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Abstract—Regulatory and technological changes have recently
transformed the digital footprint of credit card transactions,
providing at least ten times the amount of data available for
fraud detection practices that were previously available for
analysis. This newly enhanced dataset challenges the scalability
of traditional rule-based fraud detection methods and creates
an opportunity for wider adoption of artificial intelligence (AI)
techniques. However, the opacity of AI models, combined with the
high stakes involved in the finance industry, means practitioners
have been slow to adapt. In response, this paper argues for
more researchers to engage with investigations into the use of
Explainable Artificial Intelligence (XAI) techniques for credit
card fraud detection. Firstly, it sheds light on recent regulatory
changes which are pivotal in driving the adoption of new machine
learning (ML) techniques. Secondly, it examines the operating
environment for credit card transactions, an understanding of
which is crucial for the ability to operationalise solutions. Finally,
it proposes a research agenda comprised of four key areas of
investigation for XAI, arguing that further work would contribute
towards a step-change in fraud detection practices.
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I. INTRODUCTION

Europol’s Serious and Organised Crime Threat Assessment
identifies non-cash payment fraud as one of the most concern-
ing criminal activities in the European Union [1]. In the UK
alone, fraud losses on UK issued cards totalled £567 million
in 2020 [2]. UK losses, however, are dwarfed in comparison
to global losses which were estimated to be $32.39 billion in
2020, extending to over $40 billion by 2027 [3]. It is argued
that as the use of non-cash payment cards increases year on
year, perpetrators of these frauds are likely to see a continual
increase in their illegal funding unless industry and academics
can come together to create a significant step-change in the
way in which fraudulent transactions are intercepted.

A. Changing Landscape

The volumes and velocity of credit card transactions means
that financial institutions cannot rely on human expertise alone
to identify fraudulent transactions. Fraud Management Systems
(FMS) complement other internal processes to help automate
fraud detection and decision-making. FMSs are traditionally
rule based, meaning every single transaction is checked against
a catalogue of pre-determined rules. This is an approach
favoured by industry fraud experts because of the ease with
which they can understand the inputs, modify the rules and
interpret the results. However, whilst the relative simplicity of

rule-based systems ensures the results are easily understood,
this fixed approach does not scale well and limits the ability of
the FMS to recognise or adapt to evolving patterns of fraud.
Moreover, recent regulatory and technological developments
threaten the effectiveness of traditional rule-based fraud man-
agement systems. As a consequence the payments industry,
and therefore payment card fraud detection, is facing a once-
in-a-generation need for radical change.

1) Regulatory developments: As part of the Payment Ser-
vices Directive 2 (PSD2) regulation, Strong Customer Authen-
tication (SCA) has recently been enforced in Europe and the
United Kingdom [4]. SCA employs new Regulatory Technical
Standards (implemented through an initiative called 3-D Se-
cure 2.0) which enhance the current practices of processing
customer transaction data. One of the pre-SCA challenges for
issuers in fraud detection was the limited amount of data they
received from the retailer – typically less than 10 variables
per transaction. In contrast, the new Regulatory Technical
Standards describe “Authentication Enrichment” data that a
retailer should now provide to an issuer in addition to the
usual transaction data. The Authentication Enrichment data
increases the original 10 variables to over 100 variables (known
as “security features”) [5], [6] as shown in Fig. 1 .

The ten-fold increase in the security features necessitates a
step-change in traditional rule-based fraud detection method-
ologies. Whilst rule-based engines will continue to perform
initial screening of transactions to eliminate the most common
fraud approaches, machine learning (ML) will be required to
perform the majority of the analysis. Synergistically, the results
of those ML models must be easily translated by the fraud
analysts and management teams in order to interpret and act
upon any newly derived insights.

Additionally, the Regulatory Technical Standards dictate
the need to perform the analysis of transactions using these
data points in real-time. The adoption of Authentication En-
richment data and enforcement of real-time analysis makes
improvements to the automated processing of transactions
increasingly urgent: It is claimed that “Approximately 80%
of issuers plan to invest in machine-learning (ML) and rule-
based engines to facilitate SCA processes by the end of 2021”
[7].

2) Technology developments: Technology is revolutionis-
ing the way society pays for its goods and services. Contactless
technology has become mainstream [8] and digital wallets such
as Apple Pay, Google Pay or Samsung Pay have significantly
increased their user base, especially in the younger generations
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Fig. 1. Additional security features to be provided from the merchant
(retailer) to the issuer as a result of new SCA regulatory technical standards

(implemented through an initiative called 3-D Secure 2.0) [6].

[9]. Using this technology, payments can now be made through
physical cards, mobile phones and even jewellery such as
rings or watches which use Near Field Communication (NFC)
technology. In addition, Open Banking has facilitated the
entrance of a myriad of new payments service providers and
the introduction of account-to-account payments [10].

These innovations not only transform the footprint of a
traditional payment transaction but also highlight the flexibility
needed to address the future transaction landscape. Traditional
rule-based fraud detection methodologies which rely on a
user’s consistent and repetitive behaviours are less effective
when payments can be made through any device, piece of
clothing or jewellery in any location and at any time. Similarly,
changes to the way payments are conducted means a re-
evaluation of a retailer’s payment infrastructure [11] which, in
turn, will also affect their traditional fraud detection method-
ologies.

Finally, recent advances in technology enable fraudsters
to work en masse, causing disruption at an ever faster pace.
In [12], Dvorsky reported on the already-present ability of
criminals to launch AI-based attacks, enabling much faster and
more widespread disruption than previous human manual led
strikes. Fraudsters are agile. They do not have the restraints of
customer privacy, regulation and legacy applications to accom-
modate. In a recent industry report [13], Mike Haley, CIFAS
CEO said “raud is ever evolving, and criminals continue to
collaborate. As a community, we must do the same”.

Hence the need for the FMS to be able to adapt at pace
becomes even more critical. Rule-based systems may have
been sufficiently refined over the past 30 years to effectively
seek out known fraud patterns or traits, yet it is suggested
that they are no match for the dynamics of this modern fraud
landscape. As a consequence, the accuracy of the traditional
FMS over the medium-to-long term will decline.

