
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 5, 2023

Light Field Spatial Super-resolution via Multi-level
Perception and View Reorganization

Yifan Mao1
School of Computer and Information,

Anqing Normal University
Anqing, 246000, China

Zaidong Tong2
School of Computer and Information,

Anqing Normal University
Anqing, 246000, China

Xin Zheng3
School of Computer and Information,

Anqing Normal University
Anqing, 246000, China

Xiaofei Zhou4
School of Automation,

Hangzhou Dianzi University,
Hangzhou 310018, China

Youzhi Zhang5
School of Computer and Information,

Anqing Normal University
Anqing, 246000, China

Deyang Liu6*
School of Computer and Information,

Anqing Normal University
Anqing, 246000, China

Abstract—Light field (LF) imaging can obtain spatial and
angular information of three-dimensional (3D) scene through a
single shot, which enables a wide range of applications in the fields
of 3D reconstruction, refocusing, virtual reality, etc. However,
due to the inherent trade-off problem, the spatial resolution
of acquired LF images is low, which hinders the widespread
application of LF imaging technique. In order to relieve this issue,
an end-to-end LF spatial super-resolution network is proposed by
considering the multi-level perception and view reorganization.
This method can fully explore the highly interwoven LF spatial
and angular structure information. Specifically, a multi-feature
fusion enhancement block is introduced that can fully perceive
LF spatial, angular, and EPI information for LF spatial super-
resolution. Furthermore, the angular coherence between LF views
is exploited by reorganizing the LF sub-aperture images and
constructing a multi-angular stack structure. Compared with
other state-of-the-art methods, the proposed method achieves
superior performance in both visual and quantitative terms.

Keywords—Light field image; spatial super-resolution; multi-
level perception; view reorganization

I. INTRODUCTION

Light Field (LF) image with four-dimensional structure
not only contains the intensities of light ray, but also records
the directions of light ray. Compared with traditional 2D
imaging which can only capture the spatial information of
light ray, LF imaging technique has great potential in many
fields, such as image refocusing [1], 3D reconstruction [2], and
virtual reality [3], etc. However, due to the inherent trade-off
problem between spatial and angular resolution in the imaging
plane, low spatial resolution hinders the application of LF
imaging. High-efficiency spatial super-resolution methods for
LF imaging play a crucial role in advancing technological
development and have wide-ranging applications in medical
treatment, security monitoring, and related fields. The signif-
icance of these methods lies in their ability to enhance the
resolution of LF data, enabling the reconstruction of high-
quality images with greater detail and precision. Therefore,
it is imperative to investigate and develop efficient LF super-
resolution techniques to address the challenges posed by low
spatial resolution of LF data and improve their usability in
various applications.

LF image has several representations, such as lenslet image,
Sub-Aperture Image (SAI) array and Pseudo Video Sequence
(PVS), et al. For SAI (also called view) array representation,
the adjacent SAIs records the same 3D scene information with
a small disparity. This means that the SAI array is highly
correlated, which benefits in enhancing the LF spatial super-
resolution performance. SAI array representation is always
adopted for LF spatial super-resolution task. Especially with
the development of deep learning, the convolutional neural
Network (CNN) has been widely used in LF image processing
tasks with SAI array representation. However, due to the
complex LF structure, and the interweaving of spatial and
angular information in LF images, there are great challenges
to further improve the super-resolution performance by using
CNNs under SAI array representation. To solve this problem,
most existing methods usually consider exploring the structure
information of LF image or reducing the dimensionality of the
LF image. Although these methods can reconstruct high spatial
resolution LF images, their performance is limited. The reason
lies in two aspects. One is that the LF structure information is
under-explored. The other is that the rich angular information
contained in LF image is under-used. Fully exploring LF struc-
ture and angular information is more conducive to improving
LF super-resolution performance.

In order to mitigate these issues, in this paper, we pro-
pose a LF spatial super-resolution network via multi-level
perception and view reorganization. By introducing the multi-
feature fusion enhancement block, our network can adequately
explore and fuse LF structure information, including spatial,
angular, and Epipolar Plane Image (EPI) information, so as to
recover more details, especially for some occlusion regions.
In addition, in order to better mine the abundant angular
information, we reorganize the LF SAIs in different angular
directions. Specifically, we arrange the horizontal and vertical
SAIs in the LF image array with the same angular coordinate
element into a stack, and construct a Multi-Angular Stack
(MAS) structure. The MAS structure can provide rich angular
and spatial information for LF image spatial super-resolution.
The main contributions of this paper are as follows:

• We propose a multi-feature fusion enhancement block
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to fully perceive LF spatial, angular, and EPI infor-
mation for LF spatial super-resolution.

