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Abstract—This research paper presents an investigation into
the detection of pneumonia using deep learning models and data
augmentation techniques. The study compares and evaluates the
performance of different models based on experimental results.
The proposed model consists of multiple convolutional layers and
maxpooling layers. Extensive experiments were conducted on a
dataset, and the results demonstrate the efficiency and accuracy
of our approach. The findings highlight the potential of deep
learning in pneumonia detection and contribute to the existing
body of knowledge in this field. The implications of this research
can have a significant impact on improving diagnostic accuracy
and patient outcomes. Future research directions could explore
further enhancements in the model architecture, investigate
additional data augmentation techniques, and consider larger
datasets for more comprehensive evaluations.
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I. INTRODUCTION

The capabilities of e-health tools have been recently
boosted and improved by advances in artificial intelligence
(AI) that allows the detection and diagnosis of diseases. Arti-
ficial intelligence is not a newly-invented technique. In fact, it
was prefigured in a chess computer program that was generated
by Alan Turing in 1950 [1]. The health sector has not been
deprived of these technological advances. Indeed, there has
been considerable and growing interest in this health sector and
especially in the automatic detection of diseases from medical
images. As a subdomain of AI, machine learning makes use
of algorithms so as to parse date, gain an understanding from
the results, and apply the learning to make decisions and
predictions. Thanks to the rise in computing power and the
availability of huge datasets, researchers have proposed many
new approaches of smart healthcare disease diagnosis and
patient management by using machine learning and especially
deep learning algorithms. We note that machine learning algo-
rithms have been developed to detect objects or faces, to assist
in healthcare, traffic prediction, natural disasters prediction,
etc. In our research work, we are focused on the healthcare
services by incorporating AI through disease detection and
prediction using machine learning and deep learning. The pro-
posed approach harnesses the benefits of AI-based systems in
the medical diagnosis field by replicating human brain function
for simple tasks and providing innovative solutions for more
complex ones. Towards reaching our objective, we recommend
implementing AI-based solutions. Our primary algorithmic
approach includes machine learning, particularly deep learning
algorithms, which provide computational models for learning
data representations. We note that these algorithms have greatly

improved previous disease detection and recognition efforts
[2].

Deep learning reveals a complex structure in high-
dimensional data such as images and videos by using the
back-propagation algorithm. The goal is to help a machine
regulate its internal parameters to enable it to generate a
configuration in each layer from the previous one. Being the
most representative model of deep learning, CNN has been
broadly put in application in many research areas, such as
image classification, face recognition and object detection. It’s
composed of the input layer, hidden layers (at least one), and
an output layer. Constructing a typical CNN takes some steps.
The starting phase involves two types of layers: convolutional
layers and pooling layers. In the proposed approach, a con-
volutional layer contains filters characterized with parameters
that should be learned. Thus, the filters’ height and weight tend
to be inferior to those of the input volume. Then an activation
map based on neurons is computed by convolving each filter
with the input volume. The concluding phase consists in
obtaining the convolutional layer’s output volume. This is
achieved by stacking all filters’ activation maps along the depth
dimension [3].

The proposed CNN architecture, along with the well-
known pre-trained models DenseNet and MobileNet, is evalu-
ated and compared in terms of their matching performance and
computational cost. Furthermore, the incorporation of random
data augmentation techniques enhances the model’s ability to
generalize to new and unseen images, improving its robustness
and reducing the risk of overfitting. The experimental results
demonstrate that the proposed CNN model outperforms the
existing models in terms of accuracy and provides a promising
solution for accurate and efficient pneumonia detection. By
highlighting the value of this paper, we contribute to the
advancement of AI-based systems in medical diagnosis, specif-
ically in the detection and diagnosis of pneumonia, which can
lead to improved healthcare outcomes, more timely treatments,
and ultimately, saving lives.

