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Abstract—Identifying an optimal basis for a linear program-
ming problem is a challenging learning task. Traditionally, an
optimal basis is obtained via the iterative simplex method which
improves from the current basic feasible solution to the adjacent
one until it reaches optimal. The obtained result is the value
of the optimal solution and the corresponding optimal basis.
Even though learning the optimal value is hard but learning the
optimal basis is possible via deep learning. This paper presents
the primal-optimal-binding LPNet that learns from massive linear
programming problems of various sizes casting as all-unit-row-
except-first-unit-column matrices. During the training step, these
matrices are fed to the special row-column convolutional layer
followed by the state-of-the-art deep learning architecture and
sent to two fully connected layers. The result is the probability
vector of non-negativity constraints and the original linear
programming constraints at the optimal basis. The experiment
shows that this LPNet achieves 99% accuracy of predicting a
single binding optimal constraint on unseen test problems and
Netlib problems. It identifies correctly 80% LP problems having
all optimal binding constraints and faster than cplex solution
time.

Keywords—Deep learning; convolution neural network; linear
programming; basic feasible solution; optimization

I. INTRODUCTION

Traditionally solving a linear programming (LP) problem.
The authors in [17] requires an iterative simplex method [1]
or an iterative interior point method [2]. The simplex method
starts from an initial basic feasible solution (BFS) and pivots to
the adjacent BFS with the objective improvement. It guarantees
to reach the optimal BFS for nondegenerate and bounded LP
with a nonempty feasible solution. While the interior point
method starts at an interior point inside the feasible region
and moves along an improved direction until it reaches the
solution close to the optimal one.

The simplex method requires the feasibility of the current
basic feasible solution. Since a general linear programming
problem may not be feasible, it will need to be reformulated.
Two classical artificial-variable techniques have been devel-
oped which are the two-phase simplex method [18] and the
big-M method [17], [3]. Both techniques increase the dimen-
sion of the original problem by adding an artificial variable to
each constraint causing more computational solution time.

In 2014, Boonperm, et al. [4] presented a non-acute
constraint relaxation technique that eliminates the need for

artificial variables and reduces the start-up time to solve the
initial relaxation problem. The algorithm reinserts the non-
acute constraints back into the relaxation problem to guarantee
the optimal solution or infeasibility or unboundedness of a
linear programming problem. Moreover, there is a use case
of angle measurement of LP constraints to control a jump
direction in a metaheuristic algorithm to solve an LP problem
that is introduced by Visuthirattanam [5]. In this paper, angle
measurement between constraints is also considered as a part
of preprocessing input of a deep learning model.

The deep learning concept mimics the computation from
the biology of human brain cells to learn a task directly
from numerical source data. It consists of multiple layers
of interconnected nodes and arcs with weights and biases.
The learning process adjusts weights that work together to
recognize accurately and classify objects from data. An alter-
native method for solving an LP problem has been studied for
centuries. Recently, the use of machine learning models such
as a deep learning model is investigated. Instead of solving an
LP problem every time a new problem is posted. Researchers
investigate whether the machine learning model can be used
to identify the optimal solution by learning from thousands
of solved LP problems. With the appropriate form of the LP
problem and the special deep learning architecture, the optimal
basis of any linear programming problem can be obtained.

A. Contributions

This paper uses a deep learning model to solve a linear
programming problem using only objective coefficients, the
right-hand-sided values and the constraint coefficients avoid
any iterative procedure that has been used for centuries. The
concept is to use million solved linear programming problems
as the training data with the appropriate matrix format as the
all-unit-row-except-first-unit-column matrix and an additional
row-column convolutional layer, which enables the deep learn-
ing model to identify the optimal binding constraints from
linear programming problems of varying sizes.

The objective of this paper is the LPNet deep learning ar-
chitecture that can solve a linear programming problem. It has
the all-unit-row-except-first-unit column matrix as the input
fed to the row-column convolutional layer. Then the output is
sent to state-of-the-art deep learning model submitting to two
fully connected layers before the last output layer.
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In order to achieve the objective, this paper introduces a
unit-vector normalization that simplifies the training process
compared to the traditional normalization method. This method
incorporates two key concepts - reordering constraints and
scaling LP problems - to enhance the model’s ability to learn
effectively.

Finally, the LPNet architecture integrates all these pro-
cesses together as illustrated in Fig. 1, and the trained model
outperforms the benchmark LP datasets when compared to
CLPEX [31], the state-of-the-art optimization LP solver.

The remainder of this paper is organized as follows.
Section II provides a literature review. Section III covers the
methodology of this paper. Section IV provides the analysis
and results of the effective deep learning architecture. Section
V is the conclusion of this paper, and the last section provides
a discussion of this work.

II. LITERATURE REVIEW

Various deep-learning architectures have been proposed to
learn different tasks via spatial relationships within the input
data. A deep convolution neural network (DCNN) is one of
the deep learning architectures which is suitable for computer
vision tasks. Many state of the art architectures demonstrate
high performance for an image classification task such as
Resnet [20], MobileNet [6], EfficientNet [21], XceptionNet
[22] and InceptionNet [23].

The study of Khade S. et al. [10], [12], [13] developed
multiple DCNNs to identify iris liveness detection based on
RestNet50 and EfficientNet for binary classifications. More-
over, the convolutional deep extreme learning machine method
[14] can well recognize the pattern of a diabetic retinopathy
image using DCNN architectures, that is ResNet, DenseNet
[15], and GoogleNet [16]. This paper also developed DCNN
with these architectures for multi-label classifications. Multi-
label classifications [11] are more complex than binary classi-
fications.