B. Current Status

To address the challenges of escalating transaction vol-
umes, changes in regulation, technological advancements and
a more sophisticated and technology-savvy criminal fraternity,
researchers are exploring the opportunities of employing ML
techniques in credit card fraud detection. However, adoption

of ML techniques in financial settings have been slow to
materialise [14]. The running hypothesis is that organisations
perceive ML techniques as “black box” solutions which lack
transparency and are therefore difficult to trust. Some domains,
for example movie recommendation engines, are able to toler-
ate the opacity which accompanies black box solutions since
the consequences of an incorrect outcome (for example a poor
movie recommendation), whilst potentially irritating, present a
low risk to the user.

In financial domains the consequences of an incorrect
decision on a data subject are more impactful. In the case
of credit card fraud detection, a consumer is likely to have
the transaction rejected, and potentially the credit card subse-
quently withheld or cancelled. At the very least this will result
in annoyance or embarrassment, but it may also impact the
consumer’s ability to buy groceries or keep up with payments
on more substantial items. The existence of these risks places
a much stronger onus on practitioners to ensure they can trust
in the outputs of these ML models. For the finance industry,
the inability to understand or justify the outcomes of the black
box ML models has consequentially become a strong barrier
to change.

To counter this challenge, scholars have begun investigat-
ing ways in which ML techniques can be leveraged whilst
simultaneously providing transparency to engender trust in the
models and therefore encourage more ubiquitous adoption. An
emerging and increasingly popular technique to create this
transparency is Explainable Artificial Intelligence (XAI).

C. Terminology

Scholarly research of nascent fields often begins with the
difficulty of achieving a consensus on normative terminology.
This is especially pertinent for the discourse surrounding
XAI. As noted by both [15] and [16], many authors avoid
committing themselves to a definition of an XAI system. This
may be because, as a nascent field, the community have yet
to come together to agree upon a clear definition. Yet without
open discussion, how can consensus be reached? Those same
authors suggest that this avoidance exposes the discipline to
criticism that the field lacks rigour, noting that the community
cannot justify claims of delivering XAI without agreement as
to what XAI is.

To complicate matters further, there is also discord between
authors regarding use of the terms “explainable” (usually
followed by “artificial intelligence” and denoted XAI) and
“interpretable” (usually followed by “machine learning” and
denoted IML) with some authors considering the two terms
analogous [17], [18] and other authors seeing a clear distinc-
tion between them.

One suggestion [19] is that the term “explainable” should
be considered an umbrella term which has the goal to “...
summarise the reasons for neural network behaviour, gain
the trust of users, or produce insights about the causes of
their decisions”. The authors then perceive interpretability as
a sub-goal to shed light on “what a model did or might have
done” – answering the question of “how” the system came to
its conclusion, yet stopping short of providing the complete
response which a system audit may require. An explainable
model is therefore, by definition, inherently interpretable yet
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the reverse is not true – an interpretable model does not
necessarily satisfy all the requirements of being explainable.

Similarly, [20] provide an holistic definition of XAI as
“AI systems that can explain their rationale to a human user,
characterize their strengths and weaknesses, and convey an
understanding of how they will behave in the future.” Their
concept of interpretability, analogous with the perspective of
[19], is also subservient to the concept of being explainable.
However the authors are more precise in their description,
suggesting that “Interpretable models are machine learning
techniques that learn more structured, interpretable, or causal
models.”

This concept of interpretability representing models that
can be decomposed by an appropriately skilled audience
is becoming more widely recognised amongst contemporary
authors. Specifically, authors identify linear models, decision
trees, rule-based models and constrained variants of black-box
models as interpretable models [21]–[25]. Such models are
often referred to as “inherently” interpretable [22], [23], [26],
[27] or “intrinsic” [28], with the advantage that they are able
to provide accurate and undistorted [26] explanations for the
model output.

In contrast, black box models are often defined as models
which are not interpretable, that is their complexity is so acute
that the intended audience are unable to unravel their inner
workings. When presented with such a model, it is increasingly
commonplace for those seeking an explanation of the output
to implement a subsequent interpretable model in a post-
hoc fashion, the purpose of which is to find an approximate
and human-understandable explanation to the original model’s
output. Obsfucating the holistic definitions of both [19] and
[20], authors frequently refer to these post-hoc models as
explainable models [15], [22], [29] or explainable AI [23],
[27], although others employ the term post-hoc interpretability
[21], [30].

In an effort to reconcile the discourse, this paper leverages
the holistic perspectives of both [19] and [20] to suggest XAI
should be considered as an umbrella term. Specifically, it
adopts the definition put forward by [20] (see above) which
emphasises the importance of producing an explanation that is
human-understandable, including transparency of the working
parameters of the system. Where necessary, it differentiates
XAI models through use of the terms “intrinsic” and “post-
hoc”. The former term describes models that are inherently
interpretable. Decision trees and linear regressions are well
studied examples of intrinsic models. Section III-B discusses
intrinsic models in more detail and highlights some of their
perceived challenges. Other models are built to prioritise
alternative desiderata such as precision, accuracy or speed. In
that circumstance, explanations are obtained “post-hoc”, i.e.
derived as part of an additional process after the model has
delivered the outcome.

D. Scholarly Focus

Despite the ongoing debate as to the exact terminology and
definitions pertaining to XAI, many scholars are undeterred in
their investigations. XAI models are an increasingly popular
research topic within the ML community (see Fig. 2a), and the
techniques to develop, present and categorise the explanations

(a) Web of science core collection articles or proceedings papers
focusing on XAI 2000 to 2021.

(b) Web of science core collection articles or proceedings papers
focusing on credit card fraud 2000 to 2021.

Fig. 2. Scholarly focus for XAI and credit card fraud 2000 to 2021.

are many and varied. Likewise, investigations into credit card
fraud detection are enjoying renewed attention (Fig. 2b). How-
ever, analysis of this joint population reveals just one paper
published over the past 21 years which specifically investigates
the application of XAI within a credit card fraud context [31].

Within that paper the authors initially propose a black
box solution to distinguish between fraudulent and legitimate
transactions. They subsequently acknowledge the difficulty that
a human being would have in understanding the resulting
output and propose an overlay to translate the results into
human-understandable format. The explanation is therefore
positioned as an afterthought, rather than central to the paper.

One additional paper of note explores the ability to extract
generalised rules from a neural network within the domain
of credit card fraud [32]. Despite no specific reference to
XAI, it makes an early contribution to the field by introducing
SOAR (Sparse Oracle-based Adaptive Rule extraction) which
makes complex rule-sets more comprehensible by exploiting
key decision boundaries.