The main objective of the proposed approach is to detect
pneumonia from chest X-ray datasets. Convolutional neural
networks (CNNs) are effective tools for image understanding
and are widely used in medical image analysis. For these
reasons, we have used two very well known and very suc-
cessful CNNs which are: DenseNet and MobileNet in order
to test them to detect pneumonia disease. The results obtained
were compared to our CNN model. For this, we used four
different datasets to validate the results. Note that we have
used different data augmentation techniques to overcome the
problem of limited datasets [4]. In many computer vision tasks,
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the original dataset may be limited in size and may not reflect
the variability of the real-world scenarios. For example, in
an image classification task, the model may only see pictures
of dogs taken from one angle and with a specific resolution.
This lack of diversity in the training data can lead to poor
performance when the model encounters new, unseen data. The
main contribution and results are:

• The proposed CNN model, DenseNet and MobileNet
showed performance improvements on augmented
datasets.

• Our CNN model performed better than the other
models.

• The results were validated on four different datasets. A
comparative table has been drawn up for this purpose.

• We used random data augmentation techniques such
as randomly flipping, zooming, shifting, and rotating
images which can be highly beneficial for training
image processing and computer vision models. These
techniques can help to artificially increase the size of
the training dataset and expose the model to a wider
variety of image variations. It improves the model’s
ability to generalize to new images, making it more
robust and less prone to overfitting.

In fact, using the classic techniques of data augmentation
can be less beneficial as the model will be exposed only
to the flipped version and it may not generalize well to the
original version of the image in the case of the flipping
technique. However, randomly flipping images can be more
beneficial. It is important to expose the model to a diverse
set of training data. Randomly flipping images horizontally or
vertically can be a way to artificially increase the diversity of
the training dataset by creating new images from existing ones.
By randomly flipping images, the model is exposed to both the
original image and its flipped version, which can help it learn
to recognize objects regardless of their orientation.

Previous research in pneumonia detection has primarily
focused on traditional machine learning algorithms and a
limited set of image features. These approaches often struggle
to capture the complex patterns and variations present in
chest X-ray images, resulting in suboptimal performance and
limited generalization capabilities. Furthermore, the use of pre-
trained convolutional neural networks (CNNs) in this domain
has been limited, and their potential for pneumonia detection
remains underexplored. In this paper, we aim to address the
gap between the existing approaches and the potential for
leveraging deep learning techniques, specifically CNNs, for
improved pneumonia detection. Our proposed work presents a
detailed review of various CNN architectures, including well-
known models such as DenseNet and MobileNet, and their
characteristics. We then introduce an efficient CNN architec-
ture for pneumonia detection using X-ray images, incorpo-
rating random data augmentation techniques. By leveraging
the power of deep learning and exploring the potential of
CNN models, we aim to overcome the limitations of existing
approaches and achieve enhanced performance in pneumonia
detection.

This paper is organized as follows: Section II explores
the related research done in the same field. In Section III,

there is a brief description of the two deep convolutional
neural networks: DenseNet and MobileNet. In Section IV, the
description of the applied methodology and the proposed CNN
architecture. Section V presents the experimental result and
performance analysis. Finally, Section VI shows the results
and discussion and Section VII concludes this paper.

II. RELATED WORKS

In recent years, deep learning has opened up horizons for
researchers in the field of medical sciences. Published research
is promising. These studies were done to test the detection,
prediction and diagnosis of disease. Today, the enormous
progress and advances of CNNs have attracted the attention
of researchers to apply them in many fields. Medical research
is one of the most sought-after fields. All the details and
features in a medical image are of high importance in the
machine learning pipeline. The problem is that most known
ML algorithms used classical features to develop detection
and recognition systems [5]–[7]. In contrast, the use of deep
learning (DL) models, in particular convolutional neural net-
works (CNN), has demonstrated a strong ability to extract
relevant features in the image classification framework [8], [9].
Image classification can be significantly improved if we have
a very rich set of extracted features. Indeed, the availability of
pre-trained CNN models like MobileNet [10], AlexNet [11],
ResNet [12] and DenseNet [13] speeds up and improves the
relevant feature extraction procedure. Several interesting re-
search papers on the disease of pneumonia have been published
with the aim of classifying chest X-ray images [14]–[19]. In
[20], authors implemented a deep convolution neural network
on more than 100 thousand x-ray images of approximately
32,000 in order to analyze and recognize pulmonary infection
and its subtypes. In [21], Amit Kumar et al. implemented a
Mask-RCNN which performed a combination of pulmonary
image segmentation and an image augmentation. They started
by testing known detection techniques such as YOLO 3 and U-
Net but the results were not motivating. They then proposed
their own model based on Mask-RCNN and showed in the
experimental results that the proposed identification model
achieves better performance.

