(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

QMX-BdSL49: An Efficient Recognition Approach
for Bengali Sign Language with Quantize Modified
Xception

Nasima Begum®*, Saqib Sizan Khan, Rashik Rahman, Ashraful Haque, Nipa Khatun, Nusrat Jahan, Tanjina Helaly
Department of Computer Science and Engineering, University of Asia Pacific,
Dhaka, Bangladesh

Abstract—Sign language is developed to bridge the com-
munication gap between individuals with and without hearing
impairment or speech difficulties. Individuals with hearing and
speech impairment typically rely on hand signs as a means
of expressing themselves. However, people, in general, may not
have sufficient knowledge of sign language, thus a sign language
recognition system on an embedded device is most needed.
Literature related to such systems on embedded devices is scarce
as these recognition tasks are very complex and computationally
expensive. The limited resources of embedded devices cannot
execute complex algorithms like Convolutional Neural Network
(CNN) properly. Therefore, in this paper, we propose a novel
deep learning architecture based on default Xception architec-
ture, named Quantized Modified Xception (QMX) to reduce
the model’s size and enhance the computational speed without
compromising model accuracy. Moreover, the proposed QMX
model is highly optimized due to the weight compression of model
quantization. As a result, the footprint of the proposed QMX
model is 11 times smaller than the Modified Xception (MX)
model. To train the model, BDSL 49 dataset is utilized which
includes approximately 14,700 images divided into 49 classes.
The proposed QMX model achieves an overall F1 accuracy
of 98%. In addition, a comprehensive analysis among QMX,
Modified Xception Tiny (MXT), MX, and the default Xception
model is provided in this research. Finally, the model has been
implemented on Raspberry Pi 4 and a detailed evaluation of its
performance has been conducted, including a comparison with
existing state-of-the-art approaches in this domain. The results
demonstrate that the proposed QMX model outperforms the prior
work in terms of performance.

Keywords—Bengali sign language; CNN; computer vision;
model quantization; Raspberry Pi 4; transfer learning; Tiny ML

I. INTRODUCTION

Disability is a crucial issue in terms of human rights
because a person with an impairment is usually deprived of
ordinary public welfare. Almost a billion of the world’s popu-
lation has some form of physical disability'. Individuals with
disabilities experience more negative socioeconomic conse-
quences, resulting in a poorer standard of life. While over 430
million people worldwide suffer from hearing impairment?,
there are more than 1.7 million hearing and speaking impaired
people in Bangladesh alone®. These impaired people belong to

Uhttps://www.who.int/news-room/fact-sheets/detail/disability-and-health

Zhttps://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-
loss

3https://en.wikipedia.org/wiki/Deafness_in_Bangladesh

the Bangladesh Deaf and Mute Community (BDMC). Due to
their communication impediment, the BDMC, faces numerous
obstacles while attempting to participate in education, work,
social activities, and other aspects of everyday life.

Sign language employs the visual-manual paradigm to
communicate meaning. Sign language is conveyed via hand
and finger movements to create gestures. The only way to
communicate with people with hearing or speaking disabilities
is through sign language. Similar to every other language, the
Bengali language has its own sign language, which is known as
Bengali Sign Language (BdSL). The BDMC uses only BASL
to communicate with everyone, which restricts their ability to
converse with society, as the majority of the society does not
know sign language due to a lack of social awareness.

In the aforementioned scenario, communication between
the BDMC and society requires a sign language interpreter.
However, a skilled interpreter may not always be readily
available, and in such circumstances, paying fair fees may
be a serious worry. An automated recognition system for
sign language can play a vital role in reducing the basic
and social differences between society and BDMC. Therefore,
sign language recognition is a popular area of study. Current
research in this area focuses mostly on either sensor-based [1]
or vision-based [2] systems.

Numerous studies have been conducted on BdSL recogni-
tion, and there are numerous benchmarking datasets [3], [4],
[5], [6], [7] for BASL recognition. However, these datasets are
insufficient for training and evaluating deep learning models,
and the majority are not open-source. CNN [8], [9] is a popular
choice along with the transfer learning [10], [11], [12] model
to recognize BdSL.

Several research implements the CNN model for recog-
nizing BASL. Hossain et al. [13] proposed a CNN-based sign
language recognition model and achieved 98.75% accuracy.
Islalm et al. [14] also proposed a CNN-based model, and
they evaluated their model using 10-fold cross-validation. They
achieved 99.80% accuracy. Some research utilized CNN-based
transfer learning models for recognition. Rafi et al. [4] utilized
the VGGI19 transfer learning model with 89.6% accuracy.
To our knowledge, no prior work exists on constructing an
efficient deep learning model that can be implemented in
embedded or IoT devices via model quantization. The majority
of recent work employed mainstream or pre-trained models.
Therefore, these models cannot be implemented on devices
with a low configuration.

www.ijacsa.thesai.org

1099 |[Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Therefore, this research proposes a BASL recognition deep
learning system in which the available default Xception [15]
model has been extensively altered to obtain a new model with
greater accuracy. In addition, the novel Modified Xception
(MX) model has been quantized in order to be applied in
embedded systems. Thus in this research, a novel Quantized
Modified Xception (QMX) model is proposed. This paper
also offers a comprehensive investigation of QMX, Modified
Xception Tiny (MXT), Modified Xception (MX), and the
default Xception model. Furthermore, the developed QMX
model has been successfully implemented on an embedded
device, namely the Raspberry Pi 4. The QMX recognition
model is only 3.3MB in size and contains just 3,317,201
trainable parameters, making it an extremely lightweight model
for embedded system implementation. To train and evaluate
the model, an open-source benchmark dataset named BDSL
49 [16] that contains 14,700 images divided into 49 classes is
utilized. The QMX model achieved an overall F1 accuracy of
98%.

The main contributions of this research are as follows:

e A quantization algorithm for the Modified Xception
(MX) model.

e A Quantized Modified Xception (QMX) model has
been proposed to recognize hand signs and predict the
characters. The QMX model is 72 and 11 times lighter
than the default Xception and Modified Xception
(MX) models respectively. Moreover, it achieved an
average Fl-score of 98%.

e For IoT implementation, the proposed QMX model is
deployed on an embedded system, which is Raspberry
Pi 4 for evaluating the model efficiency and inference
time.

The rest of the paper is structured as follows: Section
II represents the literature review. The dataset description
is provided in Section III. The proposed methodology is
described in Section IV. Section V analyzes the results of the
conducted experiments. Lastly, Section VI concludes the paper
with some future works.