• We construct a multi-angular stack structure to ad-
equately explore LF angular information to enhance
LF spatial super-resolution performance.

• Comprehensive experiments demonstrate the superior-
ity of the proposed method than the other state-of-the-
art approaches.

The rest of this paper will be organized in the following
way. A brief review of related work will be provided in
Section II. In Sections III, we present our approach. Section IV
discusses the simulation results. Finally, the paper is concluded
in Section V.

II. RELATED WORKS

LF spatial super-resolution aims to generate high spatial
resolution LF images from densely sampled low spatial res-
olution one. To achieve this goal, two approaches can be
used. One is to apply a single image super-resolution method
[4] to super-resolve each SAI separately. The other is to
build a mathematical model based on prior information to
directly reconstruct high spatial resolution LF image. With the
development of deep learning, researchers are more inclined
to use CNN to realize the spatial resolution reconstruction of
LF images, which can take full use of LF abundant structure
information and improve the LF reconstruction performance.
A brief reviews of single image super-resolution and LF image
super-resolution are given in this section.

A. Single Image Super-resolution

Single image super-resolution does not involve multi-view
tasks, for which the goal is only to generate a high-resolution
2D image from a low-resolution 2D image. Shi et al. [5]
constructed a structure-aware single image super-resolution
network to further generate structure and details of images.
Song et al. [6] developed a criss-cross network to reduce the
computation complexity for single image super-resolution task.
In their method, few feature points were used to compute long-
range dependencies. Hsu et al. [7] proposed a detail-enhanced
wavelet residual network for single image super-resolution
to resolve the details over smooth problem. Wang et al. [8]
developed an end-to-end joint framework to super-resolve
single image by considering the issue of no ground truth high
resolution images and degradation models are available. Lan
et al. [9] put forward a lightweight network for single image
super-resolution, which can decrease computational burden by
expressing multiscale feature and learning feature correlation.

Single image super-resolution method can reconstruct high
spatial resolution LF image by super-resolve each SAI. How-
ever, the inherent structure information is under-explored in
this kind of method, which limits the LF super-resolution
performance.

B. Light Filed Super-resolution

Different from 2D image super-resolution, the pixel in-
formation required for LF super-resolution actually exists in
each SAI. The four-dimensional information of the LF image

can be decomposed into many SAIs recording the scene, and
there is a certain disparity between different SAIs, which has
a strong correlation. Therefore, the SAIs of LF images are
highly correlated, and the utilization of single view spatial
information and angular correlation between different views
is the key factor to improve the performance of LF image
super-resolution.

Early studies followed the traditional paradigm by develop-
ing different models to achieve super-resolution in LF image
space. Among them, LFBM5D [10] extends the BM3D [11]
filtering to 5D to provide more prior information and thus
improve the super-resolution performance. Mitra et al. [12]
proposed a Gaussian mixture model for encoding the spatial
structure of the LF to cope with noise and super-resolution
issues. Farrugia et al. [13] used multivariate ridge regression
to approximate the subspace linear projection method of the
adjacent SAIs to the middle SAI. Rossi et al. [14] utilized the
complementary information between different views to achieve
spatial super-resolution through graph optimization based on
regularized coupling of graphs. Although these models can
encode the structure of the LF by establishing a mathematical
model, they rely too much on the prior information of the
image, resulting in limited super-resolution performance.