CNN with recurrent neural network (CNN-RNN) technique
is utilized to detect and classify sarcasm [28]. In order to
boost the detection outcomes of the CNN+RNN technique,
a hyperparameter tuning process utilizing a teaching and
learning-based optimization (TLBO) algorithm is employed in
such a way that the classification performance gets increased.

The integration of a DCNN model to a multiparametric
programming problem [24], [7] was demonstrated by Justin et
al. [8]. Solving the parametric 0–1 LP problem by a DCNN
model was proposed in 2022 [9]. The DCNN model for 0-1
LP learns from a histogram-like image representation.

Effati et al. [27] proposed two recurrent neural network
models for solving linear and quadratic programming prob-
lems. The first model is derived from an unconstraint min-
imization reformulation of the program, while the second
model is directly obtained from the optimality condition for
an optimization problem. The paper compares the convergence
of these models using the energy function and the duality
gap. The paper also explores the existence and convergence of
the trajectory and stability properties for the neural network
models.

The use of a neural network as a solution bundle for
solving ordinary differential equations (ODEs) for various
initial states and system parameters is presented by Flamant
et al. [26]. In 2023, Dawen Wu et al. [25] proposed a deep
learning approach in the form of feedforward neural networks
to solve linear programming (LP) problems. The approach
models the LP problem by an ordinary differential equations
(ODE) system, the state solution of which globally converges
to the optimal solution of the LP problem. A neural network
model is constructed as an approximate state solution to the
ODE system, such that the neural network model contains the
prediction of the LP problem.

III. METHODOLOGY

This paper proposed the deep convolutional neural network
model, called LPNet, to learn from linear programming co-
efficients directly putting in the form of a general all-unit-
row-except-first-unit-column matrix. This matrix contains the
objective coefficients in the first row, normalized to one, the
right-hand-side vector as the first column, and the rest are
coefficients from constraints normalized to one. It then passes
to the special row-column convolutional layer that is carefully
designed with convolution filters for extracting the row-column
components of the LP problems. After this layer, the result
will pass to the state-of-the-art architectures. Then it will pass
to two fully connected layers before connecting to the output
layer. Each constraint will be marked as either it is one of the
optimal basis or it is not in the output layer, see Fig. 1.

Fig. 1. Overview of an optimal binding prediction.

A. A Linear Programming Model

A linear programming model is an optimization model
with a linear real-valued objective function (cTx̃) and linear
constraints (Ax̃ ≥ b, x̃ ≥ 0). The optimal solution of this LP
model is the feasible point that gives the smallest objective
value for the minimization or the largest objective value
for the maximization. It can be expressed in the following
mathematical form.

Min cTx̃
s.t. Ax̃ ≥ b

x̃ ≥ 0
(1)

where c ∈ Rn,A ∈ Rm×n, b ∈ Rm and x̃ ∈ Rn. The optimal
solution of the LP model can be solved using various iterative
algorithms such as the two-phase simplex algorithm, the big-
M algorithm, and the dual-simplex algorithm. Alternatively,
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the optimal solution could be obtained if all optimal binding
constraints are identified correctly. So learning to solve a linear
programming problem can be cast as learning to identify the
optimal binding constraint from a million linear programming
problems.

For every LP problem, there is a corresponding dual LP
problem. The original LP problem is called the primal LP
problem. If one of these LP problems obtains an optimal
solution then both problems will possess the optimal solution
having the same optimal value and satisfying the complemen-
tary slackness. The non-zero value of any basic variable will
cause the corresponding dual constraint to be binding. From
equation (1), the dual LP problem is

Max bTy
s.t. ATy ≤ c

y ≥ 0
(2)

Note that the coefficients of the decision variable from a
primal LP problem correspond to the row constraint for the
dual LP problem. From the complementary slackness proper-
ties, [17] of the optimal conditions, the non-zero value of the
dual basic variable will give rise to the corresponding primal
constraint to be binding, i.e., if yi > 0, for some i ∈ {1, ...,m}
then the corresponding constraint in the LP primal problem
will be binding. Similarly, the non-zero basic variable of the
LP primal problem will give rise to the corresponding binding
dual constraint. If xj > 0, for some j ∈ {1, ..., n} then
the corresponding constraint in the dual constraints will be
binding. These optimal bindings can be predicted by LPNet
which will be explained in detail in Section IV. The next
section will cover the input design for this deep learning model
from the coefficients of the primal LP problem.

B. Basic Feasible Solution

The LP problem from (1) can be converted to a standard
form by subtracting non-negative surplus decision variables x

′

as

Min cTx̃+ 0Tx′

s.t. Ax̃− Ix’ = b

x̃,x
′ ≥ 0

(3)

where I is a m × m identity matrix, and x
′

is
{xn+1, ..., xm+n}. So a new variable vector of the LP problem
(3) is x = [x1, x2, ..., xm+n]

T .

Definition 1: [19] For any nonsingular m × m submatrix
AB of A where B ⊂ {1, 2, ...,m + n} is the set of basic
indices, x = [xB , 0]T is called a basic solution with respect to
the basis (AB), where 0 in x is the zero vector of all leftover
components of x associated with the n−m non-basic variables
of A. From the constraint of the standard LP problem Ax = b,
it can be rewritten as ABxB = b. xB is called a vector of basic
variables or basic variables in short.

Definition 2: [19] A vector x satisfying the system Ax =
b,x ≥ 0 is said to be a feasible solution for the system. A
feasible solution with a known basis is called a basic feasible
solution.

Theorem 3.1: [19] Given a standard LP problem (3) where
A is an m× n matrix of rank m,
1. if the feasible region of the LP problem is nonempty and
bounded, then there is a basic feasible solution.
2. if there is an optimal feasible solution, there is an optimal
basic feasible solution.