Hence fraud – XAI cross-disciplinary research has so far
lacked focus. This paper seeks to address the gap by arguing
that techniques attributed to the field of XAI have the ability
to accelerate a step-change in the detection of fraud in the
credit card industry. This research agenda suggests ways in
which XAI can improve the adoption of complex models, such
as neural networks, in credit card fraud detection. Section II
begins with a discussion of the credit card fraud operating
landscape and key challenges which must be overcome for
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successful model adoption. Section III then lists four signifi-
cant focus areas which would benefit from increased scholarly
attention. Finally, Section IV provides concluding remarks.

II. FUNDAMENTAL CONCEPTS AND BACKGROUND

A. Credit Card Operating Environment

Credit card transactions are bifurcated into Cardholder
Present (CP) and Cardholder Not Present (CNP) transactions.
For CP transactions the customer is physically present at the
purchase point and offers a physical card to the retailer for
payment. For CNP transactions the purchase is carried out
remotely, for example over an e-commerce website. It is this
latter scenario which will be the focus of this paper.

The speed and simplicity with which an individual can
execute a credit card transaction disguises the complexity of
its operating environment. There are multiple key organisations
which have to interact seamlessly to deliver a smooth consumer
experience. Fig. 3 shows the five key parties involved and
the general timings used to execute and settle a credit card
transaction.

The customer initiates the process by providing credit card
payment details to the retailer in exchange for a product or
service (step (1)). In real-time, the retailer requests permission
from the issuer through both the acquirer and the payment card
association [steps (2) to (4)] and receives an authorisation code
back [steps (5) to (7)], at which point the transaction is either
authorised or declined. Readers will be familiar with this entire
request and response process being completed in a matter of
seconds.

Following the transaction approval, the retailer receives
funds from the issuer up to three days later [steps (8) to
(13)]. The issuer then places the transaction on the credit
card statement and issues the statement up to thirty days post
transaction [step (14)]. The cardholder then has up to another
thirty days to settle the bill either in full or through the use of
a credit facility [step (15)].

Real-time fraud analysis focuses on confirming the authen-
ticity of a single credit card transaction before the transaction
is completed (see step (1) to step (7) in Fig. 3). The retailer,
acquirer, card association and issuer all have roles to play.
They perform similar types of analyses in order to ensure they
are comfortable with the validity of the transaction, yet their
fraud detection datasets are substantially different (Table I),
enabling a multi-dimensional view of both the transaction and
the context within which the transaction is being executed [33].

TABLE I. ORGANISATIONS AND THEIR CREDIT CARD FRAUD DETECTION
DATASETS

Organisation Fraud Dataset
Retailer Previous customers and purchases
Acquirer Transactions from all retailers who bank with them
Card Association Transactions using the card association brand
Issuer Transactions from all customers using issuer cards

To minimise repetition, this paper will assume the perspec-
tive of the retailer / e-commerce gateway in its discussions of
fraud identification strategies and where XAI can improve the
status quo. However, the strategies discussed are equally as
relevant to acquirers, card associations and issuers in the real-
time environment.

B. Key Challenges

FMS which enable the retailer’s detection of illegitimate
credit card transactions are hindered by four key challenges
which will be described below. These challenges complicate
the fraud identification process yet must be catered for in order
to provide an operationally effective solution. Since intrinsic
XAI models need to incorporate both the underlying ML
algorithm and the explanation, any intrinsic XAI model will
have to accommodate for all of these challenges in order to
deliver an effective fraud detection explanation. In contrast,
the first challenge is the only challenge relevant for a post-hoc
XAI model, since its underlying AI model should operationally
satisfy all key challenges.

1) Real-time analysis: Modern technology allows for the
accumulation of hundreds of security features to provide
information about the legitimacy of a transaction, as illustrated
in Fig. 1. However, to ensure adherence to new regulations,
deliver a smooth checkout experience for the customer and
to minimise losses at the e-Commerce gateway those security
features also need to be processed in real time. The real-time
credit card transaction process illustrated by points (1) to (7)
in Fig. 3 typically takes less than two seconds [34].

The foremost concern for the retailer is the provision of
a seamless checkout experience for all legitimate transactions.
A recent survey indicated that almost 20% of online shopping
cart abandonment experiences were as a result of a “sticky”
checkout experience [35]. The negative experience also re-
duces the likelihood of individuals visiting the store in the
future thereby also impacting future sales revenue. Retailers’
determination to protect their seamless checkout process is one
of the key drivers behind the slow adoption of 3D Secure1

checkouts [36].

2) Concept drift: A further advantage of real-time fraud
analysis and explanation is the ability to detect emerging
fraud trends and enable timely decision-making. Historically,
the behaviour of fraudsters has been moderately consistent,
enabling the cataloguing of fraud vectors which allows for rule-
based analysis [37]. However, recent technological advances
have enabled a more sophisticated and agile offender. Concept
drift is the term used to describe this changing circumstance.
Unforeseen, changing patterns in the fraud vectors results in
the rules catalogue becoming either outdated or unmanageably
large as more rules are added to try to keep pace with the new
patterns of fraud. As a consequence, the fraud identification
becomes less effective.

Examples of XAI models addressing concept drift in the
domain of financial fraud are scant. However, the field could
benefit from advances made in other fields. In particular, recent
years have cemented the importance of addressing concept drift
in the medical field of pandemic / epidemic response. In this
field, authors have proposed various explainable models to sup-
port a real-time decision support model. Notably, [38] analyse
Covid-19 symptomatic data using their DeepCOVID post-hoc
XAI model. The result is a real-time graphical representation

13D Secure (3DS) requires customers to complete an additional verification
step with the card issuer when paying, for example being directed to an
authentication page on their bank’s website, where they enter a password
associated with the card or a code sent to their phone.
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Fig. 3. CNP Credit card transaction life-cycle.

of the variables providing the most significant contributions to
the prediction of Covid-19 diagnosis.

3) Minimising false positives: A model will sometimes
incorrectly indicate a positive (e.g. fraudulent) result. This is
known as a false positive result. Maximising the opportunities
for a seamless checkout experience requires fraud investigators
to minimise the occurrence of false positives when identifying
fraudulent transactions.

False positives create friction in the process by either
slowing down the real-time approval whilst manual assessment
is required or cancelling the valid transaction altogether. In the
latter case, the retailer loses both the goodwill of the customer
and the value of the sale [39]. In addition to the negative
experience of the customer, the occurrence of false positives
creates further expense for the retailer as manual intervention is
required to investigate the queried transactions. In an empirical
survey of contemporaneous neural networks applied in credit
card fraud detection, [14] suggested all but eight of the fifty-
one (51%) ML methods in their literature population would
be operationally ineffective. This is due to the high numbers
of false positives in the results, requiring costly and inefficient
manual oversight.