In order to take advantage of the characteristics of the
Inception V3 model, authors, in [22], have implemented a
CNN model based on Inception V3. The authors were able to
successfully classify various types of pneumonia infections on
pediatric patients. They developed a new CNN model not only
to classify images into class of sick people and non-sick people
but also to classify images showing pneumonia disease into
two categories: pneumonia caused by bacteria and pneumonia
caused by a virus.

A novel approach for automatic detection of pneumonia
was proposed by Anuja Kumar et al. in [23]. In fact, they
proposed a deep Siamese neural network by analyzing the
amount of white substance presence on both the right and
the left chest of X-ray image. In their approach, Paras et al.
[24] were inspired by pre-trained AlexNet and GoogleNet data
models as well as data augmentation. The authors in [25],
developed numerous models in order to validate an accurate
result in detecting pneumonia. They trained AlexNet, LeNet,
GoogleNet, ResNet, and VGGNet on a dataset of over 26
thousand images of a resolution of 1024x1024. Vikash et

www.ijacsa.thesai.org 1188 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 5, 2023

al. proposed a novel approach for detection of pneumonia
based on transfer learning and ImageNet model [26]. In [27],
pneumonia was one of 14 different diseases that were detected
using a 121-layer CNN on chest x-rays. In [28], authors
developed an automated diagnosis of pneumonia by classifying
X-ray images using deep CNN. They showed that the proposed
model reached 91% of accuracy. In [29], authors proposed a
novel deep convolutional neural network architecture to extract
relevant features from chest X-ray images and classify them
into two classes. They also studied in their paper, the influence
of the size of the dataset on the performance of the model.
They used the original dataset as well as its augmented version.

III. DEEP CONVOLUTIONAL NEURAL NETWORKS

A Convolutional Neural Network (CNN) is composed
of neurons with varying weights and biases. These neurons
receive inputs from preceding layers, producing a fast and
precise algorithm [30], [31]. CNNs have proven to outperform
traditional neural networks in detection and classification tasks,
as seen in their successful classification of well-known image
databases such as MNIST [32], [33] and CIFAR 10 [34], [35].

A. Convolution Layer

A convolution layer in deep learning is a layer in a
neural network that performs a mathematical operation called
convolution on the input data. The convolution operation
involves sliding a small matrix (the ”filter” or ”kernel”) over
the input data and computing a dot product at each position,
producing a feature map that represents important information
from the input. This operation is repeated with multiple filters,
effectively learning different features at different scales, and
allowing the network to learn complex representations of the
data. Convolution layers are commonly used in computer
vision tasks, such as image classification and object detection.
The formula for computing a single output element in a
convolution operation is given as follows.

Oi,j =

k−1∑
m=0

k−1∑
n=0

Ii+m,j+n · Fm,n (1)

where Oi,j is the (i, j)th element of the output feature map,
Ii,j is the (i, j)th element of the input feature map, Fm,n is the
(m,n)th element of the filter (also called kernel) matrix and
k is the size of the filter. This formula is applied element-wise
for each position of the filter over the input feature map, with
the result being a new output feature map that represents the
filtered version of the input.

B. Activation Function

An activation function in deep learning is a non-linear func-
tion applied to the output of each neuron in a neural network.
The activation function is used to introduce non-linearity into
the model, allowing it to model complex relationships in the
data. There are several commonly used activation functions,
including (Fig. 1):

• Sigmoid: f(x) = 1
1+e−x

• Tanh: f(x) = tanh(x)

• ReLU (Rectified Linear Unit): f(x) = max(0, x)

• Leaky ReLU: f(x) = max(0.01x, x)

• Softmax: used for multiclass classification, maps in-
puts to a probability distribution over the classes.