This paper proposes a way to predict the optimal basic
feasible solution from binding constraints of the LP problem
using the target vector Y corresponding to each constraint.
If the element of Y, Yi is zero, then the constraint i will be
binding and if the element of Y, Yj is one, then the constraint
j is not binding and if the element of Y, Yk is two, then the
constraint k does not exist from the original problem. It is just
the padding constraint during the learning step of this deep
learning architecture.

The next subsection will cover a theorem of scaling an LP
problem which guarantees to have the same optimal basic AB .
This theorem is designed to support an input form of LPNet
in Section III.

C. Scaling LP Problems

Some LP problems may come from the same one with
different multipliers to their constraints. Normalization of rows
of LP problems helps identify duplicate samples during the
training phase of LPNet. The following theorem shows that the
scaled LP2 problem still has the same basic feasible solution
as the LP1 problem. This implies that only one LP problem
from all scaled LP problems is enough to be included in the
training phase. This will help LPNet focus on one version of
LP problems.

Theorem 3.2: Given LP1 has the optimal solution. For
any positive scale α, a set of basic variables of LP1 will be
the same as the basic variables of LP2(α). Moreover, the
optimal basic indices in LP1 will be the same as the optimal
basic indices in LP2(α)

LP1 Min cTx
s.t. Ax ≥ b

x ≥ 0

LP2(α) Min cTx
s.t. Ax ≥ b

α
x ≥ 0

Proof: Assume LP1 has the optimal solution. Assume that
the current basis is AB with the set of basic indices B and let
the set of the non-basic indices be N . It is easy to see that the
optimal objective value

z∗ = cT x∗ = cTBx∗B + cTNx∗
N and ABx∗B + ANx∗

N = b.
Therefore x∗B = A−1

B b − A−1
B ANx∗

N and

z∗ = cTB(A
−1
B b − A−1

B ANx∗
N ) + cTNx∗N

= cTBA−1
B b + (cTN − cTBA−1

B AN )x∗N .

Since z∗ is the optimal objective value then

cTN − cTBA−1
B AN ≥ 0 and x∗N = 0.
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Let α ∈ R+ be such that

x
′

B =
x∗
B

α

= A−1
B

b
α
− A−1

B AN
x∗
N

α

= A−1
B

b
α
− A−1

B ANx
′

N

≥ 0

and

z
′
=

z∗

α

= cTBA−1
B

b
α
+ (cTN − cTBA−1

B AN )
x∗N
α

= cTBA−1
B

b
α
+ (cTN − cTBA−1

B AN )x
′

N .

That is x
′

N =
x∗N
α = 0, x

′

B ≥ 0 and cTN − cTBA−1
B AN ≥ 0.

Therefore, the set of indices corresponding to x
′

is the current
basic feasible solution of LP2 with the same basis B. Similarly,
if LP2 has an optimal basic feasible solution then LP1 has the
same basic feasible solution.

In addition, the optimal basic indices in LP1 will corre-
spond to the optimal basic indices in LP2(α).

D. All-Unit-Row-Except-First-Unit-Column Matrix

In the context of LPNet training, the normalization of
inputs plays a crucial role in facilitating deep learning opti-
mization to discover optimal parameters for learning optimal
binding constraints. The process of normalization specifically
addresses the numerical scaling of the rows within the con-
straint matrix of LP problems. To address this, the present
research introduces a two-step data preprocessing approach for
any LP problem prior to its utilization in the learning process.

The first step involves the reordering of all constraints
based on the angles formed between the sum vector (1) and the
coefficient of each constraint equation. This reordering aims to
enhance the structure of the input data for improved learning
outcomes.

In the subsequent step, each constraint is individually
rescaled to attain a unit norm. This normalization further aids
in aligning the constraints on a consistent scale, enabling more
effective learning and optimization processes.

By implementing these two preprocessing steps, this re-
search enhances the overall effectiveness of LPNet training
by ensuring that the input data is appropriately structured and
scaled to facilitate the discovery of optimal binding constraints.

E. LP Constraint Ordering

The research findings demonstrate that the optimal binding
constraints remain unchanged even when each row is inter-
changed with another in LP problems. In order to establish a
suitable input format for deep learning, it becomes necessary
to rearrange all constraints based on the angle between the
gradient vector of primal LP constraints and the sum vector
(1), which represents a vector of ones with the appropriate
size.

By rearranging the constraints in this manner, the input
data is properly structured to align with the requirements
of deep learning algorithms. This ensures that the crucial
information captured by the gradient vector and the sum vector
is effectively utilized, leading to more accurate and meaningful
training results. Consequently, this approach enhances the
overall effectiveness of the deep learning process in tackling
LP problems and discovering optimal binding constraints.

Let ai: be a gradient vector of the ith constraint from A.
The angle between ai: and 1 of size n is defined as

θrowi = arccos(
a⊤i:1

∥ai:∥∥1∥
). (4)

The primal constraints will be ordered from the smallest angle
to the largest angle.

Similarly, the dual constraints corresponding to the column
of A will be rearranged by sorting the angle between the a:j
and 1 of size m,

θcolumn
j = arccos(

a⊤:j1

∥a:j∥∥1∥
). (5)

The next step is to rescale all constraints of the LP problem.

F. LP Scaling

The elimination of duplicate LP problems holds significant
importance in the training of LPNet. In Figure 2, three distinct
LP problems, namely LP1, LP2, and LP3, are depicted, all of
which share the same basic feasible solution while differing
only in scaling. In this study, LP1 serves as the normalized
version for LP2 and LP3. By identifying the optimal binding
constraints of LP1, it becomes possible to determine the
optimal binding constraints for LP2 and LP3, as demonstrated
in Theorem 2.