With the development of deep learning, researchers are
more inclined to build different super-resolution networks to
learn the mapping relationship between low-resolution and
high-resolution LF images. For example, Yoon et al. [15]
proposed a model for LF image super-resolution based on deep
convolutional networks. Zhang et al. [16] divided the views
into four groups, and used the residual information between ad-
jacent views to cope with super-resolution tasks. They explored
the correspondences between different viewpoints and divided
the SAIs into multiple image stacks with a consistent sub-pixel
offset. However, the complementary information between all
views was not fully utilized, and the disparity consistency was
not well maintained. In order to make full use of the high-
dimensional features of LF data, Yeung et al. [17] alternately
used convolutions to characterize the relationship between
pixels in the 4D structural information of spatial domain and
angular domain. However, the inherent disparity structure of
LF images is ignored. Jin et al. [18] proposed an all-to-one
light-field super-resolution strategy to strengthen the dispar-
ity structure. They explored the complementary information
between the views to perform individual super-resolution for
each SAI of LF image. Wang et al. [19] proposed a spatial-
angular interaction strategy and designed different networks to
extract spatial and angular features respectively. Wang et al.
[20] further used separable convolutional networks to explore
the spatial-angular information of LF. Although they explore
the spatial-angular information to a certain extent, they do not
effectively mine the high-dimensional information of the LF
image. As a result, the LF super-resolution performance is
affected to a certain extent. Liu et al. [21] extracted global view
information and simultaneously modeled the correlation within
each view to achieve better super-resolution performance.
Although these methods have shown remarkable performance,
there are still some problems that are not well addressed.
One is that the high-dimensional information of LF images
is not fully utilized, especially the complementary informa-
tion between spatial angulars and the geometric consistency
information of LF EPIs. The other is that the angular structure
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between the LF views is not broken, and the angular correlation
between the LF images is not explored enough.

Focusing on the above problems, we propose a novel
network for LF spatial SR based on the content characteristics
of LFs. We introduce two strategies to mitigate the above
problems. Since the high-dimensional features of the LF image
contain rich information, we fully explore the LF spatial infor-
mation, LF angular information, and the geometric information
of the LF EPIs, respectively. The information is interacted
and the channel attention is increased to obtain the enhanced
information after interaction. In order to further explore the
angular correlation between the LF views, we break the angular
structure of the LF array and rearrange it into multiple stacks,
and super-resolve each horizontal view stack separately. The
network makes full use of the content characteristics of LF
images and further improves the performance of LF spatial
resolution reconstruction by fully exploring the information
of different dimensions of the LF and designing the cross-
arrangement of views to mine the angular correlation between
views. Experimental results on both real and synthetic datasets
demonstrate the superiority of the proposed method.

III. PROPOSED METHOD

In the proposed method, the spatial information of the LF
image, the angular information and the geometric information
of the LF EPIs were used to interact with the multi-dimensional
features of the LF and reorganize the array structure based on
the content characteristics of the LF. The method makes full
use of multi-dimensional information and angular correlation
of LF images, and is composed of two main modules: multi-
stream feature fusion enhancement module and structure re-
organization module. The overall network structure is shown
in Fig. 1. We formulate LF in terms of a four-dimensional
tensor L(u, v, x, y) ∈ RU×V×X×Y , where U and V denote
the angular dimensions, and H and W denote the spatial
dimensions. Specifically, the SAI of a U × V array represents
the LF, and the resolution of each SAI is H ×W . The high-
resolution LF image L ∈ RU×V×αX×αY is reconstructed from
the low-resolution LF image L ∈ RU×V×X×Y , where α is the
magnification factor. Following [16-19], we perform SR only
on the Y channel to reduce the computational complexity. The
Cb and Cr channels are upsampled using bicubic interpolation
algorithms. Then the super-resolved Y, Cb and Cr channels are
converted into an RGB image. The proposed reconstruction
network can be written as

LHR(u, v, αx, αy) = f(LLR(u, v, x, y),Θ),

Θ∗ =argmin
Θ

||LGT (u, v, αx, αy)− LHR(u, v, αx, αy)||
(1)

where LHR(u, v, αx, αy) is the reconstructed dense LF ,
LGT (u, v, αx, αy) is the ground truth, f(·) represents the
mapping from low resolution LF image to high resolution LF
image, Θ is the network parameter.

To achieve a high-quality dense LF reconstruction and
obtain optimal network parameter Θ, we propose a multi-
stream reconstruction network. To effectively extract distinc-
tive information from various view images, we propose a
novel approach that combines multiple features to enhance
the representation of LF spatial, angular, and EPI information.
Specifically, we present a multi-feature fusion enhancement

block that can accurately capture spatial and angular details
contained in the LF data (See Sec. III-A). Moreover, we design
a Structure-based Super-Resolution Module that utilizes the
angular information present in the subaperture view array to
perform super-resolution reconstruction, thus optimizing the
quality of the reconstructed views (see Sec. III-B). To further
enhance the geometric consistency between the reconstructed
views and maintain the valuable disparity structure of the LF
data, we propose a mixed loss function that incorporates both
reconstruction loss and EPI gradient loss (see Sec. III-C). The
network architecture is elaborated in the following subsections.

