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Abstract—Monitoring a driver’s heart rate is an important
determinant to his health condition. The monitoring system must
be accurate and non restrictive to the user’s actions. Estimating
the driver’s change in his usual heart beat pattern can prevent
undesirable outcomes. Several methods exist to estimate heart
rate without any contact. In this paper, we are focusing on a
method that uses remote photoplethysmography (rPPG). rPPG
is a technique where heart rate is extracted from a PPG signal.
The signal is extracted from the changes in blood flow that
corresponds to the color variations recorded through an RGB
camera. In this work, a different study that was based on
an existing algorithm is presented to determine its processing
time. The algorithm we proposed was divided into different
global blocks and each block into different functional blocks
(FBs). Though evaluating all the blocks’ processing time, it was
possible to determine the most time consuming functional blocks.
The results are implemented on different architectures: Desktop,
Odroid XU4 and Jetson Nano to provide a higher performance.

Keywords—Heart rate; driver; photoplethysmography; non-
contact; embedded architectures

I. INTRODUCTION

Monitoring Vital signs can be life saving. When it comes
to driving, it could save the driver’s life as well as anyone
who could be affected by a potential accident. People suffering
from cardiovascular diseases (CVD), like cardiomyopathy or
coronary heart disease (CHD), can become a danger to them-
selves and any passerby. A rapid heart rate and palpitations
can also be caused by a low blood sugar. It can indicate a
hypoglycemia for example. Therefore, heart rate is an indicator
of several health conditions as it is the first response of the
body to a threat. According to the world health organization,
an estimated of 17.9 million people died from CVDs in 2019,
representing 32% of all global deaths. Heart attacks and strokes
were responsible for 85% of these deaths [1]. The death of a
driver due to a disease attack is a reasonably common cause of
death on the road [2]. As reported by the Center for Disease
Control and Prevention (CDC), 1.35 million people are killed
every year on the road around the world. Injuries on the road
is the eight leading cause of death globally [3]. Therefore, a
continuous heart rate monitoring in this context is of great
importance as it can save lives.

Measuring heart rate usually requires an ECG that records
the electrical heart activity caused by the repolarization and
depolarization of the muscle [4], [5]. Different methods exists
to estimate heart rate in vehicles. They can be divided into five
types depending on what kind of system is used. There is the
heart rate monitor integrated into the steering wheel, the seat,
the rear-view mirror or the seat-belt or a heart rate monitor

using a camera. As an example, J. Priya et al. 2020 used a
pulse sensor, GPS and GSM modules are combined to the
steering wheel to assess the driver’s pulse rate in real time [6].
Using also a steering wheel, Arakawa et al. 2018 developed a
system that measures heart rate through a transmitter and a red
LED as a receiver [7]. S. Mitani 2018 developed an in-vehicle
pulse sensor using the microwave sensor where the sensor is in
the driver’s seat [8]. Texas instruments developed in 2019 the
AWR1642 sensor placed on the rear-view mirror that estimates
the heart rate of all the passengers [9]. There are also devices
situated in the seat-belt as in the HARKEN concept [10].
Another method is to extract heart rate from the changes of
hemoglobin concentration on the surface of the face captured
by an RGB camera [11]. Y. lee et al. 2018 used Impulse-Radio
Ultra-Wideband (IR-UWB) Radar Technology to monitor vital
signs [12]. W. Lv et al. 2021 also used radar technology.
They used a frequency-modulated continuous-wave (FMCW)
Millimeter Wave Radar in the 120 GHz band [13].

In our work, we propose an algorithm that estimates heart
rate through an RGB camera. It is divided into four parts.
The first part focuses on the face detection and the forehead
extraction. We used the box blurring filter, the edge sobel
edge detection technique and morphological operations for
face detection and the extraction of the region of interest. The
second part extracts the raw signal by calculating the average
of each of the channels (red, green and blue). The third part
uses only the green channel of the image to estimate the final
signal. The result is obtained by normalizing and denoising the
signal and also using a detrending filter and a moving average
filter. Finally, the fourth part calculates the heart rate based
on a frequency analysis. The three latter parts were based on
the work of P. rouast et al. 2016 [14]. The summary of our
contribution is as follows:

• The proposition of a new algorithm for face detection
and forehead extraction.