This approach of addressing duplicate LP problems stream-
lines the training process of LPNet. It leverages the knowl-
edge gained from the normalized version (LP1) to efficiently
identify the optimal binding constraints for the related LP
problems (LP2 and LP3). By avoiding redundant computations,
this methodology enhances the overall training efficiency and
contributes to the improved performance of LPNet.

From Equation (1), coefficient vector c, right-hand side
vectors b and matrix A of the LP problem will be normalized
into the unit vector format corresponding to c

′
,b

′
and A

′

respectively. The coefficients of the objective function will be
converted to c

′

j =
cj
||c|| for all j = 1, 2, ..., n, the coefficients

of the constraint function a
′

ij =
aij

||ai|| for i = 1, 2, ...,m

and j = 1, 2, ..., n and b
′

i = bi
||ai|| and b

′′

i =
b
′
i

||b′ || for
i = 1, 2, ...,m. These normalized vectors will be stacked
together to form the input matrix for the training and testing
phases of LPNet. The label vector Y will contain either 0 for
the corresponding binding constraint, 1 for the corresponding
non-binding constraint, and 2 for the padding constraint.
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Fig. 2. An example of scaling LP problem of x ∈ R2. Three corresponding
LP problems, LP1 is the unit-vector normalization of both LP2 and LP3.

These three LP problems are not the same problems but they have the same
optimal basic variables. If the optimal binding constraints of LP 1 exist then
other LP scales are immediately found. Then any LP sizes x ∈ Rn will be

scaled by the unit-vector normalization before entering to LPNet model.

X =


0 c

′

1 c
′

2 ... c
′

n

b
′′

1 a
′

11 a
′

12 ... a
′

1n

b
′′

2 a
′

21 a
′

22 ... a
′

2n
...

...
...

...
...

b
′′

m a
′

m1 a
′

m2 ... a
′

mn



=



0 c1
||c||

c2
||c|| ... cn

||c||
b1

||a1||||b′ ||
a11

||a1||
a12

||a1|| ... a1n

||a1||
b2

||a2||||b′ ||
a21

||a2||
a22

||a2|| ... a2n

||a2||
...

...
...

...
...

bm
||am||||b′ ||

am1

||am||
am2

||am|| ... amn

||am||


(6)

Y =



y1
y2
...
ym

ym+1

...
ym+n


(7)

To train LPNet with different LP problem sizes without recre-
ating the specific input size of the deep learning model these
inputs need to be embedded into the maximum matrix format.
Assume that the maximum LP size is N constraints and N
variables so Y has 2N components. To set up a (m,n) input
LP sample into the matrix of the maximum LP size (N,N)
where m ≤ N and n ≤ N , the small-sized (m,n) LP input
matrix are padded with zero rows from the m+ 1 row to the
N row and zero columns from the n + 1 column to the N
column. The corresponding label vector is assigned to 2, see
the matrix below for the padding concept. An example of a
(2,2) LP sample is added into (N, N) matrix X with padding
2 in the Y.

X =



0 c
′

1 c
′

2 0 . . . 0

b
′′

1 a
′

11 a
′

12 0 . . . 0

b
′′

2 a
′

21 a
′

22 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 0



=



0 c1
||c||

c2
||c|| 0 . . . 0

b1
||a1||||b′ ||

a11

||a1||
a12

||a1|| 0 . . . 0
b2

||a2||||b′ ||
a21

||a2||
a22

||a2|| 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 0


, (8)

Y =



y1
y2
2
...
2

ym+1

ym+2

2
...
2


(9)

The y1 and y2 in Y are represented by the binding
constraint status (0 or 1) of the constraints from non-negative
variables x1, x2 ≥ 0 respectively. The N + 1 and N + 2
components of Y are yN+1 = ym+1 and yN+2 = ym+2

denoted by binding constraint status of the first and second
constraints. By this concept, the LP model can be trained by
many LP problem sizes simultaneously without recreating the
CNN model for a specific LP size.

All LP problems will be converted to this all-unit-row-
except-first-unit-column matrix as LPNet samples for the train-
ing and testing phases.

G. LPNet Architecture

The deep Learning model is an automated learning model
that mimics the functioning of human neural networks in
machine learning. It uses several layers of neurons arranged
in sequential order. The target concept from training data will
be learned by the weights and biases of all neurons.

Convolutional neural networks (CNNs) are specialized neu-
ral network structures capable of classifying image data much
better than conventional neural networks. The main idea of
CNN is to use a special type of layer called a convolutional
layer that extracts parts of an image such as the borders of
objects which is the spatial relation and sends to a pooling layer
to extract only the information components from the multi-
dimensional array. The proposed LPNet architecture needs a
special convolutional layer to extract basic elements from the
all-unit-row-except-first unit-column matrix of the LP problem
in order to make the state-of-the-art CNN model (baseline
model) efficiently be trained. The details of LPNet baseline
model are shown in Table I which consists of three stages.
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The first stage includes RCConv layers that extract row and
column features and transform them into spatial relations. To
capture the spatial information of an LP problem, the special
row-column convolutional layer is introduced, as explained in
the following subsection. The second stage of the model is
the baseline model, which incorporates a state-of-the-art CNN
baseline model. Our results show that the best-performing
baseline model for LPNet is MobileNet. The final stage of
the model is the estimator, which includes fully connected
layers. The last layers consist of 600 nodes, representing the
optimal binding constraints status of LP problems with up to
300 constraints and 300 variables. Overall, the LPNet model
is designed to effectively extract and utilize features from LP
problems to identify optimal binding constraints and provide
high-quality solutions.