A. Multi-stream Feature Fusion Enhancement Module

To enhance the characteristics of decoupling, this pa-
per proposes the addition of a channel information, L ∈
RU×V×X×Y×C , to the 5D data. Multiple representation meth-
ods of the LF image in various dimensions were utilized to
explore its content characteristics and extract feature informa-
tion. The fusion process of multi-stream feature, denoted as
LMFFE , is expressed as follows:

LMFFE = fMFFE(CA(SFE+AFE)

+CA(EPIH +EPIW))
(2)

Here, SFE stands for the spatial feature extraction module of
subaperture view, AFE indicates the angular feature extraction
module of subaperture view, EPIH and EPIV denote the
feature extraction modules of the EPI in the vertical and
horizontal directions (EPI-H and EPI-V), respectively, and
CA represents the attention module. In what follows, we
expound on each module of the Multi-stream Feature Fusion
Enhancement Module.

Spatial Feature Extraction(SFE): We focus on the infor-
mation of SAI in the dimension and reshape the 5D LF data
with increased channel information Slr ∈ RUV×C×X×Y . The
SFE module is used to extract the spatial features of the SAI.
Specifically, SFE is a module composed of three convolutions
with a kernel size of 3 × 3, a step size of 1, a dilation rate
of 2, and a Relu activation layer after each convolution layer.
Since we focus on H × W , the dimension information, SFE
only includes the pixel information of the context in each SAI,
which has a good refinement of the global features of each SAI
and has rich texture information.

Angular Feature Extraction(AFE): In view of the multi-
angular characteristics of LF, we centers on the U×V angular
information. Similarly, we reshape the original 5D light field
data Alr ∈ RHW×C×U×V . The AFE module is used to extract
the angular feature from the pixel information of the same
angular position of the SAI. Specifically, AFE is a module
composed of three convolutions with a kernel size of 3×3 and
a step size of 1. Each convolution layer is followed by a Relu
activation layer. Different from SFE, AFE pays more attention
to the correlation in angular, and different SAIs have strong
correlation in the same pixel position, which can provide more
pixel information for the occlusion area.

EPI Feature Extraction(EPI-H, EPI-V): EPI is the
horizontal Elr

H ∈ RVW×C×U×H or Elr
W ∈ RUH×C×V×W

vertical two-dimensional slice information of SAI by sampling
angular coordinates and corresponding spatial coordinates in
multi-dimensional data of LF. Acknowledging the effectiveness
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Fig. 1. The architecture of our light field spital reconstruction network.

of EPI in reflecting the geometrical consistency of LF, we
delves into the analysis of LF geometric information, both
horizontally and vertically. Specifically, EPI-H and EPI-V are
modules composed of three convolutions with a kernel size of
3× 3 and a step size of 1. Each convolution layer is followed
by a relu activation layer. The EPI slices have a simple linear
structure, which is basically a slanted straight line composed
of homogeneous regions, and perform well for the analysis of
features in the scene slices even for the rather complex shape
and intensity variations in SAI.

Channel Attention(CA): Due to the local nature of convo-
lutional operations, obtaining sufficient information to extract
inter-channel relationships in LF imager can be challenging.
To address this limitation, we integrate CA into our proposed
architecture after the SFE and AFE fusion, as well as after
the EPI-H and EPI-V fusion. The CA module compresses
the feature map into a feature vector via global average
pooling (GAP) to obtain a global description feature. Non-
linear relationships between channels are then learned by
compressing the channel count through 1 × 1 convolutions,
using the rule activation layer, and subsequently amplifying
the channel count via another 1× 1 convolution layer. Finally,
the weighting coefficients assigned to each channel by the
sigmoid function enable effective cross-channel interaction and
enhancement of fusion interaction amongst the information.

