet101. GoogleNet is the slowest. Both
GoogleNet and VGG16 performs well in the validation set
with more stability compared with the other two. ResNet101
is the worst to perform in the validation set with very unstable
trend. Only VGG16 has stable trend in the validation loss
compared to the rest with ResNet101 being the worst. In
terms of D2, AlexNet still leads in terms of rapid increase
in training accuracy with GoogleNet still trailing behind the
rest. ResNet101 still has the worst validation performance. The
validation loss of GoogleNet tend to be more stable in D2. In
terms of D3, AlexNet still is the quickest to rapidly increase
in training accuracy still with GoogleNet the worst. The trend
of validation accuracy of ResNet101 still oscillate. We can say

Fig. 6. Training & validation accuracy and loss by model.

Fig. 7. Training & validation accuracy and loss by dataset.

that all models perform well in the training set across the three
datasets but the validation performance of ResNet101 which
is quite unstable.

B. Comparison of Performance on the Test Dataset

In this section, the performances of the models on the test
datasets are presented. Table IV summarizes the performance
measures for each model using different datasets. It can be
observed that ResNet101 has the best performance across the
three datasets and in all performance metrics. It had the highest
accuracy, precision, recall, kappa-score, F1M and F1µ on D3,
followed by D2 and D1. On D1, it was followed by VGG16
and GoogleNet with AlexNet, with the poorest performance
in all metrics. It has the lowest performance, with an average
per-class accuracy of 0.76 and k of 0.7. Note that D1 did not
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pass through the post-processing pipeline, which may have
contributed to this result. In terms of D2, ResNet101 was
followed by VGG16 and AlexNet, with GoogleNet performing
the worst. It should be noted that AlexNet and GoogleNet
had the same accuracy, precision, and recall values. They only
differ in terms of k, F1M and F1µ with AlexNet higher by
0.01 only. In terms of D3, next to ResNet101 are VGG16
and AlexNet, with GoogleNet trailing behind. It can be seen
that VGG16 performs the second best overall with ResNet101.
Overall, all models performed well in the three test datasets,
except for AlexNet on D1, which registered < 80% across
all metrics. The top dataset is D3, which is based on inverse
colorization and registered 96% accuracy using ResNet101.

C. Training and Inference Duration

In this section, the computational efficiency of these models
is discussed. The number of CNN parameters and the com-
putational complexity are vital for the development of deep-
learning applications. These variables contribute to the training
and inference durations of the CNN models. An ideal CNN
model is one that is less complex, yet produces good results
at low training and inference times.

The number of layers and parameters in each CNN model,
including the FLOPs, is listed in Table V. These variables
define a complex CNN structure. The deeper the layers in a
network, the more complex image processing properties that
it can perform. Consequently, the hardware requirements for
processing are greater. In essence, computational efficiency is
determined by the amount of layers in the network and the
training time, whereas computational difficulty is evaluated by
the number of network parameters and FLOPs. The training
and inference times of the models were also presented.

The AlexNet model has only 11 layers, which is the
smallest among all the models considered in this study. It also
had the lowest number of FLOPs. However, it did not have the
lowest training time. It was only next to GoogleNet across all
three datasets. This is due to the number of parameters, which
is 60M compared with 6.8M of GoogleNet. Notably, VGG16
had the longest training time compared to ResNet101. Both
also had approximately the same inference time. This can be
attributed to the number of parameters VGG16 has including
its massive amount of FLOPs. Among all three datasets, D3
requires the least amount of computation using GoogleNet in
both training and inference with 41.07 and 0.53 minutes for
training and inference, respectively. Note that D3 required the
least storage which may have contributed to this outcome.

D. Transfer Learning

The researcher compared the accuracy of the four models
with and without transfer learning. Only the dataset with the
best accuracy during training from scratch for each model
was chosen for the transfer learning experiment. D2 was used
for AlexNet, GoogleNet, and VGG16, whereas D3 was used
for ResNet101. The weights of the four models trained on
ImageNet dataset were used.

Fig. 8. Training & validation accuracy before and after transfer learning.

Fig. 8 shows the accuracy trend of each of the four models
with and without transfer learning. The red lines indicate
the accuracy of the model with transfer learning, and the
other color indicates the accuracy without transfer learning.
It is evident that the training accuracy of each model rapidly
increased at earlier epochs with transfer learning compared
to the accuracy without transfer learning. It also has a more
stable rate than without transfer learning. It can be observed
that the training accuracy is considerably higher with transfer
learning, particularly for AlexNet, GoogleNet, and ResNet101.
The training accuracy for VGG16 remained unchanged in later
epochs.

In terms of validation accuracy, Fig. 8 shows a better
overall performance in all models. Of note is ResNet101,
which registered a more stable validation performance with
fewer oscillations compared with no transfer learning. Both
AlexNet and GoogleNet had very stable validation perfor-
mances compared with no transfer learning and even with
transfer learning for the ResNet101 and VGG16 models.
Remarkably, GoogleNet’s validation accuracy with transfer
learning surpassed its training accuracy without transfer learn-
ing. These results indicate that transfer learning substantially
increases both the training and validation accuracy of the CNN
models. The extent of improvement varied from model to
model.

To understand the effect of transfer learning on the four
CNN models, the researcher gathered statistics on the training,
validation, and testing performance of these models. The
results are listed in Table VI. Here, the difference in accuracy is
between the best accuracy with and without transfer learning.
The increment, on the other hand, is the ratio between the
accuracy difference and the accuracy of the CNN model
without transfer learning. This measures the improvement
provided by the use of transfer learning.