TABLE I. LPNET WITH MOBILENET BASELINE

Stage Type/Stride Filter Shape Input Size

RCConv

Row Conv /s1 1 × 301 × 32 301 × 301 × 32
Concat 301 cols 301 × 1 × 32

Row Conv /s1 301 × 1 × 32 301 × 301 × 32
Concat 301 cols 301 × 1 × 32

Concat depth 301 × 301 × 32
301 × 301 × 32

Baseline

Conv /s2 3 × 3 × 3 ×32 301 × 301 × 64
Conv dw /s1 3 × 3 × 32 dw 151 × 151 × 32
Conv /s1 1 × 1 × 32 ×64 151 × 151 × 32
Conv dw /s2 3 × 3 × 64 dw 151 × 151 × 64
Conv /s1 1 × 1 × 64 ×128 75 × 75 × 64
Conv dw /s1 3 × 3 × 3 ×128 dw 75 × 75 × 128
Conv /s1 1 × 1 × 128 ×128 75 × 75 × 128
Conv dw /s2 3 × 3 × 128 dw 75 × 75 × 128
Conv /s1 1 × 1 × 128 × 256 37 × 37 × 128
Conv dw /s1 3 × 3 × 256 dw 37 × 37 × 256
Conv /s1 1 × 1 × 256 × 256 37 × 37 × 256
Conv dw /s2 3 × 3 × 256 dw 37 × 37 × 256
Conv /s1 1 × 1 × 256 × 512 18 × 18 × 256

5 ×Conv dw / s1
Conv / s1

3 × 3 × 3 ×32
3 × 3 × 3 ×32

3 × 3 × 3 ×32
3 × 3 × 3 ×32

Conv dw /s2 3 × 3 × 1024 dw 18 × 18 × 512
Conv /s1 1 × 1 × 512 × 1024 9 × 9 × 512
Conv dw /s2 3 × 3 ×1024 dw 9 × 9 × 1024
Conv /s1 1 × 1 ×1024×1024 9 × 9 × 1024
Avg Pool /s1 Pool 7 × 7 9 × 9 × 1024

Estimator
FC1 1024 × 512 1024
FC2 512 × 512 512
Output 512 × 600 512

H. Row-Column Convolutional Neural Network

In this research, CNN is used to extract features from the
relationship between primal constraints and dual constraints
using non-square kernels. A normalized input sample is convo-
luted over the column and the row to obtain row feature maps
and column feature maps, respectively, see Fig. 3. Notice that,
these row and column convolutional kernels will transform the
row-column (primal-dual) information to spatial feature maps
before passing to a state-of-the-art CNN architecture.

Primal constraints (rows of X) will be convoluted by (1, n)
kernel size with k kernels for generating (m, 1, k) column
feature maps. Similarly, the dual constraints (columns of X)
will be convoluted by (m, 1) row convolution with k kernels in
order to create (1, n, k) row feature maps. These feature maps
will be duplicated m times for row feature maps and n times
for columns feature maps. The duplicated row and column

Fig. 3. The LPNet architecture.

feature maps will be concatenated to generate two m× n× k
spatial feature maps, called RCConv. Finally, these features
will be concatenated by depth to be an (m,n, 2k) input of a
baseline convolution architecture.

I. Baseline Convolution Architectures

CNN combines a convolution layer with other types of
layers, such as a pooling layer, and then stacks such layer
groups on top of each other. Some hyperparameters, such
as the size of the kernel, the number of strides, and the
number of padding are combined to become the architecture
of CNN. There are many state-of-the-art CNN architectures
such as ResNet50, MobileNetv1, EfficentNetB1, Xception,
and Inceptionv1 which are famous deep models that are
successfully learned to classify images. Resnet50 was the first
to introduce a residual block concept that makes the model
learn some residual features from the earlier layers. Later,
the concept of residual blocks is improved using a depthwise
convolution in order to reduce model parameters which are
called mobilenet blocks. The depthwise separable convolution
in the mobilenet blocks makes MobileNetv1 lighter than other
baseline models. The mobilenet block concept is continually
improved by searching for the best size of the height, width,
and depth of convolutional filters from another deep learning
model, and then it becomes EfficeintNetB0-B7. This paper
focuses on EfficientNetB1 which is suitable for LP samples.
The idea of using multiple filters of different sizes on the same
level is applied in the inception model. Then the inception
model instead of having deep layers also has parallel layers
thus making the model wider rather than making it deeper.
A baseline model will be an engine for extracting features
of LPNet after the LP sample is passed into the row-column
convolutional layer. The details of the LPNet architecture with
the mobilenet baseline convolution model are shown in the
next section.

J. Global Average Pooling Layer and Fully Connected Layers

The feature maps from the baseline convolutional layers
will be transformed into the spatial dimensions of feature
maps by averaging the spatial features into vector features
using a global average pooling layer. These vector features
are fed to the first fully connected hidden layer. The first two
hidden layers consist of 512 hidden nodes with a relu activation
function following the batch normalization layer. Since this
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paper aims to predict the maximum optimal binding constraints
which are 300 constraints and 300 non-negative constraints
of decision variables. Then the total number of constraints
is about 600. So the last output layer contains 600 nodes
with linear activation function in order to estimate the target
vector in {0, 1, 2}, which is representing the optimal binding
constraints. The next section will show the experimental results
of LPNet models.

It is straightforward to train LPNet in supervised learning.
Training LP samples will be transformed to all-unit-row-
except-first-unit-column matrices (X) from Eq. (8) and the
optimal binding vectors (Y) from Eq.(9). The transformed
matrices allow the LPNet model to be trained in many LP
problem sizes at the same time without reconstructing the
individual input sizes. After the trained LPNet is completed
then the next subsection shows the inference algorithm of the
LPNet model.

K. LPNet Inference

The inference algorithm of LPNet is summarized as fol-
lows:

1) Compute angles between the gradient vectors of the
primal constraints from Eq. (4).

2) Rearrange the order of primal constraints ( ai: and
bi) by descending angles from 1).