B. Structure-base Super-resolution Module

This paper proposes a novel approach to leverage the
angular information contained in the subaperture view ar-
ray for super-resolution reconstruction. Specifically, a cross-
arrangement structure of the angular view and a reorganized

parallax structure of the view are proposed to enhance the
utilization of angular information. Then, a multi-stream fea-
ture fusion module is introduced to extract rich and high-
dimensional features, which are subsequently fed into the
structure-based super-resolution module. The network struc-
ture can be expressed as:

LHR = Concat(f1
SSRM (MFFE1), · · ·, f i

SSRM (MFFEi))
(3)

where f i
SSRM (·) represents the Structure-base Super-

resolution module, MFFEi represents the input information
of the first row in the cross-arrangement structure of angulars
and views, and i represents the number of rows, where the
main scenario in this paper is i = 5. The designed super-
resolution network comprises three 2D ResBlock convolutions,
three 3D ResBlock convolutions, one 3× 3 convolution, three
2D ResBlock convolutions, three 3 × 3 convolutions, one
pixel shuffle layer, and two 3 × 3 convolutions. Different
ResBlock convolutions are utilized to fuse rich information in
both the spatial and angular domains, while the pixel shuffle
layer achieves spatial super-resolution via upsampling.

C. Training Details

In this method, we adopt the L1 loss function to measure
the reconstructed target LF LHR(u, v, αx, αy), and supervise
our network by its ground truth value LGT (u, v, αx, αy),
which is defined as:

loss1 =
∑

u,v,x,y

(|LGT (u, v, αx, αy)− LHR(u, v, αx, αy)|)

(4)
To further preserve the valuable disparity structure of the

www.ijacsa.thesai.org 1078 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 5, 2023

TABLE I. QUANTITATIVE COMPARISON RESULTS OF DIFFERENT METHODS FOR TASK 2 × SR AND 4 × SR (PSNR/SSIM)

Task 2 × 4 ×
Method EPFL HCI new HCI old INRIA STFgantry EPFL HCI new HCI old INRIA STFgantry

Bicubic 29.50/0.935 31.69/0.934 37.46/0.978 31.10/0.956 30.82/0.947 25.14/0.831 27.61/0.851 32.42/0.984 26.82/0.886 25.93/0.843
VDSR 32.50/0.960 34.37/0.956 40.61/0.987 34.43/0.974 35.54/0.979 27.25/0.878 29.31/0.883 34.81/0.952 29.19/0.921 28.51/0.901
EDSR 33.09/0.963 34.83/0.960 41.01/0.988 34.97/0.977 36.29/0.982 27.84/0.886 29.60/0.887 35.18/0.954 29.66/0.926 28.70/0.908
RCAN 33.16/0.964 34.98/0.960 41.05/0.988 35.01/0.977 36.33/0.983 27.88/0.886 29.63/0.888 35.20/0.954 29.76/0.927 28.90/0.921
resLF 32.75/0.967 36.07/0.972 42.61/0.992 34.57/0.978 36.89/0.987 27.46/0.890 29.92/0.901 36.12/0.965 29.64/0.934 28.99/0.921

LFSSR 33.69/0.975 36.86/0.975 43.75/0.994 35.27/0.983 38.07/0.990 28.27/0.908 30.72/0.912 36.70/0.969 30.31/0.945 30.15/0.939
LF-ATO 34.27/0.976 37.24/0.977 44.20/0.994 36.15/0.984 39.64/0.993 28.52/0.912 30.88/0.914 37.00/0.970 30.71/0.949 30.61/0.943

LF-InterNet 34.14/0.976 37.28/0.977 44.45/0.995 35.80/0.985 38.72/0.992 28.67/0.914 30.98/0.917 37.11/0.972 30.64/0.949 30.53/0.943
LF-DFnet 34.44/0.977 37.44/0.979 44.23/0.994 36.36/0.984 39.61/0.994 28.77/0.917 31.23/0.920 37.32/0.972 30.83/0.950 31.15/0.949
MEG-Net 34.31/0.977 37.42/0.978 44.10/0.994 36.10/0.985 38.77/0.992 28.75/0.916 31.10/0.918 37.29/0.972 30.67/0.949 30.77/0.945