As shown in Table VI, GoogleNet exhibited the highest
improvement in all aspects, including training, validation,
and testing. It had the highest improvement in testing and
the lowest improvement in training. This indicates that the
novel GoogleNet architecture is suitable for applying transfer
learning using depth images. It should be noted that its training
accuracy has already reached 100% with the use of transfer
learning. VGG16 was next to GoogleNet, with the highest
improvement in the test dataset. This is despite having the
lowest increase in training accuracy. It should be noted that
VGG16 already has a high accuracy rate, even without transfer
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TABLE IV. PERFORMANCE OF THE DIFFERENT CNN MODELS ON THE THREE DATASETS

D1 D2 D3
A P R k F1M F1µ A P R k F1M F1µ A P R k F1M F1µ

AlexNet 0.76 0.78 0.75 0.70 0.75 0.76 0.89 0.9 0.88 0.87 0.88 0.89 0.87 0.86 0.86 0.83 0.86 0.87
GoogleNet 0.87 0.88 0.86 0.83 0.85 0.86 0.89 0.90 0.88 0.86 0.87 0.88 0.86 0.86 0.85 0.83 0.84 0.85
ResNet101 0.91 0.91 0.91 0.89 0.90 0.91 0.95 0.95 0.95 0.94 0.95 0.95 0.96 0.96 0.96 0.95 0.96 0.96

VGG16 0.90 0.89 0.90 0.87 0.89 0.90 0.91 0.91 0.90 0.88 0.90 0.90 0.88 0.88 0.87 0.85 0.87 0.88

TABLE V. TRAINING AND INFERENCE DURATION (MINUTES)

Layers No. of Parameters (M) FLOPs
(M)

D1 D2 D3
Training Inference Training Inference Training Inference

AlexNet 11 60 727 84.92 0.70 84.37 0.72 85.65 0.73
GoogleNet 87 6.8 2000 42.68 0.57 41.18 0.55 41.07 0.53
ResNet101 101 44 7600 199.58 0.95 199.00 0.95 198.67 0.97

VGG16 16 138 16000 215.90 0.97 211.87 0.97 221.38 0.95

TABLE VI. EFFECT ON MODEL ACCURACY BEFORE AND AFTER TRANSFER LEARNING

Dataset Training Accuracy
Difference (%)

Validation Accuracy
Difference (%)

Test Accuracy
Difference (%) Training Increment (%) Validation Increment (%) Test Increment (%)

AlexNet D2 0.56 2.70 3.46 0.56 2.91 3.89
GoogleNet D2 1.37 6.98 10.92 1.39 7.50 12.27
ResNet101 D3 0.66 4.13 4.00 0.66 4.31 4.17
VGG16 D2 0.03 5.00 8.13 0.03 5.31 8.93

learning. AlexNet registered the least improvement in both
validation and test datasets. This is an indication that the
traditional CNN structure has no significant effect in testing ac-
curacy. In addition, its architecture was less affected by transfer
learning. AlexNet, GoogleNet, and ResNet101 achieved 100%
training accuracy with transfer learning. These findings are
consistent with the belief that the two nonlinear structures of
GoogleNet and ResNet are more suitable for certain classes
of inputs, i.e., the accuracy increases as the image classes
change. On the other hand, the single-channel classic CNN
architectures of AlexNet and VGG16 are thought to be costlier
for varying inputs.

The different CNN models respond differently to transfer
learning due to their diverse structures. In addition, there
is a large difference in terms of the dataset used to train
the parameters of these models for transfer learning, i.e.,
ImageNet, and the actual dataset used in the classification
problem, i.e. colorized depth images. Overall, it was shown
that transfer learning can significantly affect the classification
accuracy of colorized depth images of fruits. This is despite
the fact that the pre-trained models were not previously trained
on depth images. The extent of improvement depended on the
model structure.

V. LIMITATIONS AND FUTURE WORK

This study has shown that it is possible to use colorized
depth images in fruit classification with a high rate of accuracy,
aided by CNN and transfer learning. However, this study is
limited in multiple aspects, such as the dataset used and CNN
models considered. The dataset used in this study was limited,
with only five classes. In future work, this can be increased
to include other types of fruits, including those that are very
similar in form, shape, color, and texture. Only four CNN
models are used in this study. Future work could include other
models, such as MobileNetV2, as well as other colorization
approaches. It is also useful to explore the fusion of RGB and
colorized depth images in fruit classification problems.

VI. CONCLUSION

In this study, the researcher investigated the use of col-
orized depth images in CNN-based fruit classification using
AlexNet, GoogleNet, ResNet101 and VGG16 and examined
their performance and the impact of transfer learning ap-
plication. The primary findings are as follows: (1) All four
models performed well during training and validation with
both GoogleNet and VGG16 having desirable trends in all of
the three datasets. ResNet101 is the least ideal. (2) ResNet101
exhibited the best test accuracy with 96% rate on D3, 95% on
D2 and 91% on D1. AlexNet performed the least on D1 at
76%. (3) The post-processing filters applied to D2 and D3
contributed to the performance of the models. (4) Transfer
learning considerably improved the performance of the models
with GoogleNet registering the largest increase on the test set
at 12.27%. (5) Transfer learning could provide better validation
performance in ResNet101 whose validation performance was
very unstable without transfer learning.
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