• The examination of the temporal constraints based on
a Hardware/Software Co-Design approach.

• The evaluation of the algorithm on different embedded
architectures.

The algorithm based on C/C++ was validated then was
accelerated using OpenMP, MPI and CUDA. We chose a hy-
brid implementation of OpenMP or MPI and CUDA due to the
requirements of the algorithm. CUDA uses NVIDIA’s Graphics
Processing Unit (GPU) to achieve a higher performance time-
wise. Using parallel programming gives better results than
the naive implementation. We first tested the algorithm on
a desktop, but the desktop is not adequate to monitor heart
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rate when driving because of its size and power consumption.
Therefore, we tried implementing the algorithm on embedded
architectures such as Odroid XU4 and Jetson Nano.

This paper is structured as follows: Section I describes the
recent works on contactless heart rate monitoring. Section II
describes our methodology. Then, Section III highlights the
results obtained by implementing the algorithm on different
architectures. Finally, a conclusion summarizes this work and
gives some future perspectives.

II. RELATED WORK

Various studies were made to estimate heart rate from an
RGB camera. It was possible to monitor heart rate by monitor-
ing the variation of the RGB colors of an image induced by the
changes of blood flow in the capillaries. The signal extracted
from those variations is known as a photoplethysmography
(PPG) signal. The human skin is illuminated with a light source
and a camera captures the variations of color [15]. The skin’s
RGB values change with time and are estimated through the
reflection of the light [16]. There are two types of reflection:
specular and diffuse as shown in Fig. 1. The reflection of a
skin pixel is defined in Eq. 1 [16].

Ck(t) = I(t).(vs(t) + vd(t) + vn(t)) (1)

Where k is the kth pixel, I(t) is the luminance intensity, vs(t)
is the specular reflection that occurs on the surface, vd(t) is the
diffuse reflection on the blood vessels and vn(t) is the noise.

The specular reflection is a mirror-like reflection and does
not contain information of the pulse. It can be expressed in
Eq. 2 [16].

vs(t) = us.(s0 + s(t)) (2)

Where us is the unit color vector of the light spectrum and s0
and s(t) are the stationary and changing parts of the specular
reflection.

The diffuse reflection is related to the absorption of the
light. It is defined in Eq. 3 [16].

vd(t) = ud.d0 + up.p(t) (3)

Where ud is the unit color vector of the skin, d0 is the
stationary reflection, up is the relative strength of the pulse
in the channels and p(t) is the signal.

Fig. 1. Reflection of the light on the skin [16].

Different methods were proposed to extract the PPG signal
like the green spectrum method where the signal is extracted

from the G channel only [17], the Blind source Separation-
based (BSS) methods that uses all three channels [18], the
CHROM technique that is chrominance-based [19], the Plane-
Orthogonal-To-Skin (POS) that defines an orthogonal plane to
a normalized skin [16] and the Spatial Subspace Rotation (2SR
or SSR) that measures the rotation of the spatial subspace of
the pixels [20].

H. Rahman et al. 2016 used an RGB camera to monitor
heart rate [21]. They used an Independent Component Analysis
(ICA) to extract the PPG signal and the Fast Fourier Transform
to convert the signal to the frequency domain. M. A. Hassan
et al. 2016 also used an RGB camera using only the green
spectrum [22]. V. Jeanne et al. 2013 used an infrared camera
instead of a regular RGB camera that requires certain light
conditions [23]. Other methods for non-contact heart rate
monitoring include radar systems. K. J. Lee et al. 2016 used
continuous-wave Doppler Radar to estimation a driver’s heart
rate. The radar is installed in the seat. The emitted signal gets
reflected and contains information about the heart activity. The
spectral peak of the reflected signal represents the value of the
heart rate. Instead of using a Fast Fourier Transform (FFT),
they proposed a method using multiple signal classification
(MUSIC) because the contamination of the signal caused by
movement of the driver and the vehicle [24]. H. Xu et al. 2021
also used radar technology to estimate heart rate. They used
an ultra-wideband (UWB) radar with a mean absolute error
(MAE) of 1.32 [25].