C. DenseNet

DenseNet is a network architecture characterized by the
fact that each layer is directly connected to all the others.
Feature maps from all layers that precede another are treated
as separate inputs. On the other hand, the layers following
any layer, are fed by its own feature maps. This connectivity
model gives state-of-the-art accuracies on CIFAR10/100 (with
or without data augmentation) [13], [36]. It’s architecture is
detailed in Table I.

TABLE I. DENSENET ARCHITECTURE

Layers Output Size
Convolution 112x112
Pooling 56x56
DenseBlock (1) 56x56
Transition Layer (1) 56x56—28x28
Dense Block (2) 28x28
Transition Layer (2) 28x28—14x14
Dense Block (3) 14x14
Transition Layer (3) 14x14—7x7
Dense Block (4) 7x7
Classification Layer 1x1

D. MobileNet

MobileNet is a CNN architecture that is among the first
CNN models that aims to be deployed on mobile applications.
The main innovation is that the convolutions are separable
according to the depth. A separable convolution transforms
a classical convolution kernel into two separate kernels. For
example, a 4x4 kernel turns into a 4x1 kernel and a 1x4
kernel. The objective behind this separation is to minimize
the number of operations needed to perform the convolution.
Therefore, the model becomes more efficient. This model is,
today, a reference for object detection, face detection, and
for object classification. MobileNet model has 27 Convolution
layers which includes 13 depthwise Convolution, 1 Average
Pool layer, 1 Fully Connected layer and 1 Softmax Layer.
This model was developed by Andrew G. Howard and other
researchers from Google [10]. It’s architecture is detailed in
Fig. 2.

IV. THE PROPOSED CNN ARCHITECTURE

A. Layers Description

a new approach of drawing a CNN model has been
proposed in order to classify chest X-ray images. The goal
is to classify images into two classes: Normal X-ray image
and X-ray image with pneumonia. The CNN architecture is
based on:

• Convolutional layers

• Maxpooling layers

The resulting image after the last convolution/maxpooling
layer is first flattened and then inserted into a dense layer.
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Fig. 1. Activation functions.

Fig. 2. The detailed MobileNet architecture.

The sigmoid function is used to activate the layer where the
output was introduced. Note also that the sigmoid function
was used in the last layer since the classification is binary.
Fig. 3 illustrates the architecture of the proposed CNN. The
architecture of the proposed CNN is carefully designed to
learn and classify pneumonia patterns in chest X-ray images
effectively. It utilizes the hierarchical structure of convolutional
and pooling layers to capture both local and global features,
enabling accurate and robust predictions. The combination of
convolutional and dense layers allows the network to learn
complex relationships and make informed decisions based on
the extracted features. Overall, the proposed CNN architecture
offers a powerful tool for pneumonia detection and showcases

promising potential in medical image analysis.

Initially, the image is resized to the size of (150x150). It
is then integrated into a first layer (3x3x16) of sixteen filters
and dimensions (3x3). The convolutional layer is then used to
decompose the image to have new dimensions of (75x75x32).
The latter is integrated into the Maxpooling layer having a
window size of (2x2). We finally have an image with a new
size. Different layers are listed below.

• The image crosses the second dimension convolutional
layer (3x3x32). We will have as output of this layer
an image (38x38x64). Shape Maxpooling layer (2x2)
is introduced and gives as output an image with a new
shape.

• The resulting image is passed through another con-
volutional layer of the same dimension and which
has the same shape as the previous one. In order to
detect more relevant details of the image, the latter is
again processed by the convolutional layer. Thus, the
image reaches a new shape of (19x19x128) and it is
introduced through a Maxpooling layer of dimension
(2x2).

• 64 filters make up the final layer which is of the
shape of (3x3x64). The resulting image has the shape
(5x5x256) and will once again be introduced into
the maxpooling layer. The end result is a set of
finer instances of the image which will help in better
classification.

In the following, we move on to the description of the second
phase: the deep neural network. After passing through the
last layer, the output is flattened and inserted into the Deep
Neural Network (DNN). Then, it is introduced into a 128
neurons layer in order to detect the key data of the image
and its relevant characteristics. The ReLU function is used as
an activation function. The last dense layer of the DNN is a
single output neuron. The aim is to classify the chest X-ray
images into two classes: images with pneumonia and images
without pneumonia.