II. LITERATURE REVIEW

Recognition of sign language is a very intriguing area of
study. Although research on BdSL recognition is abundant,
few have managed to make it implementable and attainable
in a practical situation; therefore, it remains unexplored. This
section outlines the evolution of research regarding BdSL
recognition.

Islam et al. [17] provided a Bengali sign language digit
recognition system using deep learning, which delivers the
output in text form. Using the Ishara-Lipi dataset, they devel-
oped the proposed model, which gained about 95% accuracy.
However, they did not use RGB images during model training.
Khan et al. [18] proposed a CNN and Region of Interest (ROI)
segmentation-based BASL translator device that can translate
only five sign gestures. It has a 94% accuracy rate for rec-
ognizing signs in real-time. Due to the lack of available signs
for different words, they built the device using five words only.
The authors of [19], reviewed the research approaches of BASL
from 2002 to 2021 and discussed each work’s contributions

Vol. 14, No. 5, 2023

and weaknesses. The Scale Invariant Feature Transform (SIFT)
technique and CNN were used in the proposed system of [3]
to detect one-handed gestures of 38 Bengali signs. However,
they used grayscale images for training their proposed model.
Using CNN, the authors of [13] achieved 98.75% accuracy
in recognizing Bengali signs. However, they only used one-
handed sign gestures. Shurid et al. [9], proposed a Bengali sign
language recognition and sentence building CNN-based model
and achieved 90% accuracy using their augmented dataset.
However, their proposed model could not work properly to
recognize critical sign gestures.

Ishara-Lipi [6] is a commonly used dataset for BdSL
recognition, though it consists of only 36 characters out of 49.
“BenSignNet” a CNN and concatenated segmentation-based
model, was proposed in [8] that only detects Bengali Sign
Language alphabets using three different datasets. However,
the model is computationally expensive as it used several
image processing techniques. Ilias et al. [20] proposed a
Sign Language Recognition Generative Adversarial Network
(SLRGAN) using a Context-Aware Generative Adversarial
Network architecture. The proposed model achieved 23.4%,
2.1%, and 2.26% word error rates for three primarily used
datasets such as RWTH-Phoenix-Weather-2014, Chinese Sign
Language (CSL), and Greek Sign Language (GSL). However,
they considered only the contextual information of the sign
language. A CNN-LSTM model was proposed to recognize
both hands’ lexical signs in Bangla [7]. However, the BdSL
dataset has only 36 classes with 13,400 images and produced
90% training accuracy and 88.5% testing accuracy. Rafi et
al. [4], proposed a VGG-19-based model to recognize 38
different classes of Bengali sign gestures and obtained 89.6%
test accuracy. However, their dataset contains a low amount of
sample images. In order to enhance inter-dataset performance,
the research work [10] uses a variety of deep learning models
and angular loss functions to highlight the significance of
generalization in finger-spelled BASL recognition. Due to a
lack of diversity in the dataset, they achieved 55.93% and
47.81% test accuracy using the SphereFace loss function in the
VGG-19 architecture. A pre-trained model called “MobileNet”
was proposed in [11]. The authors proposed an approach for
converting signs made in BdSL into their appropriate Bengali
letters. They evaluated the model using the Ishara-Lipi dataset
and achieved 95.71% accuracy. However, this model could not
detect the hand signs in different backgrounds.

The authors of [21] presented a quantization method to
estimate the floating-point calculations in a neural network
using just integer arithmetic. The network quantization tech-
niques are discussed by Garifulla et al. [22] which are used
for disease diagnosis on portable medical devices to reduce
the CNN models’ size and inference time. The authors of
[23] examined the mathematical properties of quantization
parameters and assessed the choices made for a large variety
of neural network models for various domains of application,
such as voice, language, and vision. Koutayni [24] introduced
a low-energy solution for depth camera-based hand posture
estimation methods and compressed the deep neural network
model using dynamic quantization approaches at various levels
to gain maximum compression without sacrificing accuracy.

Most of the existing BASL recognition models are trained
with datasets, which are insufficient due to the lack of data

www.ijacsa.thesai.org

1100 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE I. CLASSES LABEL AND NAME

label 0 1 2 3 4 5 6
Class Name bl 2 3 T 4 8 F
label 7 8 9 10 11 12 13
Class Name q A v 17 13 i q
label 14 15 16 17 18 19 20
Class Name 5 5 © 19 9 g n
label 21 22 23 24 25 26 27
Class Name g A T g Y R T
label 28 29 30 31 32 33 34
Class Name q o B A 3) N
label 35 36 37 38 39 40 41
Class Name 8 o b} R © 8 &
label 42 43 44 45 46 47 48
Class Name Y q b & =< space &b

TABLE II. CLASSWISE DATA DISTRIBUTION

Label Train Sample Test Sample Pixel Format

0 240 60

128 x 128 RGB

i 240 60 128x 128 RGB
2 240 60 128x 128 RGB
48 240 60 128x 128 RGB

samples in them. Furthermore, hardly any research focuses on
the real-life implementation of BASL recognition systems on
low-end devices.

III. DATASET DESCRIPTION

The use of sign language is essential to communicate with
persons with hearing disabilities or persons with speaking
disabilities. A dataset is highly useful for an automated system
to recognize the hand signs of Bengali Sign Language. For this
research purpose, a dataset named BdSL 49 [16] is utilized
with 49 classes. Each class represents a Bengali alphabet,
numeric character, or special character (space, Hasantha). The
dataset consists of 14,700 images organized into 49 categories.
In Table I, 49 labels of the dataset referring to the naming of
Bengali letters are listed. Fig. 1 illustrates sample images of
each class.

Each sample image is labeled with the appropriate Bengali
characters. Each class has approximately 300 images and is
divided into two sections: one for training and the other
for testing the model. 80% of the images for each class is
considered for training, while the remaining 20% is considered
for testing. Table II illustrates the data distribution between the
train and the test set of the BASL 49 dataset. As shown in Table
II, there are 240 samples in the train set and 60 samples in
the test set of each class. All images are in RGB format with
a 128X128 pixel size.

IV. METHODOLOGY

This section discusses the proposed methodology. As the
embedded low-end devices are unable to run computationally
expensive models, thus a novel Modified Xception (MX)

Vol. 14, No. 5, 2023

model is proposed and described in subsection IV-A. However,
when the MX model is implemented in an embedded device
to perform in real-time, its footprint needs to be compressed
further. Hence, in subsection IV-B, a quantization method is
proposed that quantizes the MX model, and thus, the QMX
model is achieved by converting the float 32-bit MX model
into an int 8-bit QMX model. The QMX model is proposed
to run the model specifically in a relatively low-configuration
devices in real time environment.