This work focuses on the algorithm proposed by P. Rouast
et al. 2016 [14]. They used the green spectrum method.
The face is detected using the Viola-Jones algorithm as the
first method and a deep neural network (dnn) as the second
method. Then, it is captured by a camera in order to determine
facial landmarks. After that, the forehead, where most of the
blood vessels are concentrated, is selected as the region of
interest. The average of each pixel color (Red, Green, Blue)
of the region is measured over time to extract the PPG signal.
Afterwards, the signal is filtered and its peaks are detected to
estimate the heart rate. However, the processing time of their
work is significant and needs improving. Furthermore, the face
detection part is the most time consuming.

III. METHODOLOGY

Estimating heart rate is defined in this paper as a four
steps methodology: face detection, raw signal extraction, signal
filtering and heart rate estimation. Each step represents a block
and every block is going to be divided into different functional
blocks (FBs).

A. Face Detection

In this work, heart rate is being extracted from the face.
The face is the most visible part on the body when a person is
captured by a camera. And since the forehead is a surface that
has a visible subcutaneous vascular structure, the forehead is
the region of interest. Therefore, face detection is an important
phase of the algorithm. Different methods exists to detect
and track the face. The most used in contactless monitoring
are machine learning based methods. They are capable of
recognizing facial features through comparing them with an
existing database. The main issue with these kind of methods
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is that they are time-consuming. Consequently, we propose a
different approach for face detection.

1) Original approach: The original algorithm on which
this work was based used the Viola-Jones algorithm to detect
the face. It’s a haar classifier that is trained to detect faces.
The OpenCV cascade classifier was used. Once the face is
detected, the region of interest (ROI), known as the forehead,
is selected. The algorithm can track faces and that means that
it works when there is movement but it takes an important
amount of time to be executed, approximately 1s. The Haar
cascade uses Haar-like features represented by rectangles.
Each rectangle is used to detect a region of the face [26].
These features help identifying where pixel intensity suddenly
changes. The darker areas have a pixel value of 1 and the
lighter areas have a pixel value of 0. When the difference of
the sum of the first area’s pixels and the sum of the second
are’s pixels is close to 1, then an edge was detected.

2) First method: The problem encountered in the begin-
ning of this work is that a trained haar classifier cannot be
accelerated using parallel computing to reduce its processing
time as it is an OpenCV function. The first approach to this
problem was to use a sequence of images instead of a video.
The processing time decreased but was still significant. The
second approach was to use a sequence of images, but instead
of detecting the face for each images the region of interest is
defined manually. The face is static and so is the ROI. If the
ROI’s emplacement in the image is known, it can be extracted
without going through a trained classifier. The processing time
of the ROI extraction using this method was 0,02 ms instead
of 1s with a haar classifier.

3) Second method: The second method was proposed
because of how limited is the previous one is. Even if the
processing time is significantly low, it is not practical to man-
ually set the ROI each time. This method works through three
steps: image preprocessing, face identification and forehead
extraction.

Fig. 2 represents the ROI extraction algorithm. The algo-
rithm that represents the first block is divided into different
functional blocks. In the first functional block, the RGB image
is converted to grayscale and a box blurring filter is applied in
order to apply to sobel filter. In the second functional block,
the resulting image is converted to a binary image to be able
to detect the contours. Once the contours are detected, in the
third functional block, inside the contours is filled in white
and morphological operations are applied. After that, in the
last functional block the new contours are found to determine
the top extreme point that represents the top of the head.

a) Preprocessing: In this step, the colored image is
turned into a gray scale image because the edge detection
technique works with gray scale images only. Then, the image
is blurred. Fig. 3 represents the original image and Fig. 4
represents the grayscale image.

Fig. 2. ROI extraction (Block 1).

Fig. 3. Original image. Fig. 4. Gray scale image.

Box blurring is a low-pass filter where an image’s pixel has
a value close to the average value of the pixels surrounding
it. It allows the suppression of as much noise as possible.
A 3x3 matrix 4 is applied on the image to blur it. The
convolution technique is shown in Eq. 5. The center of matrix
K corresponds in the image to the pixel’s value that’s going to
change. The value is calculated by adding the product of each
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neighboring value with the corresponding kernel’s value.

