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Abstract—In Brain-Computer interface (BCI) applications, 

achieving accurate control relies heavily on the classification 

accuracy and efficiency of motor imagery electroencephalogram 

(EEG) signals. However, factors such as mutual interference 

between multi-channel signals, inter-individual variability, and 

noise interference in the channels pose challenges to motor 

imagery EEG signal classification. To address these problems, 

this paper proposes an Adaptive Channel Selection algorithm 

aimed at optimizing classification accuracy and Information 

Translate Rate (ITR). First, C3, C4, and Cz are selected as key 

channels based on neurophysiological evidence and extensive 

experimental studies. Next, the channel selection is fine-tuned 

using spatial location and absolute Pearson correlation 

coefficients. By analyzing the relationship between EEG channels 

and key channels, the most relevant channel combination is 

determined for each subject, reducing confounding information 

and improving classification accuracy. To validate the method, 

the SHU Dataset and the PhysioNet Dataset are used in 

experiments. The Graph ResNet classification model is employed 

to extract features from the selected channel combinations using 

deep learning techniques. Experimental results show that the 

average classification accuracy is improved by 5.36% and 9.19%, 

and the Information Translate Rate is improved by 29.24% and 

26.75%, respectively, compared to a single channel combination. 

Keywords—Brain-Computer Interface; motor imagery; channel 

selection; deep learning; graph convolutional neural network  

I. INTRODUCTION 

Brain-Computer Interface (BCI) systems allow for direct 
communication with the outside world without relying on the 
brain's typical output pathways [1,2]. Within the field of BCI, 
motor imagery is one of the most commonly utilized 
paradigms. Motor imagery (MI) involves mentally simulating 
the movement of a limb without actually moving it [3]. BCI 
systems can capture EEG signals from the brain during these 
imagined movements through electrodes, and thereby enable 
control over external devices [4]. With their potential 
applications in fields such as rehabilitation and medical care, 
communication security, and environmental protection, BCI 
systems have a wide range of possible uses [5]. 

Deep learning [6] is a widely used approach in the field of 
BCI. Compared to shallow learning models like traditional 
machine learning, deep learning uses neural network 
architecture with multiple complex network layers that perform 
varying functions. This leads to a significant improvement in 
the quantity and quality of feature extraction and recognition. 
Many studies have applied deep learning methods such as 
convolutional neural networks (CNN), long short-term 

memory (LSTM), and deep Boltzmann machine (DBM) for 
motor imagery classification, achieving good recognition 
results. However, these methods overlook the rich topological 
relationships between electrodes by treating EEG data as 
simple two-dimensional data. In contrast, the utilization of 
graph convolutional neural networks for EEG signal 
classification addresses this issue. 

Different regions of the human brain have distinct 
functions. For instance, the motor cortex is responsible for 
motor functions, while the parietal lobe processes various 
sensory information like touch, smell, and taste. However, 
most current studies have used EEG data from all channels to 
extract features, which inevitably introduces redundancy. 
Additionally, the brain's electrical activity may vary among 
individuals. Therefore, selecting task-specific signal recording 
sites can reduce preparation time and improve user comfort in 
nonclinical BCI applications [7]. By choosing the optimal 
channel, the impact of noise interference can be minimized, 
and the computational costs of processing high-dimensional 
data can be reduced. 

The objective of this study is to address the issue of 
individual variability and to decrease the computational 
complexity involved in processing high-dimensional EEG data. 
The main contributions of the paper are as follows: 

 An Adaptive Channel Selection algorithm is proposed. 
For different individuals, the method selects all or 
partial channels as input to the BCI system by itself, 
and the partial channels are selected based on the 
correlation between channels and spatial location. 

 A residual-based graph neural network is used to 
decode the MI signal. 

 This method achieves good results on the SHU dataset 
and the PhysioNet dataset. 

The main part of this paper consists of five sections. The 
first section is the introduction, which provides the 
background, significance, and methodology of the motor 
imagery study, as well as the reasons for conducting channel 
selection. The second section is the related work, where 
research related to feature extraction and classification 
algorithms of EEG signals is discussed. Section III presents the 
core part of the paper, introducing the channel selection 
algorithm and the Graph ResNet model. Section IV presents 
the experimental testing of the algorithms proposed in Section 
III, along with the corresponding results and analysis. Finally, 
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Section V concludes the research approach and provides future 
outlook. 

II. RELATED WORKS 

A. Feature Extraction 

The method of feature extraction method has a significant 
impact on the performance of BCI systems. Popular methods 
include CNN and RNN [8-13]. In [11], a combination of 
convolutional and recurrent neural networks achieved an 
accuracy of 98.3% on the PhysioNet dataset. However, these 
methods only considered regular data in Euclidean space and 
did not take into account the topological relationships between 
electrodes. To address the issue of non-Euclidean space data 
being unable to be convolved, the first graph convolutional 
neural network (GCN) was proposed in [14] and applied to 
non-Euclidean space structured data. In [15] and [16], GCN 
was applied to MI decoding, achieving the highest accuracy of 
93.056% and 98.08% on the PhysioNet dataset, respectively, 
demonstrating the superiority of GCN in processing EEG 
signals. However, in order to fully utilize the topological 
relationship between electrode channels, all channel data are 
typically used as network inputs, resulting in a large amount of 
redundant data [17]. 