B. Summary of the CNN Model

The proposed CNN model is summarized as follows:

• Four convolutional layers.
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TABLE II. DESCRIPTION OF THE CNN MODEL.

Layer Filter Kernel Size Strid Size of feautre Maps
Input - 3 x 3 - 150 x150 x 3
Conv(1) 64 3 x 3 1 x 1 150 x150 x 3
Conv (2) 64 3 x 3 3 x 3 150 x150 x 3
Batch normalization - - - 150 x150 x 3
Pooling 2 x 2 2 x2 75 x 75 x 3
Conv(3) 64 3 x 3 1 75 x 75 x 3
Dropout - - - 75 x 75 x 3
Batch normalization - - - 75 x 75 x 3
pooling - 2 x 2 2 x 2 38 x 38 x 3
Conv(4) 128 3 x 3 1 x 1 38 x 38 x 3
Batch normalization - - - 38 x 38 x 3
pooling - 2 x 2 2 x 2 19 x 19 x 3
Conv(5) 128 3 x 3 3 x 3 19 x 19 x 3
dropout - - - 19 x 19 x 3
Batch normalization - - - 19 x 19 x 3
pooling - 2 x 2 2 x 2 10 x 10 x 3
Conv(6) 256 3 x 3 3 x 3 10 x 10 x 3
Dropout - - - 10 x 10 x 3
Batch normalization - - - 10 x 10 x 3
pooling - 2 x 2 2 x 2 5x 5 x 3

• Four Maxpooling layers.

• flattened layer of zero parameters.

• Dense layers of about 819328 parameters.

• The total number of parameters that can be trained in
the network is 1,246,401 parameters.

Our model is based on the CNN model described in Table
II and its architecture is detailed in Fig. 3.

C. Random Data Augmentation

In order to properly implement a CNN, a large dataset
is required. In case we have a limited amount of data, we
can use random data augmentation techniques which are a
solution to artificially increase the amount of existing data. In
the case of medical image datasets, the data is not available in
large quantities. Random data augmentation is often considered
to be better than classic data augmentation because it can
increase the diversity of the training data in a more controlled
manner. In classic data augmentation, the same transformation
is applied to all instances of the data, which can lead to overfit-
ting to the augmented data and decreased performance on the
original data. On the other hand, in random data augmentation,
different transformations are randomly applied to each instance
of the data. This increases the diversity of the training data
in a more controlled manner and can help prevent overfitting
to the augmented data. By applying different transformations
to different instances of the data, random data augmentation
can help the model learn to recognize objects regardless of
their orientation, scale, and deformation. This can improve the
model’s generalization ability and increase its robustness to
changes in the input data. This is why we applied the data
augmentation technique on our training data set. An example
of random data augmentation is shown in Fig. 4, 5, 6 and 7.
In fact, we added changes to our images by making minor
changes, such as:

• Random rotating data: it consists of applying random
rotations to images in a dataset in order to increase the
diversity of the training data and reduce overfitting.
This can be done by specifying a range of rotation

Fig. 3. Architecture of the CNN model.
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angles, and then applying a random rotation within
that range to each image in the dataset before it is
used for training. This technique can be useful for
image classification tasks, as it allows the model to
learn to recognize objects in different orientations.

• Random Zoom: it involves randomly zooming in
or out of an image by a certain percentage, while
maintaining the aspect ratio of the original image.
This technique can help increase the diversity of the
training data and improve the robustness of the model
by exposing it to different scales and perspectives of
the same object. It can also help to prevent overfitting
by making the model more generalizable to new
images.

• Random shifting images horizontally or vertically:
it consists of randomly shifting the position of an
image by a certain number of pixels horizontally
or vertically. This technique is used to simulate the
effect of objects being slightly misaligned or translated
in real-world scenarios. In such scenarios, a model
trained on perfectly aligned images may not perform
well when presented with images that are not perfectly
aligned. However, by training the model on images
that have been randomly shifted, the model can learn
to be more robust to small changes in position and
handle misalignment better.