K =
1

3x3

[
1 1 1
1 1 1
1 1 1

]
(4)

B = A⊕K (5)

Where A is the input image and B is the blurred image.
The blurred image is obtained using Eq. 6 [27].

B(i, j) = A(i, j)⊕K(i, j) =

2∑
m=0

2∑
n=0

A(2, 2)F (i−m, j−n)

(6)
Where 0 ≤ i,m ≤ 2 and ≤ j,n ≤ 2

b) Face identification: In order to detect the face, the
sobel filter is used to detect the edges of the face by calculating
the gradient of the image. According to Himani et al. 2020, the
sobel filter is more precise and time-efficient than the canny
filter [28]. The filter highlights the edges. It uses two 3x3
matrix Sx and Sy also known as convolution kernels or masks.

Sx =

[−1 0 +1
−2 0 +2
−1 0 +1

]
(7)

Sy =

[
+1 +2 +1
0 0 0
−1 −2 −1

]
(8)

Sx is the horizontal mask used for the changes in the
horizontal direction and Sy is the vertical mask used for
the changes in the vertical direction. Sy is a rotation of the
second kernel Sx by 90°. The kernels are applied separately
on the image to produce separate calculations of the gradient
component in each orientation [29].

Gx = Sx⊕A (9)

Gy = Sy ⊕A (10)

Where A is the input image.

The separate gradients are combined to produce one image
using Eq. 11.

G =
√

Gx2 +Gy2 (11)

An approximation of the combined gradients is given by Eq.
12.

G = Gx+Gy (12)

The edges obtained are shown in Fig. 5.

Fig. 5. Image filtered using sobel edge filter.

After using the sobel edge filter, a thresholding is applied
on the filtered image. It converts the image from a gray scale
one to a binary image. It’s an OpenCV technique where a
pixel’s value becomes 0 if the initial value is smaller than the
threshold, otherwise it becomes 255 which is the maximum
value a pixel can have. It turns the edges completely white
while the rest is black. This technique thickens the edges and
make them more visible. Fig. 6 represents the image after using
the thresholding technique.

Fig. 6. Image after using the thresholding technique.

Algorithm 1 describes how the sobel edge filter is per-
formed.

Algorithm 1 Box blurring and sobel edge filter (FB1)
Input: Image
Output: Image after using the sobel filter
Function cvtcolor:

GrayImage ← 0.299.R + 0.587.G + 0.114.B
Function blur:

Create a 3x3 kernel
Apply the kernel to the image

Create the horizontal mask Sx
Function filter2D:

Compute correlation between Sx and the GrayImage
Get Gx

Create the vertical mask Sy
Function filter2D:

Compute correlation between Sy and the GrayImage
Get Gy

G ← Gx + Gy

c) Forehead extraction: The first step to detect the
forehead is to find the coordinates of the contours. They are
found using the OpenCV function: findcontours. The function
detects the sudden changes in the image’s color. Once the
change is detected, the coordinate are retrieved. The function
implements an algorithm introduced in 1985 by S. Suzuki et
al. [30].

When the contours are retrieved, it becomes possible to
color the face in white with the OpenCV function fillpoly.
Now, we want to delete the forms left on the background but
also leave only the upper part of the face. For this purpose, a
mathematical operation, known as an opening, is applied on
the filled image to make the image more clear. The image
contains small white filled forms that need to be removed,
hence darkened. An opening is the process of applying erosion
followed by dilatation on an image [31]. These two operations
are achieved by using a 5x5 structuring element x on an image
A as shown in the following formula.

B = (A⊖ x)⊕ x (13)
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Where the first operation represents the erosion and the
second represents the dilatation.
The dilatation and erosion give a new binary image. In the
dilatation, the pixel’s value of image A is set to 1 when
any of the neighboring pixels is equal to 1. Whereas in the
erosion, the pixel’s value of A is set to 0 when any of the
neighboring pixels is equal to 0.