Initially, some benchmark transfer learning models, namely
Xception, InceptionV3, InceptionResNetV2, MobileNet, Mo-
bileNetV2, ResNet50V2, ResNet101V2, and ResNet152V?2 are
trained using the BASL 49 dataset. Among these eight models,
the Xception model performed comparatively well. However,
it provides only 93% accuracy. Based on the performance
analysis, Xception has the best level of accuracy. The Xception
model architecture is chosen as a framework for developing
the proposed QMX architecture. However, the Xception model
size is around 240MB, which is very large. Therefore, to
improve the model’s performance and decrease the model’s
size, the Xception model’s architecture is altered, and a novel
MX model is proposed. Afterward, the MX model is quantized
to implement it in embedded devices. Thus, the Quantized
Modified Xception (QMX) model is attained. Finally, the
QMX model is implemented on an embedded device, namely
the Raspberry Pi 4, for inference.

A. Proposed Modified Xception Architecture

The proposed MX model is a highly comprehensive ar-
chitectural model featuring 31 layers instead of the 71 layers
of the original Xception model. The architecture of Xception
is divided into three components. Initially, the data passed
via the entry flow, then eight times repeated in the middle
flow, and finally, passed through the exit flow. However, the
precision of hand sign recognition is inadequate. Additionally,
since Xception is a generalized architecture, it contains an
extensive number of trainable parameters that are not optimal
for all types of recognition. Hence, the purpose of our research
is to design an effective architecture with the essence of the
Xception model and achieve adequate precision for BdSL
recognition.

The proposed MX model utilizes the Depthwise Separable
Convolutional (DSC) layer which is a variant of the Separable
Convolutional layer. The DSC layer partitions the process
into two or more sub-processes. Upon the conclusion of each
sub-process, the outcomes are integrated with the overarching
result. Therefore, it reduces the multiplication costs resulting
for a similar type of process. The utilization of Separable
Convolution reduces the computational cost as well as the
number of trainable parameters. The standard convolution
operation incurs a substantial computational expense due to
the simultaneous processing of all color channels, as indicated
by the multiplication cost outlined in Eq. (1). In contrast,
separable convolution is a technique that separates the color
channels. Consequently, the multiplication of the number of
kernels presented in Eq. (2) is performed on a single channel.

Conv2D = K2+« d?> «C x N e

www.ijacsa.thesai.org

1101 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

b 9 L4 P

o] space P

-

Fig. 1. Sample images from the dataset.

Input ——{ Conv3x3 + BN + ReLU |—— Conv3x3+BN+ReLU |—()—— Output

Convi1x1+BN+RelLU

Fig. 2. Sample of the residual network.

SepConv2D = d* 1+ 12« N 2)

Eq. (1) and Eq. (2) represents the complete multiplication
costs for ordinary and separable convolution, respectively. The
dimension K, as derived from the convolution process in Eq.
(2), undergoes a transformation where it is multiplied by N
after switching to a value of 1. Similarly, the variable d,
which represents the size of the filter, is multiplied by 1 after
undergoing a transformation and the variable C, representing
the color channels in Eq. (2), is reduced to a value of 1. Finally,
the variable N denotes the number of kernels. On the other
hand, the neural network’s architecture which comprises an
excessive number of layers, may suffer from data loss resulting
from a vanishing gradient. The MX model employs residual
connections (a type of skip connection) which is illustrated
in Fig. 2. The implementation of a residual layer mitigates
this phenomenon and effectively incorporates various forms
of data.

Fig. 3 illustrates the changes made to the default Xception
architecture. Many layers are removed and a few layers are
added in the Xception architecture in order to achieve an
efficient architecture with sufficient precision. Changes in the
architecture are classified in colors where “Green” signifies

the addition of a new layer or connections to the Xception
architecture. “Blue” signifies a modification of the parameter
values of any existing layer in the Xception which is known as
fine-tuning. “Red” signifies the elimination of the layers from
the default Xception model.

The starting layer of the MX architecture is a standard
convolutional layer with the kernel size modified to 5x5 to
avoid overfitting. It was only performed in the top two convolu-
tion layers. After the first Separable Convolution layer, several
layers are further added to the structure. The new architectural
layers include Depthwise Convolution, Batch normalization,
and LeakyReLU activation function. The RGB images that are
provided to the Depthwise Convolution undergoes a process of
channel separation, convolution, and subsequent re-stacking,
as demonstrated in Eq. 3. The Separable Convolution process
corresponds to the Depthwise Convolution, with the exception
of an additional step. The process of pointwise convolution
involves an additional step. Following the stacking process, the
features depicted in Eq. 2 are extracted through the utilization
of a 1x1 filter.

DepthwiseConv2D = d** 1(C1) 4+ d* * 1(C2) 4 d* * 1(C3)
3)

In the given context, the variable d denotes the dimen-
sions of the filter, while the C variables correspond to the
color channels. Each color channel is assigned a value of 1
and subsequently multiplied by d. Hence, the aforementioned
methodology exhibits swifter and more effective outcomes in
comparison to traditional convolution. Batch Normalization
is employed subsequent to the Depthwise Convolution layer
to expedite the training process and streamline the learning

www.ijacsa.thesai.org

1102 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Entry flow

Conv 32, 5x5, stride=2x2 RelLU
RelLU DepthwiseConv, 3x3
| BatchNormalization
LeakyRelLU
[Conv 64, 5x5]
(ReLU]

[SeparableConv 256, 3x3]
ReLU]

—

Vol. 14, No. 5, 2023

Middle flow Exit flow

——

RelLU
[conv 512, 3x3, stride=2x2)
SeparableConv 728, 3x3 |

(ReLU) ReLU
[SeparableConv 728, 3x3] SeparableConv 256, 3x3
LeakyRelLU

DepthwiseConv, 3x3

[SeparableConv 128, 3x3 J BatchNormalization
(ReLU J LeakyReLU

| |
DepthwiseConv, 3x3
BatchNormalization

[SeparableConv 256, 3x3]

e
Conv 128, 1x1 stride=2x2
stride=2x2 |

[SeparableConv 128, 3x3] O
(ReLU] |

(ReLU)
[SeparableConv 512, 3x3]