• Random flipping images horizontally: the left and
right sides of the image are switched. This can be
done by reflecting the image across a vertical axis. The
idea behind this technique is to artificially increase the
diversity of the training data by exposing the model to
both the original image and its flipped version.Flipping
images horizontally can also be useful when the model
needs to recognize objects that are symmetric across
a vertical axis. For example, in object detection tasks,
flipping the image horizontally and training the model
on both the original and the flipped images can make
the model more robust to detect the object in the image
regardless of its orientation.

• Random cropping: the basic idea is to randomly select
a rectangular region of an image, and then crop the im-
age to that region. The cropped region is then resized
to the original size of the image. We randomly select
the starting and ending coordinates of the cropped
region within the original image’s dimensions. The
cropped region is then resized to the original size
of the image using interpolation to avoid distorting
the image. the cropping parameters such as the size
of the cropped region and the aspect ratio can be
adjusted. For example, if the model is trained for
object detection, the cropping area should be adjusted
to keep the object of interest within the crop area.
Also, when using random cropping, it is important to
make sure that the entire image is covered by the crop
area, otherwise important information may be lost.

We note that some data augmentation techniques are
domain-specific, for example, in medical images rotating im-
ages can be harmful. In general, using a combination of
different data augmentation techniques can be more effective

than using a single technique, as it can provide the model with
a more diverse set of training data. This will increase the size
of our training data and our model will consider each of these
small changes as a separate picture. In our work we applied
the data augmentation Algorithm 1.

Algorithm 1: Random Data Augmentation
Input : Training dataset
Output: Augmented dataset
Procedure

DataAugmentation
end
for each image x in the training dataset do

r ← Random(0, 1);
if r < protate then

x← Rotate(x, angle);
end
if r < pzoom then

x← Zoom(x, zoom);
end
if r < ph shift then

x← Shift(x, h shift× width);
end
if r < pv shift then

x← Shift(x, v shift× height);
end
if r < pflip then

x← Flip(x);
end

end
Model.fit(Dataset);

In this work, we selected four different datasets where in
each one we find a train folder, test folder and validation
folder. Table III lists the number of images in each dataset.
The datasets were selected from Guangzhou Women and
Children’s Medical Center [37] and they are images from
pediatric patients of one to five years old.

V. EXPERIMENTAL RESULTS AND PERFORMANCE OF THE
CNN MODEL

A. Hyperparameter Optimization (HPO)

To search for optimal hyperparameters of the model, ran-
dom search was performed [38]. Itis a method for searching
for optimal hyperparameters of a training model that involves
randomly sampling hyperparameter combinations from a pre-
defined search space. The search space is defined by specifying
a range or distribution for each hyperparameter. The outline of
the algorithm for random search is as follows.

• Define the hyperparameter search space: it consists of
specifying the range or distribution of possible values

TABLE III. DIFFERENT DATASETS OF CHEST X-RAY IMAGES

Data Number of images Training Testing Validation
Dataset 1 5872 4770 551 551
Dataset 2 5856 4762 612 482
Dataset 3 6896 5532 720 644
Dataset 4 4665 3672 474 519
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Fig. 4. Images without augmentation.

Fig. 5. Image augmented by random translation technique.

Fig. 6. Image augmented by random flipping technique.

Fig. 7. Image augmented by random rotation technique.

for each hyperparameter.

• Initialize the random search object by creating an
instance of the random search function, such as Ran-
domizedSearchCV in scikit-learn, and specifying the
model, the hyperparameter search space, the number
of iterations, and other parameters such as the number
of cross-validation folds.

• Generate random samples of hyperparameters byran-
domly sampling hyperparameter combinations from
the defined search space. The number of samples is
controlled by the number of iterations specified in step
2.

• Train the model with each sample of hyperparame-
ters: For each generated sample of hyperparameters,
train the model using the corresponding sample of
hyperparameters and evaluate its performance using
a performance metric such as accuracy or F1-score on

the validation set.

• Select the best set of hyperparameters by selecting
the set of hyperparameters that results in the best
performance on the validation set as the best set of
hyperparameters.

• Validate the model on unseen data by using the best set
of hyperparameters to train a final model and evaluate
its performance on unseen data.