Whilst obtaining the proportion of false positive results
on a test dataset helps to understand the efficacy of an AI
model, it does little to provide transparency as to why incorrect
predictions are being made. In contrast, XAI solutions have
the advantage of being able to provide transparency to explain
the reasoning for a false positive result. Saliency plots, for
example, have been used by researchers to understand why an
image-processing model was mistaking the picture of a husky
for a wolf on a test dataset despite working with good accuracy
on the training dataset [21].

4) Dealing with class imbalance: Fraudulent transactions
are anomalous data points which exist within a large popula-

tion of genuine transactions. Mark Nelson, Visa’s Senior Vice
President of Risk Products and Business Intelligence, reports
that Visa operates at a fraud rate of 0.1% of transactions [40].
Having an unbalanced dataset such as this creates difficulties
for training ML models with the data since many algorithms
assume an equal distribution of each class. When the minority
class is the most important class, as it is in fraud detection, it
typically results in a poor predictive performance.

A variety of approaches are available to scholars working
with class imbalance. One option is to employ a weighted
loss function which penalises the misclassification of the
minority class thereby boosting its performance. Other popular
approaches involve either undersampling the majority class
or oversampling the minority class. Undersampling involves
removing a proportion of the majority class in order to create a
more balanced population. This is either done through random
sampling or in a more structured way, often using nearest
neighbour techniques. In contrast, oversampling the minority
class increases the occurrence of the minority class in the
dataset. This can either be done through making copies of
existing minority transactions or creating additional synthetic
transactions. SMOTE (Synthetic Minority Oversampling Tech-
nique) [41] remains a popular oversampling approach which
has spawned an array of derivative oversampling techniques.

C. Fraud Risk Scoring

Fig. 1 illustrates the many data points which are available to
the retailer for the purposes of performing a transaction fraud
assessment. These data points are employed in a number of
AI profiling algorithms to be used as inputs to generate an
aggregated risk score. Fig. 4 represents a drill-down into the
fraud detection process for a retailer / ecommerce gateway and
highlights some of the most common inputs to the risk score
such as product profiling, customer profiling, geo-location pro-
filing and analysis of spending patterns [42]. The aggregated
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fraud risk score is then compared to a fraud risk threshold
determined by the retailer. Scores over the threshold identify
transactions which the retailer considers worthy of challenge.

1) Product profiling: When retailers list a product for sale,
they make an assessment of how appealing the product is
likely to be to a fraudster. Typically, fraudsters steal products
which are high value and high demand and can easily be
resold on a secondary market. Retailers would identify these
products in their portfolio as “High-Risk” and therefore apply
a high-risk score to any sale of this product. The risk score is
magnified when the number of high-risk products in a single
transaction increase. In a recent survey of over 1,000 retail
fraud professionals, the product profile (also referred to as
the ”Order Content”) was the key fraud indicator for 34% of
survey respondents [42].

Shopping trends are in constant flux, depending upon
the availability of new technology releases, changes due to
seasonal trends, product availability and even media or social
media influences. Consequently, it is difficult to implement an
effective rule-based solution for determining high-risk prod-
ucts. However, ML provides retailers with an ability to adapt to
new trends in a timely manner. Analogous with the discussion
on concept drift in the paragraphs above, XAI solutions will
provide real-time transparency of emerging trends enabling a
retailer to understand why specific products are designated as
high-risk. Graph Convolutional Networks are a popular tool in
the detection of emerging trends due to their interpretability,
enhanced performance and flexibility [43].

2) Customer profiling: It is important that retailers know
their customer. This is not only relevant from a loyalty per-
spective, building a strong customer-retailer relationship, but it
also provides useful knowledge in the fight against fraud. The
above mentioned survey [42] identified the customer profile
as the second most important fraud indicator for the survey
respondents.

In respect of CNP transactions, the retailer needs to have
confidence that the customer is genuine, and that they are
dispatching the product to the right person at the correct
address. This is much easier if they already have a prior
transaction history with the customer, and far more difficult if
the customer is new onto their platform. In order to establish
a customer profile, they reference a number of key pieces of
information which includes, but is not restricted to:

• Name and delivery address

• Usual mode of ordering (e.g. mobile or desktop)

• Frequently used IP Addresses

• Frequently used payment details

• History of returns or disputes

• Email address

• Email account history

Changes to any of the above profile factors can increase
the customer’s risk score.

The lowest risk for the retailer is a customer with whom
they have a regular transaction history, no reported disputes,

consistent behavioural patterns (e.g. mode of ordering and use
of IP Address) and delivery to the same dispatch address. Any
transactions with a customer in this category would be given
a low-risk score for their customer profiling.

The highest risk for the retailer is a new customer. In
this case they have no prior relationship data to build a cus-
tomer profile. Instead, they leverage existing banking protocols
alongside using other available data. At a minimum they
ensure the shipping address reconciles with the billing address
provided at checkout. Any deviations further increase the risk
score of the customer profile. Other tactics involve ensuring
the email address is not duplicated across their systems and
looking at the account history of the email address.

The author in [44] explored user profiling to detect fraud-
ulent cellular usage. Their work used an intrinsic XAI rule-
learning technique to determine whether or not a customer
was making a phone call from a cloned or genuine account.
However, the flexibility and adaptability of clustering and
classification ML algorithms have become increasingly popular
in recent profiling studies. In particular, [45] demonstrated the
effectiveness of the WIBL (Weighted Instance Based Learning)
algorithm compared to more traditional clustering methods.
WIBL improves explainability over existing clustering meth-
ods by using weighted features to indicate feature importance.

3) Geo-location profiling: The IP address also enables
the retailer to access location details from where the order
originates. This information is useful to the retailer in a number
of ways. First, there may be certain locations which the retailer
knows from prior experience have high risk of fraudulent
activity. Retailers are able to use rule-based filters to exclude
sales to those areas if they wish. Second, the location given
by the IP address can be reconciled against the shipping
and billing addresses. Although not a conclusive assessment,
incongruence may indicate a higher risk of fraudulent activity.