DepthwiseConv, 3x3
BatchNormalization
LeakyReLU

Depthwis¢Conv, 3x3
BatchNormalization

Conv 256, 1x1
stride=2x2

(ReLU |
| SeparableConv 728, 3x3

Conv 1x1 (ReLU
. stride=2x2 [SeparabIeConv 1024, 3x3

MaxPooling 3x3,
stride=2x2

@

Repeated 8 times

SeparableConv 1536, 3x3

RelLU
@ change Parameter [

. New Layer / Connection

[SeparabIeConv 2048, 3x3

. Remove Layer / Connection
(ReLU

MaxPooling 3x3, LeakyReLU Conv 512, 1x1 (GlobalAveragePooling]
stride=2x2 stride=2x2
(ReLU] Dense 128
[SeparableConv 512, 3x3] RelLU
Ca Dense 49
MaxPooling 3x3,
stride=2x2 (Softmax)

Fig. 3. Architectural modification of the Xception model.

procedure. Subsequently, the Leaky Rectified Linear Unit
(LeakyReLU) activation function is employed. The Rectified
Linear Unit (ReLU) activation function is triggered when the
neurons within a neural network produce a positive value. In
the absence of a positive value, the output of the function
is zero. The LeakyReLU activation function is designed to
mitigate the issue of “dead ReLU” that arises when the output
of a ReLU is consistently negative. The system is capable of
accepting certain numerical values that fall within the negative
range and are in close proximity to zero. The LeakyReLU is
mathematically represented by Eq. (4), where « is a constant
parameter which is assigned a value of -0.01.

f(z) = maz(ox, z) “

The objective of utilizing Depthwise Convolution and
LeakyReLU is to derive supplementary features from images.
It improves the precision of the model. The “Entry Flow”
architecture employs the Depthwise Convolution and Batch
Normalization techniques, along with the LeakyReLU acti-
vation function, at multiple locations, as illustrated in Fig.
3. Additionally, the filter value of the final two separable
convolution layers in the “Entry Flow” segment is reduced, and
the parameters of the residual connection layers are modified.
This makes the model more lightweight. To make the model
lighter and more streamlined, the entirety of the “Middle Flow”

design is eliminated. This modification extensively reduces
the computational cost of the model. An immediate connec-
tion between “Entry Flow” and “Exit Flow” is established.
“Exit Flow” is also customized. A new convolution layer and
LeakyReLU activation are added to this segment, and most of
the separable convolution layers are omitted. The residual layer
is also removed from this portion. After the GlobalAverage-
Pooling layer, two fully connected layers are added with ReLU
and Softmax activation functions respectively. An overview of
the proposed MX model architecture is illustrated in Fig. 4.

B. Quantized Modified Xception (OMX)

Model Quantization is a well-known model compression
approach that reduces the computational load and memory
usage of the neural network models. The proposed quantization
technique for the MX model is presented in this section. In
this method, r represents the real number, ¢ denotes the bit
representation of the values, or quantized values. Most of the
time, quantized networks are trained using floating point num-
bers, and then the weights are quantized. The before and after
quantization of each of the convolutional layers are illustrated
in Fig. 5, where (a) introduces 8-bit integers and 32-bit integer
accumulator and (b) illustrates that the convolution layers
are trained using simulated quantization. All variables and
calculations utilize 32-bit floating-point arithmetic. To imitate
the effects of variable quantization, the computation graph

www.ijacsa.thesai.org

1103 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

) 4

III!AAAAAAAAAA

Vol. 14, No. 5, 2023

@ InputLayer ' Conv2D . BatchNormalization . RelLU ' SeparableConv2D . DepthwiseConv2D . LeakyRelLU @ MaxPooling2D @ Add . GlobalAveragePooling2D . Dense

Fig. 4. Proposed MX architecture.

| Biases)
i
H;intSZ
int8 int32 int8 int8
Inputs——> Gony, ——>(+ ———> RELUS ———> Output

T

e N
(.
\\\Y\{elg h}f///
(a)

Biases

uint32

uint8 uint32, uint8 uint8

Inputs ——> conv.

uintaT

Quantized
Weights

M 4 Py ReLus M8 5 Activation B o oueput
~~ Quantize

Weights

(b)

Fig. 5. Integer quantization in the convolution layer.

is infused with weight quantization and activation quantiza-
tion endpoints. The resulting graph estimates the integer-only
computation graph during training with standard optimization
techniques for floating-point models.

A technique is provided during the forward pass of train-
ing for simulating quantization effects. The Backpropagation
proceeds as usual, and floating point values are utilized for all
weights and biases, allowing straightforward correction of mi-
nor values. Conversely, the forward propagation pass simulates
quantized inference as implemented by the inference engine.
The quantization technique’s rounding behavior is integrated
into floating-point arithmetic, such as: 1) The weights are
quantized before convolving. The layer is normalized with
batch normalization prior to quantization. The weights, w are
incorporated with the batch normalization parameters using Eq.
(5), where ~ is the batch normalization scale parameter. The
symbol ¢ is a very small constant, and 7 is a moving average
estimation of the variance of convolution results throughout
the batch. 2) Activation functions are quantified where they
arise during inference.

v X w

="
(n+¢)2

&)

The point-wise quantization function ¢ in Eq. (6) is used
to perform quantization, which is controlled for each layer by
the quantization level numbers and the clipping range.

clip(R; p, q) = min(maz(z,p), q)

s(prq.x) = T4
clip(R,p,q) —
q(R;p,q, k) = LW1 *s(p,q, k) +p (6)

Here, R represents the real value that must be quantized
and the notation for the quantization spectrum is p, q, x indi-
cates the number of quantization levels, while “||” indicates
rounding to the nearest integer. The value of x is set to 8
because, for 8-bit quantization, xk = 28 = 256 is utilized.

The quantized model’s workflow is described by Algo-
rithm 1. At first, the model receives the sign image and its
corresponding labels as initial input. Following this, the MX
floating point deep learning architecture shown in Fig. 4 is
constructed (step 1). Following the development of the model,
it is quantized to enable quantize-aware training (step 2). The
quantized model is finally trained until it reaches convergence
(step 3). The model is thus ready for inference, at which
point, it can predict the desired output based on an input
image (steps 4 and 5). Here, Quantization Aware Training
(QAT) is used for compressing the proposed model. QAT is
a model quantization technique where quantization operations
are inserted before training the model. It enables the quantized
weights and activation functions of the model to be adjusted.