DPT 34.49/0.976 37.36/0.977 44.30/0.994 36.41/0.984 39.42/0.993 28.94/0.917 31.20/0.919 37.41/0.972 30.96/0.950 31.15/0.949
Proposed 34.56/0.977 37.64/0.979 44.55/0.995 36.36/0.985 39.64/0.993 28.88/0.915 31.23/0.919 37.32/0.972 30.87/0.950 31.08/0.948

LF and promote the geometric consistency between the re-
constructed views, this paper refers to the EPI gradient loss
function proposed by [22], which is defined as follows

loss2 =
∑
y,v

(|Ex
GT (x, u)− Ex

HR(x, u)|

+ |Eu
GT (x, u)− Eu

HR(x, u)|)
+
∑
x,u

(|Ey
GT (y, v)− Ey

HR(y, v)|

+ |Ev
GT (y, v)− Ev

HR(y, v)|)

(5)

The training objective of our method is to minimize these
two losses: min loss1 + loss2.

IV. EXPERIMENTS

To confirm the efficacy of the proposed approach, a
range of detailed experimental results have been presented,
comprising ablation experiments and comparisons with the
existing methods. Specifically, we follow [20] which utilize
five publicly available LF datasets (namely EPFL , HCInew ,
HCIold , INRIA , STFgantry) during both the training and
testing phases. The training and test sets follow the same
partitioning as provided in [20]. The LFs within these datasets
possess an angular resolution of 9 × 9. During the training
procedure, we downsample the SAI into LF patches of size
32 × 32 via bicubic downscaling. The optimization of our
network utilizes both L1 and EPI loss functions and the Adam
method. Our network is implemented in PyTorch, leveraging
an RTX 5000 GPU. The learning rate is initially configured
to 2 × 10−4 and subsequently reduced by a factor of 0.5
every 15 epochs. The performance of our proposed method is
evaluated using objective measures, including Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity (SSIM), while
simultaneously conducting a subjective comparison of detail
texture regions after SR.

A. Comparison With State-of-the-Art Methods

The proposed method is compared with several state-of-
the-art methods, comprising three single-image SR techniques
[7-9] and seven LF image SR methods [16,17,18,19,20,23,24].

To ensure a uniform training process, we retrained all these
methods using the same dataset. Quantitative Results: Table
I presents quantitative results for 2×SR and 4×SR. The
proposed method significantly outperforms three single image
super-resolution methods, VDSR[7], EDSR[8], and RCAN[9].
This improvement is mainly attributed to the complex texture
details present in the comprehensive scene, which renders
the reconstruction method of single image unsuitable for LF
image reconstruction. Moreover, our approach attains the best
overall performance compared to resLF[16], LFSSR[17], LF-
ATO[18], LF-Internet[19], LF-DFnet[20], MEG-Net[23], and
DPT[24]. Our proposed method outperforms the comparative
methods in all five datasets for two primary reasons. Firstly, the
comparative methods are less effective in fully exploiting the
LF’s rich angular information and handling complex scenes.
resLF[16] constructs view stacks to explore LF information
in five directions: horizontal, vertical, left, right, and tilt,
fails to fully use complementary information among all views
while maintaining disparity consistency. Similarly, though
the LF-ATO[18] method proposes an all-to-one architecture
that explores complementary information between views, the
feature information between spatial and angular domains is
not entirely fused. This deficiency affects the spatial super-
resolution performance. Second, the comparative methods fail
to exploit the LF’s geometric structure information to its
full potential. LF-Internet[19] utilized the spatial and angular
interaction strategy and different networks to extract spatial
and angular features while making use of the spatial and
anglular correlations. However, they neglected the EPI struc-
ture information and angular geometric information, which
deteriorated the quality of LF spatial reconstruction. Similarly,
although LFSSR[17] utilized convolution to characterize the
relationship between pixels in a 4D information space in the
spatial and angular domains, it ignored the inherent geometric
structure of the LF and failed to fully utilize the angular ge-
ometric structure. Observing the evaluation metrics presented
in Table I, we note that the proposed method outperforms the
comparative methods significantly.