4) Spending patterns: Finally, the retailer can also look
for unusual or tell-tale spending patterns. They do this both at
an individual customer level, and also holistically across their
customer base. As above, this is much easier at an individual
level if they have an established relationship with the customer.
In that case they may be concerned with behaviours such
as cancellations of orders followed by purchases of high-
risk items, large volumes of high-risk products in a single
transaction or unusual purchases for the customer profile, for
example, an 80-year-old suddenly purchasing five flat-screen
televisions. Looking across their customer base, they may see
an unusual volume of high-risk products being purchased by
different people but delivered to the same address, a common
tactic when using “mules” to disguise fraudulent purchases.

III. RESEARCH AGENDA

The sections above articulate the motivation for change and
describe the challenges encountered so far in the improvement
of credit card fraud detection. In particular, Section II provides
details regarding the context within which an effective fraud
detection solution must operate. In this section we introduce
a number of key concepts and developments within XAI that
the authors argue would contribute towards a step-change in
its adoption for credit card fraud investigations.
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Fig. 4. Drill-down into the Retailer / e-commerce gateway process for fraud risk scoring.

To ascertain current trends in this domain, the Scopus
database was employed as a primary source for gathering
literature. A query identified computer science articles which
were written in English and used the phrase ”credit card
fraud” in their key words. The resulting population of 181
articles were then filtered using reviews of the (1) title (2)
abstract and (3) textual detail to focus on papers that are
specifically concerned with the implementation of models
in the domain of credit card fraud detection. In particular,
papers which primarily focused on the generic development of
models, only using a credit card fraud dataset as illustration of
their techniques, were excluded from the survey. This filtering
process resulted in a population of fifty-three papers, which
subsequently grew to fifty-six following the addition of three
papers identified by means of a snowballing technique.

Table II provides a selection of papers extracted from
the full dataset. These papers consider at least two of the
aforementioned operational challenges in their work. For com-
pleteness, the full table can be made available by contacting
the authors of this paper. The table is complemented by Fig.
5a and 5b which summarise the full dataset.

A. Explanations within a Specific Context

Section II-B introduces the practical constraints of real-
time analysis, managing unbalanced data and concept drift
and minimising false positives which need to be considered
in order for a model to be operationalisable. These contextual
requirements of credit card fraud detection are perhaps more
complex and multi-faceted than many fields. Additionally, Sec-
tion II-C highlights a variety of fraud investigation approaches
which provide transparency on the root causes of the fraud
detection. Unfortunately, it is rare for scholars to acknowledge
or clarify the timing and perspective within which their model
is intended to operate, and the field of credit card fraud
detection is no exception.

Fig. 5a and 5b show the resulting analysis of the literature
population, with a view to understanding the extent of its
coverage of the real world challenges discussed in Section II-B.
Scholars demonstrate a strong awareness for incorporating the
challenges of false positives and imbalanced data in their

TABLE II. LITERATURE COVERAGE OF REAL WORLD CREDIT CARD
FRAUD CHALLENGES, BY PAPER - A SELECTION OF PAPERS WHICH

CONSIDER AT LEAST TWO OF THE FOUR KEY CHALLENGES

Reference
Managing

False
Positives

Imbalanced
Data

Concept
Drift

Real
Time

Analysis
[46] ✓ ✓ ✓ ✓
[47] ✓ ✓ ✓ ✓
[48] ✓ ✓ ✓
[49] ✓ ✓ ✓
[50] ✓ ✓ ✓
[51] ✓ ✓ ✓
[52] ✓ ✓ ✓
[53] ✓ ✓ ✓
[54] ✓ ✓ ✓
[55] ✓ ✓ ✓
[56] ✓ ✓ ✓
[57] ✓ ✓ ✓
[58] ✓ ✓ ✓
[59] ✓ ✓ ✓
[60] ✓ ✓
[61] ✓ ✓
[62] ✓ ✓
[63] ✓ ✓
[64] ✓ ✓
[65] ✓ ✓
[66] ✓ ✓
[67] ✓ ✓
[68] ✓ ✓
[69] ✓ ✓
[70] ✓ ✓
[71] ✓ ✓
[72] ✓ ✓
[73] ✓ ✓
[74] ✓ ✓
[75] ✓ ✓
[76] ✓ ✓
[77] ✓ ✓
[78] ✓ ✓
[79] ✓ ✓
[80] ✓ ✓
[81] ✓ ✓

papers (Fig. 5a) yet the majority fail to account for the
difficulties brought about by the need to consider concept drift
and real time analysis.

Fig. 5b particularly draws attention to the fact that the
literature has so far failed to address any of these challenges, or
even combinations of these challenges, in a consistent manner.
In fact, five papers within the literature corpus failed to recog-
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(a) Summary analysis of literature coverage of real world credit card fraud
challenges.

(b) Detailed analysis of literature coverage of real world credit card fraud
challenges, using the following abbreviations: Imbalanced Data (ID); False

Positives (FP); Concept Drift (CD) and Real Time Analysis (RTA).

Fig. 5. Literature coverage of real world credit card fraud challenges.

nise any of the aforementioned challenges, whilst professing to
deliver an implementable solution. In contrast, only two papers
addressed all four of the aforementioned challenges [46], [47],
with forty-two papers (75%) acknowledging two or fewer than
two of them.

This analysis supports the argument that the current pop-
ulation of literature fails to take the contextual requirements
of the credit card fraud operating environment into account
when designing AI solutions. To encourage more ubiquitous
adoption, scholars need to demonstrate an understanding of
operational challenges and incorporate innovative solutions
into their models. Authors also suggest that more rigour can be
achieved by partnering with practitioners to deliver a testing
strategy that mimics the operational environment [16].

Whilst scholars seeking to apply ML techniques in this
domain might choose to specialise on a single challenge such
as having unbalanced data or concept drift, demonstrating that
the model is implementable in an operational environment (i.e.
meets usability requirements) is key to achieving rigour and
therefore ensuring more widespread acceptance [16].

Just as the contextual considerations of ML models are nec-
essary for improving organisational adoption, the overarching
consensus for XAI is that explanations are also contextual [82].
That is, in order for an agent to deliver a successful explana-
tion, the context of the question must first be determined, and
then addressed within the explanation itself. But what is meant
by context, in the field of XAI, and how can it be achieved?

Whilst the literature contains a panoply of papers suggest-
ing frameworks for the context of an explanation [18], [83]–
[86], few provide an initial definition of what context means
in the domain of XAI. Yet it is clear that the domain would
benefit from a common vocabulary in order to move forward
[15], [16]. In the absence of a normative definition, this paper
proposes the following:

Context in XAI is any information needed by the explanation
system to satisfy the explanation goals, trust and usability
expectations of the audience.