3) Compute angles between the gradient vectors of the
dual constraints from 2) using Eq. (5).

4) Rearrange the order of coefficient variables (a:j and
cj) from 2) by descending angles from 3).

5) Scale down the LP problem (cj , bi, aij) from 4) into
(c

′

j , b
′′

i , a
′

ij) for i ∈ {1, 2, ..,m} and j ∈ {1, 2, .., n}.
6) If the LP problem size from 5) is the maximum size

(m,n) = (N,N) then the input matrix for the LPNet
model will be defined by Eq. (6) and then go to 8).
Otherwise, go to 7).

7) The LP problem will be padded zeros by using Eq.
(8) and then go to 8).

8) Take the input matrix from 6) or 7) into the trained
LPNet model and the result will be a predicted
optimal binding vector Y.

The experimental results of the row-column convolution
layer plus given a baseline model followed by two fully con-
nected layers and the output layer are presented in this section.
About one million LP problems are randomly generated and
solved for the training dataset and 500,000 LP problems for the
testing dataset. Any small size LP problem is padded to have a
matrix size of 300x300. All LP problems guarantee to have the
optimal solution. The experiments are performed on Intel(R)
Xeon(R) CPU @ 2.20GHz 25GB RAM GPU Tesla P100-
PCIE on Ubuntu 18.04.5 LTS. It is implemented by Python
programming language based on Tensorflow 2.8.0. [29].

IV. ANALYSIS AND RESULTS

A. Performance Measurement

Most deep learning models use the mean squared logarith-
mic error (MSLE) as the evaluation measure. It is often used in
regression tasks for predicting a continuous value. The MSLE

loss function is defined as the mean of the squared logarithmic
errors between the predicted values and the true values:

L(Y, Ŷ) = 1
m+n

∑m+n
i=1 (log(yi + 1)− log(ŷi + 1))2,

where ŷi is the predicted value, yi is the true value, and n+m
is the number of samples. The logarithmic transformation helps
reduce the impact of large errors, which can be useful when
working with skewed data or when there are a few extremely
large errors that could dominate the loss. Notice that vector Y
contains a large number of 2’s, an imbalance problem occurs
during model training, and the error value for 2 is larger than
the error from 0 and 1, so the trained model will predict 2
more accurately than 0 or 1. This situation is not reasonable
for training the deep learning model for predicting binding and
non-binding constraints. Therefore, it is necessary to change
the scale of the data to a log scale.

Accuracy is a common metric used to evaluate the per-
formance of a machine-learning model which is defined as
the percentage of correct predictions made by the model on a
dataset. It is often used to evaluate classification models, where
the goal is to predict a class label for a given input. In this
case, the model’s predictions are compared to the true class
labels for the inputs, and the percentage of correct predictions
is calculated. This paper proposes two types of accuracy that
are 0-1 accuracy and 0-1-2 accuracy. The 0-1-2 accuracy is
the accuracy of all optimal binding statuses of Y. Yi = 0
represents an optimal binding constraint i that is aTijx

∗ = bi.
Yi = 1 indicates an optimal nonbinding constraint. Yi = 2
shows an auxiliary constraint for padding zeros rows to an
(m,n) LP problem as shown in Eq. (8).

Acc0−1−2(Y, Ŷ) =

∑N
i=1 βi

N

where

βi =

{
1 if Yi = Ŷi,
0 if Yi ̸= Ŷi.

The 0-1 accuracy is the accuracy without padding status
Yi = 2 of a (m,n) LP problem.

Acc0−1(Y, Ŷ) =

∑n
i=1 βi +

∑N+m
i=N+1 βi

m+ n

The following subsection will show the result of using the
different normalizations with LPNet.

B. Normalization Experiment

All normalizations are applied to the row-column-conv
MobileNet baseline model with the row-column arrangement
of input samples. From Fig. 4, after 25000 iterations the unit-
vector normalization can reduce loss values faster than other
normalization methods.

As for the error value of the testing dataset shown in Fig.
5, both the min-max method and the standardization method
fluctuated significantly more than the unit-vector method be-
cause the normalized input samples did not reduce the variation
of the input LP samples. For the unit-vector method which
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Fig. 4. Error of normalization methods of training dataset.

Fig. 5. Error of normalization methods of the testing dataset.

adjusts the problem to have the same scale, the loss value
is more stable. Fig. 5 shows the lowest loss value of these
normalization methods.

TABLE II. NORMALIZATION METHODS

Normalization MSLE 0-1-2 acc 0-1 acc

Standardize 0.0078 0.983 0.957
Min-max 0.0068 0.987 0.967
Unit-vector 0.0034 0.996 0.990

C. Row-column Order Experiment

The lowest loss values of the three normalization methods
are shown in Table II. The unit-vector normalization achieves
the lowest loss value and gains the highest accuracy both the
0-1-2 accuracy and the 0-1 accuracy.

Table III shows MSLE of a different order of the all-
unit-row-except-first-unit-column matrix. The original order
column represents the order of rows and columns according
to the given LP problem. The rearranged row order represents
the order of all primal LP constraints according to the angle

TABLE III. THE AVERAGE MSLES FROM THE ROW-COLUMN
CONVOLUTION PLUS THREE STATE-OF-THE-ART CNNS

Models

MSLE

Original Rearrange Rearrange
order row order row-column

order

RCConv ResNet50 0.0168 0.0213 0.0055
RCConv MobileNetV1 0.0169 0.0061 0.0034
RCConv EfficientNetB1 0.0164 0.0164 0.0151

between the row-coefficient vector and the sum vector. The
rearranged row-column order represents the order of all primal
LP constraints and dual LP constraints. Observe that the
arrangement of rows and columns of the input samples shows
superior performance over the original order and rearrange of
row order only.