Hyperparameters obtained by the random search of the model
were as follows. The model was trained using a batch size
of 32, where 32 data samples are used to update the model’s
parameters in each iteration. The training process continued
for 12 iterations. The early stopping technique was used to
avoid overfitting, where the training process is stopped if the
validation loss does not decrease for 7 consecutive iterations.
This is done to ensure that the model generalizes well on
unseen data.
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B. Evaluation and Results

The training accuracy of a model is a measure of how well
the model is able to predict the correct labels for the training
data. The validation accuracy is a measure of how well the
model is able to predict the correct labels for the validation
data, which is a subset of the data that is held out from the
training process and used to evaluate the model’s performance.
In general, the training accuracy of a model will be higher
than the validation accuracy, because the model has seen
the training data during the training process and has learned
to predict the labels for those data points accurately. The
validation accuracy is a more realistic measure of the model’s
performance, because it reflects the model’s ability to gener-
alize to unseen data. In order to determine the performance
of the proposed method, we examined the accuracy, precision,
recall, and F1 score. Accuracy is the proportion of correctly
classified instances (True Positives and True Negatives) out of
all instances. It is computed as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Where True Positives (TP) are the number of instances where
the model correctly predicted the positive class, True Negatives
(TN) are the number of instances where the model correctly
predicted the negative class, False Positives (FP) are the
number of instances where the model incorrectly predicted
the positive class and False Negatives (FN) are the number of
instances where the model incorrectly predicted the negative
class. Precision is the proportion of correctly classified positive
instances out of all positive instances predicted by the model.
It is calculated as:

Precision = TP/(TP + FP ) (3)

Recall is the proportion of correctly classified positive in-
stances out of all actual positive instances. It is calculated as
follows:

Recall = TP/(TP + FN) (4)

F1 Score is the harmonic mean of precision and recall. It is
calculated as follows:

F1-score =
2 · TP

2 · TP + (FP + FN)
. (5)

All values of accuracy, precision, recall an F1 score are
listed in Table IV.

In order to assess the influence of the size of the dataset
on the performance of the CNN model, we plotted the
curves of Training accuracy/Validation accuracy and Training
loss/Validation loss. The tests were carried out, first, on four
original datasets. Fig. 8 show that the training and validation
accuracy varies with the epoch count. In fact, the model is
learning efficiently, the training and validation accuracy reach
a plateau after the end of the 20th epoch indicating that the
model has reached its maximum performance. The Training
accuracy curve demonstrates the progression of the model’s
accuracy on the training set over successive epochs. As the
training progresses, the accuracy steadily increases, indicating
that the model is effectively learning the patterns and features
of the pneumonia dataset. The upward trend in the curve
signifies the successful optimization of the model’s parameters,
leading to improved classification accuracy. Similarly, the

Training loss curve illustrates the decline in the loss function
during the training phase. The loss function measures the
discrepancy between the predicted and actual values, and the
decreasing trend of the curve indicates that the model is
converging towards a better approximation of the ground truth
labels. A lower loss value indicates that the model is becoming
more proficient at minimizing errors and making more precise
predictions. The Validation accuracy and loss curves provide
insights into the model’s generalization performance on unseen
data. The Validation accuracy curve tracks the accuracy of the
model on a separate validation dataset that was not used for
training. A rising validation accuracy curve indicates that the
model is not overfitting and can generalize well to new data.

Fig. 8. Training and validation accuracy/loss curves of our CNN model
applied on dataset 1.

A comparison of the obtained metrics our solution with
those of known models has been summarized in the Table V.

VI. RESULTS AND DISCUSSION

Note that the proposed model comprises four convolutional
layers accompanied by four additional Maxpooling layers.
The flattened layer of zero parameters and dense layers of
about 819328 parameters come next. We thus have a total
number of parameters which amounts to 1,246,401 parameters.
We used two well-known and very powerful models to test
the effectiveness of the proposed model. The CNN model
was able to accomplish good values of Accuracy. After the
augmentation of data, there was a clear improvement in the
performance of all models and especially our CNN model
(Table VI).