This definition brings together four key elements of context
frequently discussed in the literature. First it leverages the cen-
trality of the audience [25], [87]–[90] since it is the audience
who determines whether the explanation is a good one or not
[16]. Second it captures the importance of understanding the
goals of the audience, [85], [91] since it is the goals that drive
the ML model design [85], [91], [92]. Third it recognises the
value of ensuring trust in the explanation [17], [21], [93] since
trust enables the audience to decide whether or not to have
confidence in the results [21], [22]. Finally, by acknowledging
the importance of usability [15], [82], [94], [95] the definition
ensures that the system is more likely to be successful in an
operational context [16], [94], [96].

Hence, the first recommendation for contributing towards
a step-change in credit card fraud is to ensure that XAI
models are designed with the context in mind. Demonstrating
adherence to usability constraints such as real-time delivery,
minimising false positives and supporting concept drift will
encourage practitioners to see the potential rewards that XAI
can bring over extant rule-based methods.An understanding of
the audience goals will help scholars to develop XAI models
that target practitioner desiderata and reflect the needs of real
problems.

B. Increase Focus on Intrinsic Models

Section I-C introduces the concepts of intrinsic and post-
hoc XAI models. For credit card fraud, the determination
of fraudulent transactions can have a significant impact on
a person’s life and well-being. A false positive result could
cause emotional distress such as shame or embarrassment as
well as practical difficulties such as being unable to purchase
goods. On the other hand, a false negative result fails to
identify a transaction as fraudulent and results in financial
consequences for the credit card holder, retailer or issuer. The
serious consequences that could arise as a result of the fraud
detection model forces the need for absolute trust that the
explanation correctly interprets the decision-making within the
model. Some authors suggest that models used for high stakes
circumstances such as these should employ an intrinsic rather
than post-hoc design [23].
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Arguments supporting the use of intrinsic models leverage
their ability to overcome the difficulties associated with black
box models and their post-hoc explanations. The overriding
challenge of black box models is their inherent opacity which
undermines the ability of an individual to decide whether or not
they can trust the model’s output. Moreover, the layering of a
post-hoc explanation over the black box model introduces addi-
tional trust challenges. Since the post-hoc model, by definition,
cannot provide a true 100% explanation of its underlying black
box model, then there must be an element of uncertainty as to
whether or not the explanation is correct. An individual faced
with a black box model and post-hoc explanation therefore has
two trust challenges to overcome:

1) Can the model be trusted to produce an accurate
output?

2) Can the explanation be trusted to be faithful to the
model?

In contrast, intrinsic models are sufficiently transparent that
an individual can understand not only the most influential
variables in the dataset, but also how those variables interact
with other variables. Furthermore, the explanation, by design,
directly reflects the model machinations, thereby enabling an
easier decision as to whether or not to trust the output.

Unfortunately, there is a strong bias in the extant literature
against the development of intrinsic models, meaning that
focus is not forthcoming. Analysis of Guidotti’s [97] com-
prehensive survey of explainability methods identifies a slim
population of 10 papers devoted to this approach, compared to
130 using post-hoc methods. Those findings are consistent with
the analysis of literature conducted in this survey. Only seven
of the fifty-six papers focus on the development of models
which are inherently interpretable. The remaining forty-nine
either propose black box models, or complex ensemble models
without any attempt to explain the resulting outcomes.

There may be many reasons for this. Some authors suggest
intrinsic models sacrifice accuracy for interpretability, [20],
although other authors vehemently contest the notion [23].
Perhaps some scholars take pride in the complexity of black-
box models ignoring the practical advantages that a transparent
model would bring. Alternatively, authors designing models
without a specific use-case in mind may prefer the advantages
of flexibility that accompany a post-hoc, model-agnostic de-
sign.

Despite the cloak of simplicity that accompanies intrinsic
models, they have many operational challenges that would
benefit from scholarly focus [23]. It is not the intention of this
discourse to argue a preference for intrinsic models over post-
hoc techniques but to highlight that the field would benefit
from increased focus and visibility. More work needs to be
done to investigate the opportunities of intrinsic models in the
fields of high-stakes decision-making where faithfulness to the
underlying model has both an academic and moral imperative.

1) Interpretable scoring systems: A noteworthy subgroup
of intrinsic models are interpretable scoring systems, used in
decision-making and risk evaluation. Decision-making typi-
cally involves the careful evaluation of a number of diverse
facts in order to arrive at a balanced decision. For example,
medical professionals often weigh-up a number of discrete

Fig. 6. National Early Warning Scores (NEWS2) for assessing and
responding to acute illness severity in the NHS [100].

facts about a patient before suggesting or even investigating
a potential medical diagnosis, or finance professionals might
weigh-up a number of different factors about a client before
deciding on whether or not to offer them a loan. The accumula-
tion and evaluation of these discrete facts are synonymous with
domains requiring expert judgment. Heuristics are established
through experience and expertise with simple techniques such
as linear regression often being used to establish relationships
between these pre-defined features and their classifier.

These aforementioned heuristics are known as ”scoring
systems”. Their popularity stems from the fact that decision-
makers find them easy to understand and interpret [98]. More-
over, the input variables can easily be flexed to reveal the
consequential impact on the predictor variable, and the model
presents a common language for standardisation of reporting
and comparison of results. Fig. 6 shows the scoring system
mandated by NHS England for the assessment of patients
presenting to, or being monitored in hospital. The lower table
indicates the response that a patient should receive depending
upon the medical staff’s assessment of the eight key variables
in the upper table.

The transparency and uniformity of this approach has the
added incentive of enabling the model to be transferable to
other similar circumstances, as shown by [99] who demon-
strated its effectiveness at also predicting short-term mortality
as a result of Covid-19. However, the challenge of employing
expert-led heuristic risk scores lies in the lack of a formal
guarantee [101] that the heuristics are the right ones.

Recent experiences in AI demonstrate that oftentimes it
is beneficial to ignore human experiences and instincts, and
to instead be open to new discoveries and findings. One
such example is the application of reinforcement learning to
playing strategy games such as chess and Go. The initial
approach was to use supervised learning techniques to “teach”
the AI the strategies which had been learned by generations
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of experts, but this only resulted in minimal improvements
upon human levels of expertise. The step-change occurred
when reinforcement learning techniques allowed the AI to
learn for itself without human interference [102], resulting in
significantly improved performance and the discovery of some
novel game-winning strategies.