D. Baseline CNN Architecture Experiment

The validation dataset loss values of LPNet with different
baseline models are displayed in Fig. 6. Our results indicate
that the MobileNet model exhibits the most stable convergence
compared to other baseline models. This suggests that the
MobileNet model is a suitable choice for training LPNet and
achieving consistent results.

TABLE IV. THE PERFORMANCE OF STATE-OF-THE-ART CNN
ARCHITECTURES

Model Parameters MSLE 0-1-2 Acc 0-1 Acc

ResNet50 25,205,080 0.0072 0.986 0.966
MobileNetV1 4,327,640 0.0114 0.974 0.935
EfficientNetB0 5,279,415 0.0092 0.978 0.944
EfficientNetB1 7,805,083 0.0138 0.959 0.896
Xception 22,484,544 0.0070 0.990 0.976
InceptionV3 23,425,848 0.0136 0.962 0.902

RCConv ResNet50 25,422,232 0.0055 0.992 0.981
RCConv MobileNetV1 4,365,368 0.0034 0.996 0.990
RCConv EfficientNetB0 5,317,269 0.0049 0.993 0.983
RCConv EfficientNetB1 7,842,937 0.0151 0.954 0.882
RCConv Xception 22,522,272 0.0049 0.992 0.982
RCConv InceptionV3 23,463,576 0.0088 0.979 0.947

All experiments use the row-column arrangement of input
samples. MSLEs of all architectures with RCConv is smaller
than the one without. Especially, the MobileNet baseline with
RCConv obtains the lowest loss and the best 0-1-2 accuracy
as shown in Table IV.

The results of RCConv MobilenetV1 in Fig. 7 show the
average of all correctly optimal binding predictions (1.0 acc)
with respect to many LP problem sizes. LP size ratios (d) are
defined as the following conditions:

d(m,n) =

{
n−m
n if n > m,

0 if n = m.
(10)

Fig. 7 shows the number of LP models that LPNet can
predict all optimal constraints of different ratios of d. When d
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Fig. 6. Mean log square error of CNN baselines and RCConv CNN
baselines of the validate dataset.

= 0, it means the number of constraints is equal to the number
of decision variables. LPNet can predict all optimal binding
constraints of LP problems over 80% when 0.2 ≤ d ≤ 0.3.
However, this model also suffers from an imbalance problem
and many LP problems are infeasible if m > m or d > 0.8.
The next subsection shows the speed gain using LPNet to
obtain the optimal solutions for LP problems.

From the above results, an optimal solution can be directly

Fig. 7. The bar chart shows the average number of predicted optimal binding
constraints that are correctly all components of Y depending on the LP

problem ratios d.

obtained by solving the system of linear equations. There are
n predicted constraints from xj ≥ 0 for j ∈ {1, ..., n} and
aijxj ≥ bi for i ∈ {1, ...,m} that can be selected to solve the
exact optimal solution. Fig. 8 shows the average total time for
solving the LP problems where the number of constraints and
variables are the same. The proposed LPNet algorithm saves a
lot of time compared with the commercial solver Cplex [31].
The lowest solution time of the biggest LP size is 0.076 sec
on GPU (Tesla-T4) using numpy.linalg solver. However, results
are slightly longer on CPU (Xeon(R) 2.20GHz). Fig. 9 shows
the average total time where m < n and n = 300. LPNet
GPU is also faster than LPNet CPU and the Cplex solver.
LPNet GPU achieves 7.5 times faster than the cplex solution
time.

Fig. 8. Total LP solution time for the number of constraints equal to
variables.

E. Netlib Dataset

Netlib is a collection of mathematical software, algorithms,
and databases that were widely used in the scientific and engi-
neering communities during the 1980s and 1990s. The dataset
contains software packages for optimization, linear algebra,
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Fig. 9. Total LP solution time for the number of constraints with 300
variables.

differential equations, and other areas of scientific computing.
It also includes benchmark datasets, including the Netlib LP
dataset, which is a collection of linear programming problems
commonly used to evaluate and compare the performance of
optimization algorithms. Today, Netlib serves as an archive
of legacy software and algorithms and is still widely used in
academic research and education as a reference resource.

TABLE V. THE PERFORMANCE OF LPNET MOBILENET BASELINE ON
NETLIB DATA

LP problem Optimal m n 0-1-2 Acc 0-1 Acc

ADLITTLE 225494.967 56 97 1.0 1.0
AFIRO -464.753 28 32 1.0 1.0
BEACONFD 33592.485 173 262 0.998 0.997
BLEND -30.812 74 83 0.996 0.987
BRANDY 1518.509 220 249 1.0 1.0
E226 -18.751 223 282 1.0 1.0
ISRAEL -896644.827 174 142 1.0 1.0
SC50A -64.575 50 48 1.0 1.0
SC50B -70.0 50 48 1.0 1.0
SC105 -52.202 106 103 1.0 1.0
SC205 -52.202 205 203 1.0 1.0
SCAGR7 -2331389.816 129 140 1.0 1.0
SHARE1B -76589.318 117 225 1.0 1.0
SHARE2B -415.732 96 79 1.0 1.0
STOCFOR1 -41131.976 117 111 1.0 1.0

Table V lists selected LP problems from netlib having m
and n less than 300. All of them can be directly sent to LPNet
to identify the optimal solution.

F. Convolution Analysis

A visual explanation for explaining the relation between
a target class and outputs of a CNN layer is introduced by
Grad-CAM [30]. The main concept is to choose an interested
target class in Y and take a partial derivative from the output-
predicted class with respect to output feature maps of the
interested CNN layer for measuring a gradient size corre-
sponding to the sensitive area of the CNN feature maps. The

output feature maps of each CNN layer can be localized maps
highlighting important regions related to the target class.