Four Chest X-ray images datasets served as the basis for
our experiment.The datasets is publicly available on Kaggle,
a shared data platform, and consists of 23289 real images
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TABLE IV. PERFORMANCE OF THE PROPOSED METHOD

Model Accuracy Precision Recall F1-score
Our model 0.92 0.92 0.91 0.91

TABLE V. COMPARISON TABLE BETWEEN DIFFERENT MODELS

Model Accuracy Precision Recall F1-score
VGG16 0.96 0.93 1.0 0.97

ResNet-50 0.89 0.87 0.93 0.90

VGG-19 0.93 0.94 0.93 0.93

Inception-V3 0.75 0.77 0.71 0.74

ResNet-101 0.74 0.74 0.74 0.73

DenseNet121 0.49 0.50 0.48 0.49

Our model 0.92 0.92 0.91 0.91

TABLE VI. COMPARISON OF ACCURACY VALUES BETWEEN DIFFERENT MODELS

Data/Model CNN MobileNet DenseNet
With aug Without aug With aug Without aug With aug Without aug

Data1 97.88 80.64 99.99 62.50 80.76 80.76
Data2 95.34 80.41 97.11 62.50 87.78 78.39
Data3 95.04 81.02 96.05 61.18 87.78 79.89
Data4 94.99 80.70 98.26 61.18 87.78 79.89

developed by radiologists using data from real affected pa-
tients. We split our data into training, validation, and testing.
First, data augmentation is done to enhance our dataset by
doing minor changes in our images. We trained the models
for 15 epochs with a batch size of 32 and a learning rate
equal to 0.01. Our model showed a considerable improvement
of performance between the basic and augmented images. We
evaluated also the MobileNet and DenseNet models on data
without and with augmentation and we find that augmenting
data gives good results and enhanced the accuracy of different
models. By applying data augmentation techniques, such as
random cropping, flipping, rotation, and scaling, a larger and
more diverse training dataset can be created from the original
data. This increased diversity in the training data can lead
to improved performance of the model on the test set, as
it has seen similar variations during training. Additionally,
data augmentation can also act as a regularization technique,
preventing the model from overfitting to the training data.
However, it’s important to note that too much data augmenta-
tion can lead to overfitting to the augmented data and decreased
performance on the original data. It’s also important to find
the right balance between the degree of augmentation and the
quality of the augmented data to prevent information loss or
degradation. In general, it’s a good practice to experiment with
different augmentation techniques and evaluate their effect on
the model’s performance. The results indicated that random
data augmentation can be considered better than classic data
augmentation because it increases the diversity of the training
data in a more controlled manner, preventing overfitting to the
augmented data and increasing the generalization ability of the
model.

VII. CONCLUSIONS

This paper presents a comparative study of Deep Learning
Models for the detection of Pneumonia, incorporating data
augmentation techniques. The experimental results validate
the effectiveness and accuracy of our proposed model. It

showed good results compared to MobileNet and DenseNet.
A remarkable improvement was noticed after applying the
data augmentation techniques on the different datasets. Data
augmentation can be a powerful technique for improving the
performance of deep learning models. By artificially increasing
the size and diversity of the training data, data augmentation
can prevent overfitting and increase the generalization ability
of the model. This can lead to enhanced results on the test set,
and improved performance in real-world scenarios.

While our research has presented valuable insights into the
detection of pneumonia using deep learning models and data
augmentation techniques, there are a few aspects that merit
further consideration. Firstly, it is important to acknowledge
the limitations of our study, such as the reliance on a specific
dataset and the need for further validation on larger and more
diverse datasets. Additionally, exploring the impact of different
data augmentation strategies and their effects on model perfor-
mance could be an interesting avenue for future investigation.
Moreover, investigating the generalizability of our proposed
model to other medical imaging tasks and assessing its perfor-
mance in real-world clinical settings could provide valuable
insights. Lastly, incorporating interpretability techniques to
understand the model’s decision-making process and exploring
ways to address any potential biases are important directions
for future research. By addressing these questions and focusing
on these areas, we believe that further advancements can be
made in the field of pneumonia detection using deep learning
techniques.
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