C. Raspberry Pi Integration

The QMX model is implemented into Raspberry Pi 4
embedded system in order to evaluate the performance of
the model in a real-world configuration. Python is utilized
as the programming language for model implementation and
TensorFlow 2.6 for inference. Initially, the input images or
video frames are streamed by the device’s camera module.
Then, it predicts the corresponding signs. Finally, the output is
displayed on a display screen connected to the device through

www.ijacsa.thesai.org

1104 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Algorithm 1 Training Steps of Quantization

Input: Sign images and corresponding labels.

Output: Recognize class name of sign images.

1: Create a training graph for a floating point model.

2: During training and inference, tensors will be reduced into
fewer bits while inserting the quantization operations.

3: Train the quantized model using training data until conver-
gence.

4: Perform the necessary improvements and build the inference
graph for usage in a low-bit inference engine.

5: Use the quantized inference graph to draw conclusions from
the data.

Micro SD Card
(underneath)

Micro USB
Power

HDMI

Ports <

1 ‘_ Camera
(—
Module Port
4

Audio /

Jack

General Purpose /0
Pins for Connecting
Electronic Components

Camera

q
>

38
T

Ethernet
Port

USB Ports

Raspberry
Output Pi 4

Fig. 6. Overview of raspberry pi 4 implementation.

its HDMI connector. Fig. 6 represents an overview of the
Raspberry Pi 4 implementation.

D. Experimental Setup

The Google Colab Pro edition is utilized to execute the
training procedure. A variety of Python packages are utilized
for implementation. Pickle is used for data loading. Tensorflow
serves as the backend to the Keras framework for model
development. “Categorical Cross-Entropy” is chosen as a loss
function for model compilation. Adaptive Moment Optimiza-
tion (Adam) is utilized as an optimizer with a learning rate
of 0.01. The Adam optimizer offers a quicker computation
time and requires fewer training parameters. The gradient
descent algorithm uses this approach by taking the gradients’
exponentially weighted average into account. Using averages
accelerates the algorithm’s convergence towards minima. The
batch size is set to 58 for 60 epochs and evaluates the model
using the test dataset. The batch size of 58 is determined since
the entire train sample is a factor of 58.

After the QMX model has been established, it is im-
plemented on a Raspberry Pi 4 for inference. The original
Xception, MX, and MXT models are also incorporated into
the embedded device, enabling the examination of real-world
performance. As a result of implementing all four models
on Raspberry Pi 4, a quantitative analysis of the perfor-
mance of these models in terms of model flash occupancy,
inference time, and energy consumption is obtained. Energy
consumption and inference time are important considerations

Vol. 14, No. 5, 2023

for evaluating real-world performance. The embedded device
is a stand-alone device connected to a power bank, thus if
the model is very efficient, then it consumes less power.
Additionally, shorter estimation time indicates greater real-time
accuracy.

V. RESULT ANALYSIS

In this section, experimental results and model assessments
are quantitatively analyzed. The QMX model has been sub-
jected to comparative analysis with several existing models.
Besides, an estimation is conducted on the memory con-
sumption, average operational duration, and average energy
consumption of the MX, MXT, and QMX variants. The
precision, recall, and F1 accuracy of the quantized model are
also measured.

A. Evaluation Matrices

To evaluate the QMX model, five evaluation metrics are
selected, namely precision, recall, F1-score, ROC-AUC curve,
and confusion matrix. For an ideal classification model, both
precision and recall tend to be one (1). The F1 score is
determined by the weighted average of precision and recall.
Therefore, this score takes into account both false positives
and false negatives.

The confusion matrix is a prominent metric used in clas-
sification problems. It is applicable to both binary classifica-
tion and multiclass classification problems. The comparison
between the predicted outcome and the actual result can be
derived using the confusion matrix. The AUC (Area under the
ROC Curve) - ROC curve (Receiver Operating Characteristic
curve) is a performance metric for classification problems with
different threshold values.

B. Evaluation of the QMX Model

Fig. 7 illustrates the accuracy and loss graph of the QMX
model while training. Here, the training score is represented by
the blue line and the test score is represented by the yellow line
during the training phase. From this figure, it is observed that
the training score converges rapidly just within 10 epochs and
remains constant for the rest of the epochs. On the contrary,
the test score converges within 20 epochs after significant
fluctuation. In addition, after convergence, the train and test
scores become almost the same, the test score is slightly lower
than the training score. Therefore, it can be concluded that the
model exhibits a high degree of generalization.

Fig. 8 depicts the confusion matrix of the QMX model,
revealing that the model is quite accurate at recognizing 49
distinct hand signs. Sixty images per class are used to evaluate
the trained model. Approximately 59 to 60 images, and in some
instances 57 or 58, are accurately predicted for each class.

Table III presents the classification report which contains
evaluation metrics, namely precision, recall, and F1-score for
each class of the MX, MXT, and QMX models. Although
the average, macro average and mean average are the same
for all three models, the QMX model is lighter, faster, and
more efficient among these three. Moreover, embedded devices
can utilize the QMX model better. Thus, the QMX model is

www.ijacsa.thesai.org

1105 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

TABLE III. PERFORMANCE EVALUATION OF DIFFERENT MODELS

Model accuracy

QMX

MX

fl-score
0.99
1.00
0.92
091
0.93
0.95
0.98
0.99
1.00
0.98
0.99
0.98
0.99
0.97
0.99
0.99
0.98
0.99
1.00
0.99

recall
0.98
1.00
0.88
0.97
0.93
0.93
0.97
1.00
1.00
1.00
0.98
1.00
0.98
0.97
0.98
0.98
0.97
1.00
1.00
1.00

precision
1.00
1.00
0.96
0.87
0.93
0.97
1.00
0.98
1.00
0.97
1.00
0.95
1.00
0.97
1.00
1.00
1.00
0.98
1.00
0.98

fl-score
0.98
0.99
0.97
0.91
0.94
0.96
0.98
0.98
1.00
0.98
0.98
0.97
0.99
0.95
0.99
1.00
1.00
0.99
0.99
0.99

recall
0.98
1.00
0.97
0.93
0.92
0.97
1.00
1.00
1.00
1.00
0.97
0.97
0.98
0.92
0.98
1.00
1.00
1.00
0.98
1.00

precision
0.97
0.98
0.98
0.89
0.96
0.95
0.97
0.97
1.00
0.97
1.00
0.98
1.00
0.98
1.00
1.00
1.00
0.98
1.00
0.98

label

10
11
12
13
14
15
16
17
18
19

— Train
— Test

Trre——

20

1.0 A

T T
© <
o o
Adeandoy

T
*
o

0.2 1

0.0

Epoch

(a)