Fig. 10. Output feature maps of convolutional layers of the RCConv
MobileNet baseline.

Fig. 10 shows the gradCAM heatmaps of each layer of
one of the test problems of size 292 × 292 from LPNet
with the MobileNet baseline. The all-unit-row-except-first-
unit-column matrix of the test problem is plotted at the top
left of Fig. 10. The second sub-figure to the right comes
from the row-column convolutional layers (RCConv) which
combine spatial information of rows and columns. By the
concept of padding 0, the pixels over the 292x292 rows and
columns respectively generate the dark color. The conv1 relu
layer will be convoluted and reduced dimensions by half to
get a general concept that is related to the prediction Yi = 0
for i ∈ {0, ..., 600}. MobileNet architecture has a lot of
depthwise and pointwise convolutional layers for reducing
many parameters compared with regular convolutional layers.
Until the last pointwise CNN layer (conv pw 13 relu), there
are some feature maps that respond to the optimal binding
prediction. Notice on the highlighted heatmap RCConv to
conv pw 5 layer, LPNet is extracting the sensitive area in
terms of highlighted rows which corresponds to the optimal
binding constraints. The higher layers will be convoluted and
reduced dimensions in order to embed the important features
as shown in the conv pw 13 relu heatmap.

Further, three feature maps of all CNN layers can be
localized by gradCAM for nonbinding constraints and padding
constraints status in Y as shown in Fig. 11. For the output
layer of LPNet with the MobileNet baseline, the prediction
gives three possible prediction statuses which are 0, 1, or 2.
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Fig. 11. GradCAM heat maps of the last CNN layer (conv pw 13 relu)
depend on the specific classes in Y.

The important area of the specific status related to the last
convolution (Conv pw relu) is shown in Fig. 11. In order
to investigate where are the optimal binding constraints, the
heatmaps from the gradCAM technique will only consider
the prediction at Yi = 0 for i ∈ {0, ..., 600} as shown in
the left Fig. 11. The middle figure shows the heatmaps of
nonbinding constraints that are Yi = 1 for i ∈ {0, ..., 600}.
The heatmaps of the right figure are represented by the padding
status Yi = 2 for i ∈ {0, ..., 600}. Moreover, this heatmap
shows the separated area of binding constraints, non-binding
constraints, and padding.

Fig. 12. Both heatmaps show the area highlight of the optimal binding
constraints status (0 ∈ Y) from non-negative variables and regular

constraints, respectively.

Fig. 12 shows the localized heatmaps that are related to
the non-negative constraints of variables from 1 to 300 and the
original constraints from 301 to 600. It indicated that LPNet
tried to capture the dual constraints see the left figure with
highlight columns that relate to the non-negativity constraints
and the right figure shows the highlight of heatmaps that affect
the original constraints.

V. DISCUSSION

This LPNet model has a limitation that it works for any
linear programming problem having sizes less than 300 rows
and 300 columns due to the hardware limitation. To solve a
linear programming problem of larger sizes, new training data
must be synthesized and solved and weights of the state-of-
the-art deep learning model must be retrained on large system
resources.

For the perfect prediction of the optimal binding con-
straints, LPNet determines the optimal solution of a linear

programming problem algebraically, without the need of an
iterative step. However, if the prediction is not 100%, some
constraints are not the optimal binding constraints. The real
optimal constraints must be reidentified. So this work can be
extended using the iterative procedure after the optimal binding
prediction. A complete linear programming solver utilizing the
predicted optimal binding constraints could be created.

In 2023, [25] introduced a novel deep learning approach
using feedforward neural networks to solve the LP problem.
The approach models the LP problem by an ordinary differ-
ential equations (ODE) system, the state solution of which
globally converges to the optimal solution of the LP problem.
A neural network model is constructed as an approximate state
solution to the ODE system, such that the neural network
model contains the prediction of the LP problem. The neural
network is extended by taking the parameter of LP problems
as an input variable so that one neural network can solve
multiple LP instances in a one-shot manner. However, it is
important to note that the proposed method’s performance has
only been tested on a specific collection of small LP examples.
Its efficacy on more complex or diverse LP problems remains
uncertain.

Overall, LPNet provides a promising approach for identi-
fying optimal binding constraints in LP problems, which can
greatly reduce the computation time required for traditional
iterative solvers. With further development of the algorithm,
LPNet has the potential to become a powerful tool for solving
complex LP problems in various fields.

VI. CONCLUSIONS

This paper presents the deep learning architecture for
identifying the optimal binding constraints called LPNet. A
linear programming problem must be cast as the all-unit-row-
except-first-unit column matrix with row-column rearrange-
ment before sending it to LPNet. LPNet is composed of
the row-column convolutional layer followed by the state-
of-the-art convolutional neural network models and two fully
connected layers of neural networks and ends with the output
layer. With RCConv + MobileNetV1 + two fully connected
layers + output layer, LPNet achieves 99.6% 0-1-2 accuracy
from a million synthesized linear programming problems with
finite optimal solutions.

The form of the all-unit-row-except-first-unit column has
been studied to show the performance obtained for scaling
to unit-vector over the max-min normalization and the stan-
dardization of rows. Moreover, the arrangement of rows and
columns also helps reduce training loss.

LPNet is able to predict 80% of linear programming
problems with all optimal binding constraints from generated
linear programming problems and it correctly predicts 86%
benchmark netlib problems of size smaller than 300 variables
and 300 constraints. It can achieve the optimal solution faster
than the cplex solver more than 6 times.

In general, any LP problem may not have an optimal solu-
tion. It will be very useful to design deep learning to categorize
LP problems whether they are infeasible, unbounded optimal,
or have a finite optimal solution. Moreover, LPNet weights can
be used to accelerate the solution time of any commercial LP
solver.
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