Qualitative Results: The qualitative results of the Bed-
room in the HCInew scene and ISO Chart 1 Decoded in
EPFL scene reconstructed by different methods under task
2×SR and 4×SR is presented in Fig.2 and Fig.3, respectively.
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32.85/0.941

EDSR

33.06/0.943

RCAN

33.27/0.944

LFSSR

35.75/0.967

resLF

35.36/0.963

LF-ATO

35.91/0.968

LF-InterNet

36.03/0.969

Proposed

36.29/0.970

GT

PSNR/SSIM

Bedroom

Fig. 2. Visual comparisons for 2×SR. The super-resolved center view images are shown. The PSNR and SSIM scores achieved by different methods on the
presented scenes are reported below the zoom-in regions.

Bicubic

21.57/0.794

VDSR

24.48/0.896

EDSR

26.97/0.930

RCAN

27.22/0.932

LFSSR

26.14/0.925

resLF

25.99/0.923

LF-ATO

26.15/0.933

LF-InterNet

26.55/0.932

Proposed

26.67/0.934

GT

PSNR/SSIM

ISO_Chart_1__Decoded

Fig. 3. Visual comparisons for 4×SR. The super-resolved center view images are shown. The PSNR and SSIM scores achieved by different methods on the
presented scenes are reported below the zoom-in regions.
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TABLE II. TASK 2× QUANTITATIVE COMPARISON RESULTS OF DIFFERENT VARIANTS OF THE PROPOSED METHOD (PSNR/SSIM)

Method EPFL HCI new HCI old INRIA STFgantry

w/o CA 34.43/0.977 37.58/0.979 44.56/0.995 36.22/0.985 39.55/0.993
w/o EPI-H 34.34/0.976 37.46/0.978 44.36/0.994 36.13/0.984 39.13/0.992
w/o EPI-V 34.33/0.976 37.39/0.978 44.25/0.994 36.09/0.984 39.09/0.992
w/o AFE 34.28/0.976 37.33/0.977 44.40/0.994 36.18/0.984 39.15/0.992
w/o SFE 34.38/0.977 37.65/0.979 44.54/0.995 36.22/0.985 39.67/0.993

w/o SSRM 34.21/0.975 37.11/0.976 44.11/0.994 36.09/0.984 38.77/0.992
Proposed 34.56/0.977 37.64/0.979 44.55/0.995 36.36/0.985 39.64/0.993

TABLE III. TASK 2× SR QUANTITATIVE COMPARISON RESULTS OF DIFFERENT ANGULAR RESOLUTIONS OF THE PROPOSED METHOD (PSNR/SSIM)

Method EPFL HCI new HCI old INRIA STFgantry

3× 3 33.94/0.972 37.10/0.976 43.74/0.994 35.85/0.982 38.94/0.992
5× 5 34.56/0.977 37.64/0.979 44.55/0.995 36.36/0.985 39.64/0.993
7× 7 34.69/0.978 37.80/0.980 44.73/0.995 36.39/0.985 39.65/0.993

The magnification of the local view of the reconstructed sub-
aperture is shown in the red box. In Fig.2, although the
Bedroom scene contains complex textures, which makes recon-
struction challenging. Our method leverages high-dimensional
features of the LF and combines spatial and angular domain
with EPI information to recover more detailed information of
the scene. It can be seen from the Fig.3, the scene is composed
of numerous lines and gaps that are difficult to reconstruct.
While the LF reconstruction method can capture more infor-
mation, it still has limitations in such complex line scenes
with small gaps. Instead, EDSR[8] and RCAN[9], two single
image super-resolution methods, show better reconstruction
performance on these scenes. This is because the real pixel
information is insufficient at a higher super-resolution size,
and the LF reconstruction method synthesizes more new pixel
information, which is intertwined with each other and blocks
the gaps between lines. Compared with current state-of-the-art
SISR and LF image SR methods, our method produces images
with more accurate details and fewer artifacts.

B. Ablation Experiments

To gain a deeper understanding of the proposed network’s
properties, an ablation study was performed to demonstrate the
efficacy of the feature fusion and angular view intersection
arrangement structure for high-dimensional data in the LF
context. The study involved removing various components
from the network, including the channel attention module,
EPI feature extraction module (EPI-H, EPI-V), angular fea-
ture extraction module, spatial feature extraction module, and
structure-based super-resolution module. These were identified
as the variants of the proposed network for the purposes of the
study and are respectively denoted as “w/o CA”, “w/o EPI-H”,
“w/o EPI-V”, “w/o AFE”, “w/o SFE” and “w/o the SSRM”.
The comparison results (PSNR/SSIM) of the different variants
of the proposed method for task 2×SR on five public datasets
are presented in Table II. The results indicate that the proposed
method significantly outperforms the other variants with the
removal of any module leading to an adverse effect on the
reconstruction performance.