Model loss

COONNONNVPXRNODDPND DN
QAL
SO~ -~ SIS ——3SS ==
NOONOOEVNVNVNODDDD DD ®
SR R e e R R R R e R R e e e R R
P R S R e = = (i R S R I
VANOUVN XD XXXV DA
QAL
SO~ —O0 S~ =~
XN VORI OO
R e R e R R R R e R R e e
SO —~—0 —~C S S =SS — — —
NONXOONONNVORDODRD DD
R e e R e R R R R e R e e
P R e Qi S = QD SR S s
VNNV NODTODD DD
SR
—FOC S S~~~ S S S == =~
O—= AN TN OSO0ORNOD —Alon <t v \O >
AAAAAANQNAA@RO M@ OGO
=3
©
=
n
Lo
<
Lo
m
lo
o
Lo
—
£ o
o n
S8
_ _ [~ re
T T T T T T
n <t m o~ — o

0.91
0.93
0.98
1.00
0.95
0.96
0.98
1.00
0.98

0.85
0.95
1.00
1.00
0.93
0.92
1.00
1.00
0.97

0.98
0.92
0.97
1.00
0.97
1.00
0.97
1.00
1.00

0.98
0.97
0.99
1.00
0.97
0.97
0.98
0.99
1.00

0.97
0.98
0.98
1.00
0.95
0.95
1.00
0.98
1.00

1.00
0.95
1.00
1.00
0.98
1.00
0.97
1.00
1.00

38
39
40
41

Epoch

(b)

42

43
44
45

Fig. 7. QMX model accuracy and loss graph.

46

Truth

O NW®R
SLaARR R
—csss T -
: =
& x
3 2| =
O 0 W ®W® = ©
S 2 @
—_—ose s I @
|
SO WwW®® @ ©
SSRES c
—_——e oo = 0 g
2 = s
S ©
@ o~
2 =
2
O W W W 2
LA S g
—ocssS =
) ~
m o
2 g %
O 0w w® 1 =
LA ~
—cssSS @
o
=
£
SO W®® IS ©
L 2 o
——ssS g - |'s
3 o =
g & §
(@]]
= 2 X
»l 3 3
b 03 o
]
S " [|
~0 =0 D
TYEEE
gsX 8 8 8 °
< =] W © < 59

§ coccccocccocccocooccooocorcoo0co00000000000000000000d
§8evcocccocccoccoccocco0c00000000000000000000000000000@o

{ coccocccocccocccoccccc0co0c000oroo0ooroo00o0000000@oo
4 ccocccoccccccoccccccccccocco0co0000000000000000ofgooe
> cococccocccccccccccccccoocoo000000000000000000ofgocoe
» coccccocccccccccccccccomooccoo00o0000000000offococoe
¢ coccccoccccccoccoccccccccococ0c0000000000000ofgoccccoe
®w cococccoccccccccccccccccccoc000000000000000@ooccocoe
Y cccococcococcoccccccccccccccccccccccooofgoccccoccooc0o0e
p coccocccocccocccccccccccccccccccoccoolflocccccccccccnoe
W coccocccococcoccccccccccccccccccccccoffoeccccccccccccnoe
k¥ coccocccocccocccccccccccccccccccocoffocccccccocco0c00e
F coccocccocccococccccccccccccccoccooflocccccoccccccoocooe
F cccocccocccocccocccccccccccccccorflococcccccccccccnccnoe
¥ coccocccocccoccccccccccccccoccocofroroccocccocc000000000
B coccocccocccoccccccccccccocorcooflocccccccccccccco0c000
W coccocccocccoccccccccccccccccofcooncccccccccccccccnoe
P coccocccocccoccccccccoccccoccooffoccccccccccocc000000000
N coccocccocccocccccccccccococcofloccorccccccccccccco0000000
f coccocccocccocccorcccoccccocofflcocccccccccccccccccccccnoe
¥ coccccoccccccocccccoccccocoffcccccoccccccccccccccn0cn000
¥ ccocccocccccccccccoccccoffoccocccccccccccccc0000000000
k coccoccococccoccocccoccccocofoccccccccccorococcorocoonco0000
¥ coccccocccccocccococcococolfoccocccoccccccoccccccccc0c0000000
P coccoccococccccocccoccocofflocccocccccccccorococcoc0000000000
b coccoccococcococcocccococolfoccocccocccccccccccccccccoc0000000
P coccoccococcorcoccorooccocccoccccccocccocccc0co0000000000
coccococcocccocccococoffccocccocccoccccccccccccoc00o00000000
coccococcocccocorooffoccocccoccocccoccoc00c00000000000000
¥ cccccococcocccocofoccocccocconccoc000000000000000000000
p cccccocccoccoofooc000-00000000000000000000000000000
P ccocccocccococofgcccccocccocccocccocc0c000000000000000000
b coccccocorocoffcccocc0c00000000000000000000000000000000
¥ ccocccococo0ofoo0000000000000000000000000000000000000
§ ©0000000g0c000000000000000000000000000000000000000
¥ ccocococooffco000000000000000000000000000000000000000
f ccccocoBoocoonN0000000000000000000000000000000000000
® 0c00v-lBcc000
4 ccovBc000

$ 000Bon000

i BEmmaoRNE R LB RO PP YT F NP RERE R R WD Y T oA 90 oD bR
S

PaIPId

Fig. 9. Comparison of Xception, MX, MXT, and QMX model regarding

flash Occupancy, inference time and Frames Per Second (FPS).

Fig. 8. Confusion matrix of QMX model.

1106 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Fig. 10. ROC and AUC curve of QMX model.

better in terms of space and time complexity while maintaining
accuracy.

Fig. 9 establishes that, compared to the original Xception,
MX, and MXT models, the int§ QMX model consumes
less flash memory and average inference time. The average
inference time of these four models is calculated after 100
iterations using the Raspberry Pi 4. The QMX model’s flash
occupancy is 72, 11, and 3 times less than the original
Xception, MX, and MXT models, respectively. Besides, the
recognition performance of the QMX model is 12, 9, and 3
times faster than the original Xception, MX, and MXT models,
respectively. In a nutshell, Fig. 9 displays the lightweight
features of the QMX model, and these percentages imply a
significant increase in the model’s lightweight characteristics.
In addition, the QMX model can process 25 frames per second,
as demonstrated in Fig. 9; hence, the model can predict hand
gestures in real-time.