Now that only some parts of the image are left and the
forehead is very visible, it is possible to detect the forehead
by finding the top extreme point on the image which is the
top of the head.

In order to find the coordinates of the top extreme point,
we apply the OpenCV function findcontours. The use of this
function for a second time gives us the new contour’s values
because the image have been modified. Then, a loop is used
to compare between all the new coordinates of the contours
to find the top point. Algorithm 2 describes these steps.

Algorithm 2 Finding the top extreme point (FB4).
Input: Image after using the opening operation
Output: The Top extreme point
Function findcontours:

Retrieve the contours from the image
Create a point Top

for i = 0 to Contours.size() do
Create a point P

Create a vector NewContours
NewContours ← Contours[i]
for j = 0 to NewContours.size() do

Create a point CurrentP
CurrentP ← NewContours[j]
if y coordinate of CurrentP ¡ y coordinate of P then

P ← CurrentP

end
end
Top ← P

end

The top extreme point is represented in red in Fig. 7. The
last step is to subtract a value x1 to the x coordinate of the
top point and add a value y1 to the y coordinate. It allows us
to get an ROI that starts from these new coordinates a little
below the top of the head where the forehead is situated. Fig.
8 represents this step.

Fig. 7. The Top extreme point
on the original image Fig. 8. Roi extraction.

B. Raw Signal Extraction

The raw signal is extracted from the image by using a
function that calculates the average of each channel’s pixels.
An image contains 3 channels: red, green and blue. The
average of each channel is added to the signal. And, for every
frame, new values are added to it. At this stage, the signal
represents the changes of the pixel’s values from one frame to
another. Fig. 9 represents the raw signal extraction algorithm.

Fig. 9. Raw signal extraction (Block 2).

C. Signal Filtering

Different methods exist to obtain the final signal. After
extracting the average of each channel, only the green channel
is left. W. Verkruysse et al. 2008 explained that the green
channel contains the most information about a PPG signal.
The main reason for that is the better absorption of green light
than red and blue by hemoglobin [32]. Fig. 10 represents the
signal filtering algorithm which represents the second block
of the algorithm.

Fig. 10. Signal filtering (Block 3).
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This block is executed only if the signal is large enough.
There is enough data after exactly 35 frames. The block,
represented in Fig. 11, contains four steps. First, a filter is used
to remove unwanted spikes from the signal. Then, normalize
the signal and apply a high pass and a low pass filter to cut off
low and high frequencies corresponding to 0.7 and 3 Hz [33].
These frequencies are generally caused by noise and sudden
light change. P. rouast et al. 2016 used detrending filter as an
equivalent to the high pass filter and a moving average filter
as an equivalent to the low pass filter.

D. Heart Rate Estimation

The HR is measured using a frequency analysis. This block
remained the same as the original algorithm and is executed
only if the signal is large enough. In this case, the discreet
Fourier transform (DFT) is used. The heart rate is calculated
with Eq. 14.

BPM = (MaxFr ∗ fps ∗ 60)/Size (14)

Where:

MaxFr is the maximum frequency

fps is the number of frames per second

Size is the size of the signal

Fig. 11. Heart rate estimation (Block 4).

IV. HARDWARE AND SOFTWARE RESULTS

The algorithm was first validated using the C/C++ lan-
guage. Then, in order to achieve better results in term of time
consumption, we separated the algorithm into four blocks,
each with a specific function. This step was essential to
estimate the processing time of the blocks and to determine
the blocks that consume the most. The first block is for face
detection and forehead extraction, the second is for the raw
signal extraction, the third is for signal filtering and finally
the fourth block calculates the heart rate. In our case, the
first block was the most consuming, hence its separation into
four functional blocks. The second temporal evaluation on the
algorithm revealed that the first functional block (FB1) takes
most of the block’s processing time.

A. System Specification

This work was implemented on an Intel i7-1165G7 desktop
that has a NVIDIA GeForce MX330 GPU based on a Pascal
architecture and that supports CUDA. It was also implemented
on two different embedded architectures: Odroid XU4 and
NVIDIA Jetson Nano. The Odroid XU4 has an exynos 5422
processor, an ARM A15 CPU with 2 Ghz and an ARM A7
with 1.4 Ghz. Finally, the NVIDIA Jetson Nano has an ARM
A57 CPU with 1.43 Ghz and a Maxwell based GPU. Table I
represents the systems’ specifications.