Specifically, compared with “w/o CA”, the proposed

method has obvious advantages in PSNR. This can be at-
tributed to the channel attention module, which analyzes the
weight of each channel by fusing spatial and angular with
horizontal and vertical information of the polar plane. It
strengthens the channel weight coefficient that has a greater
impact on reconstruction. In comparison to “w/o EPI-H” and
“w/o EPI-V”, the proposed method attains higher PSNR and
SSIM scores due to the EPI module’s ability to analyze
the section information of the LF geometrically, resulting in
better recovery of the structural information. The proposed
method outperforms “w/o AFE” by achieving a 0.28 dB
PSNR gain by using the angular information to improve the
LF reconstruction performance significantly. The multi-stream
feature fusion module extracts diverse structural information
by analyzing multiple dimensions of the high-dimensional
data of the LF, thereby enhancing spatial angular correlations.
Thus, all modules in multi-stream feature fusion contribute
positively to the reconstruction performance. Significantly, the
proposed method achieves the best gain compared to “w/o
SSRM”, with the PSNR value increasing from 34.21 dB to
34.56 dB for 2×SR. This is because the cross-arrangement of
angular viewpoints offers geometric structure analysis of the
angular correlation of the LF, leading to an improvement in
reconstruction quality.

C. Extended Experiments

In this paper, we investigate the impact of angular resolu-
tion on the performance of our proposed method. We evaluate
the super-resolution performance under different angular res-
olutions by extracting A×A sub-aperture views of the center
from the input LF image, where A represents the number of
views (A = 3, 5, 7). We train separate models for the 2×
super-resolution task with each angular resolution setting. Our
results, as shown in Table III, reveal that increasing the angular
resolution from 3 × 3 to 7 × 7 improves the PSNR values.
This improvement can be attributed to the richer angular
information provided by additional views, which enhances
the spatial super-resolution. However, we observe that the
performance saturates for angular resolutions greater than 5×5.
This is because the information obtained from the 7× 7 sub-
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aperture views is already sufficient, and further increasing
the angular resolution yields only marginal improvements in
performance.

D. Discussions

This paper proposes a new method for learning LF spatial
SR by interwovening LF spatial and angular structure infor-
mation. Here, some discussions are presented. (1) Similar to
previous literature, we adopt publicly available LF data to
conduct detailed experiments. The qualitative and quantitative
comparisons with the state-of-the-art SR methods demonstrate
the superior performance of the proposed method. (2) Our ab-
lation study highlights the effectiveness of multi-stream feature
fusion by means of the integration and interlacing of high-
dimensional data from diverse sources during the multi-stream
feature fusion phase. This approach facilitates the extraction of
comprehensive information, thereby enhancing reconstruction
performance. Furthermore, the ablation experimental outcomes
validate the effectiveness of both the proposed MFFE and
SSRM. (4) Considering the quantitative results presented in
Subsection IV , the performance of the proposed method for
the narrow-baseline LF images is significantly better than that
for the widebaseline LF images, mainly because the latter has
a larger parallax range, posing greater challenges to feature
extraction.

V. CONCLUSION

In this paper, we present a multi-stream feature fusion
spatial reconstruction network with cross-arranged viewpoints.
The network consists of two stages: multi-stream feature
fusion and reconstruction based on cross-permutation of an-
gular viewpoints. In the multi-stream feature fusion stage, we
combine and interweave high-dimensional data from different
sources to extract rich information that can be used to improve
the reconstruction performance. Additionally, this stage allows
us to fully explore the high-dimensional data of the LF and fuse
different dimensional data. Then the rich information obtained
in the multi-stream feature fusion stage is used to mine the
LF information from the geometric structure level to improve
the reconstruction performance. Through experiments on five
public datasets, we demonstrate that our proposed method
produces high-quality spatial reconstructions of LF images un-
der both 2×SR and 4×SR reconstruction tasks. Furthermore,
we analyze the influence of the input angular resolution on
reconstruction performance. Our results show that our method
significantly outperforms state-of-the-art approaches.
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