The average Fl-score is 0.98, which means the model’s
F1 accuracy is 98%. Fig. 10 represents the ROC and AUC
graph. Here, the ROC threshold value is plotted for each
class and then the AUC curve for each class is determined.
For all classes, AUC lies between 0.96 and 1.00, making it
a very generalized model that can perform well in real-life
configurations.

C. Saliency Visualization

A saliency map is a visual representation of the area where
viewers’ attention tends to first focus [25]. It can be used to
focus on the most prominent areas of a picture that are most
likely to influence the model’s prediction. By using Eq. (7)
and (8), a saliency map can be visualized.

S,(i) = wy? *i 4 by @)
0S,
Y ®

Vol. 14, No. 5, 2023

(a) Input image

(b) Feature matrix (c) Saliency
visualization

Fig. 11. Saliency map visualization.

Here, S, (i) represents the score of the predicted class
x, the one-dimensional image vector is referred to by i, w
indicates the weight and b represents the bias for the predicted
class x. The gradient specifies how strongly each pixel of
the image (i) can influence the outcome of the prediction
(S). Knowing the weights (w; using Eq. (8)) for each pixel
allows us to display the information as a saliency map, where
each pixel represents the strength with which it influences the
outcome of the prediction. Fig. 11 reveals which pixels are
crucial for predicting the signs. And it can be seen from this
figure that the saliency map highlights the pixels of the hand
signs, indicating that the QMX model takes into account the
hand elements from the image to produce precise predictions.

To generate a saliency map, the first input images shown in
Fig. 11(a) are fed to the model. Afterward, the corresponding
class z is predicted by the model. A 2D matrix is constructed
utilizing a Gaussian pyramid from an image vector, which is
responsible for activating class z, by employing the established
weights (w). This 2D matrix is shown in Fig. 11(b) and it
depicts the important pixel areas of the images responsible
for the prediction of class z. Furthermore, upon projecting the
aforementioned 2D matrix onto the input image, it becomes
apparent that the salient features of the image are distinctly
emphasized, as illustrated in Fig. 11(c). Depending on the
prediction score S, the important areas are strongly or weakly
highlighted. Fig. 11(c) reveals that the areas of the hand signs
are prominently highlighted and concentrated, indicating that
the model considers the hand signs to be the most essential
attribute for predicting the related signs.

D. Comparison with State of the Arts

The present investigation employs BDSL 49 for the pur-
pose of training pre-existing architectures. Table IV presents
a visual representation of the results obtained by various
architectures on the BDSL 49 dataset. By recreating, training
and testing the model of [14],[4],[3],[6] and [8] on the BDSL

www.ijacsa.thesai.org

1107 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE IV. PERFORMANCE COMPARISON BETWEEN PROPOSED QMX
MODEL WITH THE STATE-OF-THE-ART ARCHITECTURES WHEN TRAINED
ON BDSL 49 DATASET

Research Dataset Classes F1 Accuracy
Islalm et al. [14] BDSL 49 49 92%
Rafi et al. [4] BDSL 49 49 93%
Shanta et al. [3] BDSL 49 49 93%
Islam et al. [6] BDSL 49 49 94%
Miah et al. [8] BDSL 49 49 77%
Proposed QMX Architecture ~ BDSL 49 49 98%

TABLE V. PERFORMANCE ANALYSIS OF PROPOSED QM X MODEL WHEN
TRAINED ON OTHER AVAILABLE DATASETS

Dataset Train Data Test Data Classes F1 Accuracy
38 BdSL [14] 11061 1520 38 89%
KU-BdSL [26] 1200 300 30 99%
Ishara-Lipi [6] 3333 792 36 93%
BdSL 49 [16] 11774 2940 49 98%

49 dataset, the QMX model achieved an F1 accuracy of 92%),
93%, 93%, 94%, and 77%, respectively. The QMX model got
the highest accuracy of 98% for the proposed QMX archi-
tecture. On the other hand, Table V shows the performance
of the proposed QMX architecture using some benchmark
datasets. For the proposed QMX architecture, it achieved
89%, 99%, and 93% respectively, using the datasets [14],
[26] and [6]. Besides, utilizing BDSL 49 dataset the QMX
model achieved an F1 accuracy of 98%. This comprehensive
comparison indicates that the proposed QMX architecture is
quite standard for BASL recognition.

VI. CONCLUSION

Persons with hearing impairment may face challenges in
interacting with those who primarily use verbal language for
communication. On the other hand, the majority of people
in society can not understand sign language, which creates
a communication gap between them. Therefore, in order to
address this concern, this research has devised a QMX frame-
work for the identification of BASL that can be implemented
on an embedded system. The model under consideration has
been trained on a large dataset, referred to as BASL 49, which
has been designed to closely resemble real-world scenarios.
This has resulted in the development of a model that exhibits
a high degree of accuracy. The dataset maintains the standard
sign representation of Bengali Sign Language, containing 49
different classes. Furthermore, the proposed QMX model is
efficient as it requires low resources and can run in real time on
a low-end device or embedded system. Besides, it is 11 times
smaller than the proposed MX model and achieves an overall
accuracy of 98%. In order to alleviate the challenges faced
by persons with hearing disabilities or persons with speaking
disabilities, our proposed future research endeavors involve the
development and implementation of a language model capable
of generating text from video streaming.

ACKNOWLEDGMENT

We give special thanks to the Institute of Energy, Environ-
ment, Research, and Development (IEERD) and the University
of Asia Pacific (UAP), for supporting this research project.

(1]

(2]

(3]

(51

(6]

(7]

(8]

(91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

Vol. 14, No. 5, 2023

REFERENCES

K. Kudrinko, E. Flavin, X. Zhu, and Q. Li, “Wearable sensor-based
sign language recognition: A comprehensive review,” IEEE Reviews in
Biomedical Engineering, vol. 14, pp. 82-97, 2020.

S. Sharma and S. Singh, “Vision-based sign language recognition
system: A comprehensive review,” in 2020 International Conference on
Inventive Computation Technologies (ICICT). IEEE, 2020, pp. 140—
144.

S. S. Shanta, S. T. Anwar, and M. R. Kabir, “Bangla sign language
detection using sift and cnn,” in 2018 9th international conference
on computing, communication and networking technologies (ICCCNT).
IEEE, 2018, pp. 1-6.