With this in mind, [103] introduce RiskSLIM (Risk-
calibrated Supersparse Linear Integer Model) which learns
from data, rather than experience and heuristics, to deliver
a risk scoring system. The model not only works efficiently
but is also able to be sensitive to organisational constraints
such as minimising false positive results. Meanwhile it retains
interpretability and enables expert decision-makers to flex the
model prior to concluding on the overall risk assessment.

There are clear parallels to be drawn between the domains
of medical risk assessment and credit card fraud detection.
Both domains suffer from issues with unbalanced data, need
to prioritise model efficiency and minimise false positives.
Moreover, they require experts to have a full understanding
of the drivers influencing the risk assessment.

Section II-C describes the four key dimensions which
contribute to the holistic picture of a credit card transaction.
Each dimension would be expected to have a risk score of its
own and then be accumulated to produce an overall transaction
risk score, in a similar manner to that presented in Fig. 6
[55], [57]. From the surveyed articles, six papers proposed a
risk score as a decision-making tool as opposed to a binary
classification approach. These papers were also more likely
to have collaborated with industrial partners in their research,
demonstrating the validity of risk scores being more aligned
to a real-world perspective.

The survey also shows evidence that authors are increas-
ingly looking beyond the single dimension of transaction
spending patterns. Of the fifty-six surveyed papers, twenty-
two of them incorporated customer profiling within their work.
However, the inclusion of product profiles and geo-location
profiles remains elusive.

Unfortunately, research into risk scoring systems which
learn for themselves is scant. There are very few competitors
to RiskSLIM to enable a sufficiently rigorous discourse. This
is despite the successful practical applications which have been
achieved by contemporary authors in the medical domain. For
example, [104] collaborated with the World Health Organisa-
tion (WHO) to demonstrate its effectiveness in screening for
adult attention-deficit/hyperactivity disorder and more recently
[105] showed its effectiveness in screening for seizures in
hospitalised patients. Given the ubiquity of scoring systems in
use across multiple industries, and specifically their aforemen-
tioned relevance in fraud detection, the domain would benefit
from more attention from scholars. In particular, it would be
beneficial to explore applications for RiskSLIM outside of the
medical domain, in addition to the development of alternative
models to challenge the hedgemony of RiskSLIM as a self-
learning risk scoring system.

C. Measure the Faithfulness of Explanations

Assuming a researcher chooses to engage in the devel-
opment of a post-hoc explanation technique, then common

sense dictates that the explanation must accurately represent
the reasoning process behind the model’s prediction. This
close relationship between the explanation and the underlying
reasoning process is often referred to as faithfulness [19], [21],
[106] or fidelity [97].

It has been shown that without some measure of faithful-
ness of an explanation, an audience may be prone to over-trust
and misuse explanation tools. This circumstance was exempli-
fied by [107] who performed a contextual inquiry and survey
of data scientists using the InterpretML implementation of
Generalised Additive Models (GAMs) and the SHAP Python
software package. Their investigation found that some users
were using the tool to rationalise suspicious observations in-
stead of just understanding the underlying model. Others were
taking the visualisations at face value instead of using them
to identify issues with the dataset. Moreover, the open-source
nature of both tools led individuals to trust the explanations
without fully understanding them.

Efforts to measure faithfulness are nascent, with few works
in publication more than five years ago. In [108] the authors
used a Natural Language Processing (NLP) model called NILE
(Natural language Inference over Label-specific Explanations)
to demonstrate that model faithfulness and model accuracy can
co-exist. Their paper used a sensitivity analysis to evidence the
faithfulness of their model. Building on that concept, [109]
suggest that sensitivity should be accompanied by stability to
determine whether or not an explanation is faithful.

In an effort to extract consistency from the diverse lit-
erature, [106] perform a review of faithfulness works. They
identify (but do not necessarily endorse) three assumptions
that they say researchers are making in order to determine
faithfulness:

1) The model assumption Two models will make the
same prediction if and only if they use the same
reasoning process.

2) The prediction assumption On similar inputs, the
model makes similar decisions if and only if it
provides different interpretations for similar inputs
and outputs.

3) The linearity assumption Certain parts of the input
are more important to the model reasoning than
others. Moreover, the contributions of different parts
of the input are independent from each other.

In their discourse, [106] argue that the binary approach
to determining faithfulness is fraught with difficulty since
counter-examples will likely always exist. Instead, they suggest
that authors should consider degrees of faithfulness to give
an indication of how close an explanation is to the reasoning
process of the underlying model.

Section III-B suggests there are two trust challenges that
need to be overcome in order to be comfortable with the
output of a black box model and its explanation. The issue of
faithfulness is central to the second trust challenge. Nowhere is
that trust more necessary than in high-stakes industries where
the consequences of an incorrect or mis-interpreted explanation
can be highly damaging. Whilst explanations may only be
required under certain circumstances (for example in the
event of an unexpected model outcome), there exists a moral
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obligation to associate an explainable model in high stakes
decision-making with some measure regarding the expected
accuracy of the explanation to the ground truth.

D. Human Interaction with Explanations

In a recent call for closer integration between the Human-
Computer Interaction (HCI) and ML communities, [90] cites
the advantages to intelligible machine learning of leveraging
the well-established human-centered research community. The
cornerstone of HCI philosophy begins with understanding the
needs of the audience, recognising that different audiences may
have different requirements of the same system.

In the context of fraudulent transactions this paper adapts
the work of [86] to suggest there are three key audiences for
the explanation system:

1) The operator / executor i.e., the fraud analysts, whose
role it is to determine the validity of the positive “red
flag” transactions identified as potentially fraudulent.

2) The creator i.e., the technical support responsible for
the internal operation of the system.

3) The examiners i.e., the senior management teams,
who are focused on both the changing trends of fraud
patterns and the integrity of the fraud identification
process.

Critically, in the event of a transaction being deemed
to be likely fraud, the cardholder should not be informed
of the entire explanation without operator oversight, hence
the omission of decision-subjects and data-subjects. This is
because organisations within this process must take care not
to advise fraudsters of the parameters in place to detect
fraudulent transactions. It would therefore be incorrect to
consider the cardholder as one of the parties requiring the
direct explanation.

For the fraud analyst, the explanation is in place to ensure
they fully understand, and agree with, the reasoning for the
FMS to identify the transaction as fraudulent. They are detect-
ing and looking for causal reasoning of an event which has
already occurred. Hence their dialogue centres around local,
causal explanations and the fitness of the attributes contributing
towards each individual “red flag”.