TABLE I. SPECIFICATION OF THE SYSTEMS USED

Type Desktop Odroid XU4 Jetson Nano

Processor 11th Gen Intel
Core™

Exynos 5422 Tegra SoC

CPU Intel i7 ARM Cortex
A15/A7

ARM A57

GPU NVIDIA GeForce
MX330

Advanced Mali Nvidia Maxwell

Suport
language

C/MPI/OpenMP/
Cuda/OpenCL

C/MPI/OpenMP/
OpenCL

C/MPI/OpenMP/
Cuda

Frequency 2.8GHz 2GHz/1.4GHz 1.43Ghz

Weight 1,78kg 60g 136G

Energy 90W 5W 10W

B. Sequential Implementation of the Algorithm

The algorithm was implemented on each of the different
architectures based on the C/C++ language. It contains four
blocks and the processing time of each block was calculated.
Table II summarizes the time evaluation.

TABLE II. PROCESSING TIME OF EACH BLOCK

Blocks Desktop Odroid XU4 Jetson Nano

B1 50,41 ms 503,21 ms 16,56 ms

B2 0.51 ms 0.52 ms 0.033 ms

B3 0.86 ms 2.22 ms 0.1 ms

B4 0.52 ms 0.5 ms 0.07 ms

Total 52.3 ms 506.45 ms 17.39 ms

The time evaluation in Table II shows that the Jetson Nano
consumes the less when compared to the other architectures
with a global processing time of 16.76 ms. The desktop
consumes 52.3 ms and the Odroid XU4 consumes 506.45 ms.
Fig. 12 to 15 represent the processing time of block 1 to block
4 respectively on three different architectures. The Jetson Nano
has a lower processing time for all blocks. Block 1 consumes
the most for all architectures. For that reason, the functional
blocks of Block 1 are going to be evaluated. Block 1 is about
50.41 ms for the desktop, 503.21 ms for the Odroid XU4 and
16.56 ms for the Jetson Nano. The next step is to evaluate
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the processing time of the functional blocks of B1 and use
OpenMP, MPI and CUDA in order to accelerate the global
processing time of the algorithm.

Fig. 12. Processing Time of
Block 1.

Fig. 13. Processing Time of
Block 2.

Fig. 14. Processing Time of
Block 3.

Fig. 15. Processing Time of
Block 4.

C. OpenMP and MPI based Implementation

In this, we are going to use both OpenMP and MPI
to accelerate the algorithm and determine which one gives
better results. However, the main issue we encountered is
the difficulty of accelerating the first block using directives.
The reason for that is the fact that Block 1 contains mainly
OpenCV functions, we couldn’t reduce its processing time us-
ing OpenMP and MPI. OpenMP and MPI directives wouldn’t
be effective. On the contrary the processing time increased.
Therefore, the implementation of the algorithm using OpenMP
and MPI was done only on Blocks 2, 3 and 4. Table III
represents the processing time of blocks 2, 3 and 4 with
OpenMP and MPI.

The temporal evaluation in Fig. 16 represents the pro-
cessing time of Block 2, Block 3 and Block 4 with C/C++,
OpenMP and MPI implemented on the desktop. It shows better
results with MPI as the time is significantly lower than with
OpenMP and even more when compared with C/C++. MPI is
6.2 times faster than OpenMP for Block 2, 2.2 times faster for
Block 3 and Block 4. Fig. 17 and 18 represent the comparison
between the processing time of same blocks using C/C++,
OpenMP and MPI but implemented on Odroid XU4 and Jetson
Nano.