A. M. Rafi, N. Nawal, N. S. N. Bayev, L. Nima, C. Shahnaz, and
S. A. Fattah, “Image-based bengali sign language alphabet recognition
for deaf and dumb community,” in 2019 IEEE global humanitarian
technology conference (GHTC). IEEE, 2019, pp. 1-7.

P. P. Urmee, M. A. Al Mashud, J. Akter, A. S. M. M. Jameel, and
S. Islam, “Real-time bangla sign language detection using xception
model with augmented dataset,” in 2019 IEEE International WIE
Conference on Electrical and Computer Engineering (WIECON-ECE).
IEEE, 2019, pp. 1-5.

M. S. Islam, S. S. S. Mousumi, N. A. Jessan, A. S. A. Rabby,
and S. A. Hossain, “Ishara-lipi: The first complete multipurposeopen
access dataset of isolated characters for bangla sign language,” in 2018

International Conference on Bangla Speech and Language Processing
(ICBSLP). IEEE, 2018, pp. 1-4.

N. Basnin, L. Nahar, and M. S. Hossain, “An integrated cnn-Istm
model for bangla lexical sign language recognition,” in Proceedings
of International Conference on Trends in Computational and Cognitive
Engineering. Springer, 2021, pp. 695-707.

A.S. M. Miah, J. Shin, M. A. M. Hasan, and M. A. Rahim, “Bensignnet:
Bengali sign language alphabet recognition using concatenated segmen-
tation and convolutional neural network,” Applied Sciences, vol. 12,
no. 8, p. 3933, 2022.

S. A. Shurid, K. H. Amin, M. S. Mirbahar, D. Karmaker, M. T. Mahtab,
F. T. Khan, M. G. R. Alam, and M. A. Alam, “Bangla sign language
recognition and sentence building using deep learning,” in 2020 IEEE
Asia-Pacific Conference on Computer Science and Data Engineering
(CSDE). IEEE, 2020, pp. 1-9.

S. K. Youme, T. A. Chowdhury, H. Ahamed, M. S. Abid, L. Chowdhury,
and N. Mohammed, “Generalization of bangla sign language recogni-
tion using angular loss functions,” IEEE Access, vol. 9, pp. 165351—
165365, 2021.

T. M. Angona, A. S. Shaon, K. T. R. Niloy, T. Karim, Z. Tasnim, S. S.
Reza, and T. N. Mahbub, “Automated bangla sign language translation
system for alphabets by means of mobilenet,” TELKOMNIKA (Telecom-
munication Computing Electronics and Control), vol. 18, no. 3, pp.
1292-1301, 2020.

K. K. Podder, M. E. Chowdhury, A. M. Tahir, Z. B. Mahbub, A. Khan-
dakar, M. S. Hossain, and M. A. Kadir, “Bangla sign language (bdsl)
alphabets and numerals classification using a deep learning model,”
Sensors, vol. 22, no. 2, p. 574, 2022.

S. Hossain, D. Sarma, T. Mittra, M. N. Alam, 1. Saha, and F. T.
Johora, “Bengali hand sign gestures recognition using convolutional
neural network,” in 2020 Second International Conference on Inventive
Research in Computing Applications (ICIRCA). 1EEE, 2020, pp. 636—
641.

M. S. Islalm, M. M. Rahman, M. H. Rahman, M. Arifuzzaman, R. Sassi,
and M. Aktaruzzaman, “Recognition bangla sign language using convo-
lutional neural network,” in 2019 international conference on innovation
and intelligence for informatics, computing, and technologies (3ICT).
IEEE, 2019, pp. 1-6.

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251-1258.

A. Hasib, S. S. Khan, J. F. Eva, M. Khatun, A. Haque, N. Shahrin,
R. Rahman, H. Murad, M. Islam, M. R. Hussein er al., “Bdsl 49:
A comprehensive dataset of bangla sign language,” arXiv preprint
arXiv:2208.06827, 2022.

www.ijacsa.thesai.org

1108 |Page

(17]

[18]

[19]

[20]

[21]

(IJACSA) International Journal of Advanced Computer Science and Applications,

S. Islam, S. S. S. Mousumi, A. S. A. Rabby, S. A. Hossain, and
S. Abujar, “A potent model to recognize bangla sign language digits
using convolutional neural network,” Procedia computer science, vol.
143, pp. 611-618, 2018.

S. A. Khan, A. D. Joy, S. Asaduzzaman, and M. Hossain, “An efficient
sign language translator device using convolutional neural network and
customized roi segmentation,” in 2019 2nd International Conference on
Communication Engineering and Technology (ICCET). 1EEE, 2019,
pp. 152-156.

A. Khatun, M. S. Shahriar, M. H. Hasan, K. Das, S. Ahmed, and M. S.
Islam, “A systematic review on the chronological development of bangla
sign language recognition systems,” in 2021 Joint 10th International
Conference on Informatics, Electronics & Vision (ICIEV) and 2021
5th International Conference on Imaging, Vision & Pattern Recognition
(icIVPR). IEEE, 2021, pp. 1-9.

I. Papastratis, K. Dimitropoulos, and P. Daras, “Continuous sign
language recognition through a context-aware generative adversarial
network,” Sensors, vol. 21, no. 7, p. 2437, 2021.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks

[22]

(23]

[24]

[25]

[26]

Vol. 14, No. 5, 2023

for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 2704-2713.

M. Garifulla, J. Shin, C. Kim, W. H. Kim, H. J. Kim, J. Kim, and
S. Hong, “A case study of quantizing convolutional neural networks for
fast disease diagnosis on portable medical devices,” Sensors, vol. 22,
no. 1, p. 219, 2021.

H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer
quantization for deep learning inference: Principles and empirical
evaluation,” arXiv preprint arXiv:2004.09602, 2020.

M. R. Al Koutayni, V. Rybalkin, J. Malik, A. Elhayek, C. Weis,
G. Reis, N. Wehn, and D. Stricker, “Real-time energy efficient hand
pose estimation: A case study,” Sensors, vol. 20, no. 10, p. 2828, 2020.
K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

I. R. Abdullah Al Jaid Jim, M. Z. Akon, and A.-A. Nahid, “Ku-bdsl:
Khulna university bengali sign language dataset,” 2021. [Online].
Available: https://data.mendeley.com/datasets/scpvm2nbkm/1

www.ijacsa.thesai.org

1109 |[Page