Technical specialists meanwhile are interested in “how”,
rather than “why” [110]. Their role is to ensure the system is
operating effectively, for which they need transparency of the
process rather than justification of an outcome. These teams
will therefore look towards a causal attribution explanation in
order to understand the internal workings of the explanation
agent.

On the other hand, senior management teams are inter-
ested in fraud preventative measures [111]; explanations which
shed light on predictive patterns. They may be searching
for insight on emerging trends of fraud, in order to support
future decision-making. Alternatively, they may be interested
in validation that the models treat all data subjects equitably.
Hence they need both local and global explanations; local to
explain specific predictions and global to understand the model
as a whole.

Identifying such diverse audiences and their corresponding
perspectives provides a wealth of opportunities for researchers

to explore a variety of targeted explanations in fraud detection.
Yet the HCI community, and increasingly the ML community
too, suggest that scholars should go a step further in their quest
to satisfy audience desiderata. In particular, the explanation
should also reflect contemporary understandings of how an
audience engages with an explanation [87].

Miller’s [87] seminal paper makes the case for ensuring
researchers design explanations with an appreciation of human
cognition in mind. It builds upon an earlier paper [82] which
articulates the importance of comprehension in order to ensure
the explanation is useful to the intended user in a practical
setting. This view is widely held [16], [17], [93], [112].

Cognitive scientists claim that prior knowledge is widely
recognised to have a profound influence on understanding
new concepts [113]. Hence for an effective explanation, the
explainer must first understand the audience’s initial level of
existing knowledge. Any subsequent new information then
builds upon that baseline [114], [115], incrementally construct-
ing a bridge to a new knowledge state. This individualised
layering of new knowledge on old becomes synonymous with
explanation as a dialogue, wherein the audience repeatedly
questions the explanation agent until a point of understanding
is reached.

However, building knowledge in this way only allows for
the audience to learn from the explanation agent. In fields such
as fraud detection, there are also likely to be instances where
experts have more knowledge than the explainer, resulting in
them outperforming the system-generated explanation [116].
In this circumstance, explanations should therefore be a two-
way concept. Whilst we look to XAI to communicate unknown
patterns and influences extracted from the prescribed data, the
expert audience adds breadth, supplementing the explanation
with their own peripheral knowledge and undocumented expe-
riences. Hence in expert systems, designing explanation with
an interactive dialogue in mind allows for the development of
a “learning loop”, which ultimately enhances the performance
of both the XAI agent and the audience [116].

IV. CONCLUSION

Credit card fraud is widely acknowledged as a key con-
tributor to the persistence of organised crime in the European
Union. Moreover, the recent Covid-19 pandemic has acceler-
ated the switch to digital payments and revealed the potential
of a future cashless global society. As the use of payment
cards continues to overtake the use of cash in our economy, the
ability of payments providers to reduce the value and volume
of fraudulent transactions becomes ever more crucial.

Regulators acknowledge this danger and are working to
introduce increasingly stringent legislation to counteract the
trend. In particular, they are leveraging the vast quantities
of data available in our modern society to encourage more
effective financial defences. As part of the PSD2 regulation,
SCA has recently been enforced in Europe and the United
Kingdom. SCA mandates real-time data analysis and the
introduction of authentication enrichment data, both of which
combine with recent developments in open banking and pay-
ment technologies to create an urgent need for change in the
detection of fraudulent credit card transactions.
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The overarching consensus is that established rule-based
fraud detection methodologies are no longer scalable to the
extent that modern society needs them to be. Moreover, they
struggle to provide the flexibility or agility to adapt to either
the rapidly changing operating environment or dynamic modus
operandi of modern fraudsters. ML models have the ability to
provide a solution to these challenges, yet their opacity has
impeded their adoption in this domain.

In response, this paper argues for more researchers to
engage with investigations into the use of XAI techniques for
credit card fraud detection. It contributes to the discourse in
three key ways:

1) It sheds light on recent regulatory changes which are
pivotal in driving the adoption of new ML techniques.

2) It examines the operating environment pertaining to
CNP credit card transactions, an understanding of
which is crucial for the ability to operationalise ML
solutions.

3) Using a survey of contemporary literature, it sets out
a research agenda, arguing that further work would
contribute towards a step-change in the adoption of
ML into this industry.

The research agenda first suggests that the current literature
fails to consistently accommodate the key contextual chal-
lenges of real-time analysis, concept drift, minimising false
positives and dealing with class imbalance. These omissions
lead to solutions which are not operationalisable, thereby
undermining the relevancy of the work. Incorporating context
fully into an XAI solution would support more wider adoption,
yet recent papers in XAI have struggled to articulate the
full meaning of context in this field. The first agenda point
therefore provides a novel definition of the term ”context” in
relation to XAI and goes on to suggest that researchers should
always design XAI models with context in mind.

Second, it recommends that more work should be done
to examine the utility of intrinsic models and in particular
focus on the under-researched area of self-learning risk scoring
systems. Contemporary literature generally demonstrates a bias
towards the development of post-hoc rather than intrinsic
models. A popular argument suggests this is because black box
models are more accurate than their interpretable counterparts.
Yet this statement remains controversial for some authors,
especially in light of the need for trust and transparency in
high-stakes decision-making. Increased attention from scholars
will help to progress this debate and may help to challenge the
hegemony of incumbent risk scoring systems.

Third, it recognises that authors should consider imple-
menting measures of faithfulness to give an indication of
how close an explanation is to the reasoning process of the
underlying model, and thereby help to establish trust in the
explanation. Previous authors have demonstrated the tendency
for an audience to over-trust and mis-use explanation tools
without some measure of faithfulness. Its inclusion as an
evaluation tool is particularly pertinent in the field of high-
stakes decision-making such as fraud detection, where the
consequences of an incorrect decision can be damaging to
multiple parties.

Finally, it suggests recognising the value of human ex-
pert knowledge in this domain and incorporating an ability

to provide a “learning loop” which ultimately enhances the
performance of both the XAI agent and the audience. The
current corpus of literature recommends that explanations
should not only be designed with the audience in mind, but
also recognise the nuances of human cognition in order to
deliver an explanation that is useful to the intended user in a
practical setting. The explanation should subsequently evolve
into a dialogue, wherein the audience can repeatedly question
the explanation agent until a point of understanding is reached,
and likewise contribute expert knowledge into the model to
enhance mutual understanding.
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