TABLE III. PROCESSING TIME OF EACH BLOCK WITH OPENMP AND MPI

Blocks Desktop Odroid XU4 Jetson Nano

OpenMP

B2 0,42 ms 0.52 ms 0.03 ms

B3 0.28 ms 1.55 ms 0.092 ms

B4 0.27 ms 0.31 ms 0,067 ms

Total 1.24 ms 2.38 ms 0.19 ms

MPI

B2 0.069 ms 0.59 ms 0.03 ms

B3 0.12 ms 2.037 ms 0.093 ms

B4 0.12 ms 0.34 ms 0.067 ms

Total 0.31 ms 2.97 ms 0.19 ms

For the Odroid XU4, the results show a nearly same
processing time for Block 2. OpenMP was found to be 1.4
times faster for Block 3 and 1.6 times faster for Block 4.
MPI was found to be 1.1 times faster for Block 3 and 1.4
times faster for Block 4. This concludes that OpenMP shows
a better result than MPI on XU4 with an improvement in global
processing time of all the blocks of x1.4 for OpenMP and x1.1
for MPI. In regards to the Jeston Nano, the results show the
same results for OpenMP and MPI. However, MPI shows a
better result on the desktop with an improvement in global
processing time of x6 when OpenMP shows an improvement
of x2.

Fig. 16. Improved processing time on desktop.

Fig. 17. Improved processing time on Odroid XU4.
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Fig. 18. Improved processing time on Jetson Nano.

D. Cuda based Implementation

In this part, we focused only on the first block. Block 1
was divided into five functional blocks (FBs) as previously
shown in Fig. 2. Since we couldn’t improve its processing
time using OpenMP or MPI, we opted for CUDA to exploit
the advantages of a GPU. Table IV represents the processing
time of the four different functional blocks of Block 1 on the
desktop and the Jetson Nano.

TABLE IV. PROCESSING TIME OF B1’S FUNCTIONNAL BLOCKS

Blocks Desktop Jetson Nano

FB1 23,21 ms 7,56 ms

FB2 9.8 ms 2,47 ms

FB3 7,41 ms 5,23 ms

FB4 3,07 ms 1,18 ms

For both the desktop and the Jetson Nano, the first func-
tional block is the most consuming. FB1 consumes a time of
23,21 ms for the desktop and 7,56 ms for the Jetson Nano.
Consequently, FB1 will be accelerated using CUDA. Fig. 19
summarizes the processing times of the different functional
blocks.

Fig. 19. Processing time of the different functional blocks of B1 in desktop
and Jetson Nano.

FB1 contains three sub-blocks (SBs). The first one converts
an image from RGB to grayscale, it takes an average of 5.12
ms for the desktop and 1.25 ms for the Jetson Nano. The
second applies a blurring filter with an average of 3.6 ms for
the desktop and 1 ms for the Jetson Nano.The last sub-block
filters the image using a sobel filter and takes 14.49 ms for

the desktop and 5.3 ms for the Jeston Nano. We then opted to
accelerate the first and the last sub-blocks as shown in Fig. 20
for both architectures.

Fig. 20. CPU-GPU implementation based on CUDA.

Fig. 21. Improved global processing time on desktop.

Fig. 21 shows the improved global processing of the
algorithm on the desktop and Fig. 22 shows the improved
global processing on the Jetson Nano. We obtained an average
improved time 35.54 ms for the desktop, hence an overall
improvement of x 1.5. For the Jetson Nano, we achieved an
improved time of 12.7 ms which is 1.32 times faster. We
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used a hybrid implementation of CUDA for the first block
and OpenMP/MPI for the other three blocks.

Fig. 22. Improved global processing time on Jetson Nano.

V. CONCLUSION

In this paper, a non contact heart rate monitoring algorithm
is proposed to measure the driver’s heart rate. The algorithm
was studied to be implemented on different architectures
such as Odroid XU4 and Jetson Nano. The time evaluation
of the C/C++ implementation showed better results on the
Jetson Nano than the other architectures. We were able to
exploit the advantages that presents a Nvidia GPU in CPU-
GPU architectures by using CUDA. A hardware/software co-
design approach was implemented and showed that the Jetson
Nano remains the best choice. The sequential implementation
consumes a lot of time. Hence, it is not real-time. For this
reason, an acceleration of the algorithm was proposed. The
acceleration is based on OpenMP, MPI and CUDA on the
different architectures used. Future works consist of improving
the face detection algorithm when there is movement and
further accelerating the algorithm based on CUDA.
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