B. Channel Selection 

EEG signals are acquired using multi-channel electrodes, 
but using all channels as network input can consume more 
computational resources and degrade system performance due 
to noise in some channels. Therefore, channel selection is 
necessary [17]. One simple method is to select data from the 
three channels (C3, C4, and Cz) where potential changes 
during motor imagery are mainly concentrated [18]. 
Additionally, the StEEGCS algorithm, proposed in [19], 
utilizes EEG shapelet-transformed for EEG channel selection. 
It selects the top-k EEG channels by solving a logistic loss-
embedded minimization problem while simultaneously 
learning EEG shapelets, hyperplanes, and channel weights. and 
in [20], a Spatiotemporal-Filtering-Based channel selection 
(STECS) method was introduced to extract discriminative 
information from EEG signals. The STECS method was able to 
achieve the same classification performance as the full channel 
by using only half of the number of channels. However, these 
methods lack a neurophysiological basis. In [21], it was 
assumed that the channels associated with MI should contain 
public information, and channels were selected based on inter-
channel correlation. An iterative multi-objective optimization 
channel selection (IMOCS) algorithm was proposed in [7] that 
selects optimal channels using anatomical and functional 
correlations of EEG channels, but it does not consider the 
spatial distribution of electrodes. 

Subject-independence can reduce the time of data 
preprocessing in BCI systems. However, the investigation 
results showed [22] that subject-specific classification accuracy 
is higher than that of subject-independent BCI systems. This 
suggests that the optimal channel varies across subjects. 

In summary, the paper addresses the problems of data 
redundancy and individual variability faced by using deep 
neural networks for EEG signal classification. An adaptive 
Channel Selection is proposed, which considers both the 

neurophysiological basis and the correlation between channels 
to select the optimal channel for each subject individually. 

III. MATERIALS AND METHODS 

A. Overview 

The framework of this paper is shown in Fig. 1. 

1) Computing the channel correlation and obtaining the 

graph Laplacian. 

2) Selecting electrodes using an Adaptive Channel 

Selection algorithm. 

3) Generating a graph representation of the channel 

correlation from the graph Laplacian. 

4) Applying the residual graph neural network to decode 

EEG signals. 

5) Determining the optimal channel selection scheme 

based on the test results. 

The Adaptive Channel Selection algorithm automatically 
selects the combination of channels with a higher Information 
Translate Rate (ITR) based on the ITR obtained after training 
data from both schemes. Fig. 2 illustrates the algorithm 
framework, which includes one scheme that uses all channels 
in the original data and another that uses proposed channel 
selection algorithm. Channel selection is based on the 
following two criteria. 

B. Adaptive Channel Selection Algorithm 

To minimize computational effort during graph pooling, the 
number of selected channels is chosen as integer powers of two 
since the number of channels is reduced by half each time. 

1) Neurophysiological basics and spatial location: Motor 

imagery EEG refers to the spontaneous electrical activity of 

brain tissue that reflects the functional state of the brain. 

Different bands of EEG activity typically appear in different 

functional areas of the brain, and changes in their activity can 

reflect various brain states. Previous studies [23] have shown 

that during motor imagery, the phenomena of ERD and ERS 

in the mu (8-13 Hz) and beta (13-30 Hz) bands are 

concentrated in the C3 and C4 electrodes of the cerebral motor 

cortex. in addition to Cz, which also receives the influence of 

hand movements. Therefore, first selected the C3, C4, and Cz 

channels that are most relevant to motor imagery EEG 

activity. Next, selected another set of channels that are 

spatially closest to the selected channels, with the already 

selected channels being referred to as “Fixed Channels”. 

2) Absolute pearson coefficient: For the remaining 

channels, they needed to be closely related to EEG activity in 

the motor cortex of the brain, and considering the variability 

among individuals, this work selected a unique set of channels 

for each subject based on the absolute Pearson correlation 

coefficient. These channels were referred to as “Free 

Channels”, and the three sets of channels were combined to 

form the input to the model. The composition of each part of 

the channel is shown in Fig. 3. 
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Fig. 1. Illustration of the proposed framework. 

 
Fig. 2. Adaptive channel selection algorithm flowchart. 

 
Fig. 3. Diagram of channel composition. 

The absolute Pearson coefficient is a commonly used 
method for feature selection and extraction, as it measures the 
degree of correlation between two variables. In channel 
selection, this work aims to identify channels that are highly 
correlated with changes in motor cortex EEG signals. To 
achieve this, this work uses the absolute Pearson coefficient to 
evaluate the degree of correlation between each channel and 

the motor functional areas of the brain, and select the channels 
with high correlation [21]. 

The Pearson correlation coefficient between two variables 
is calculated as the quotient of the covariance and the standard 
deviation between the two variables. 

     
   (   )

    
   

where      denotes the overall Pearson correlation 

coefficient of variables   and  ,    (   )  represents the 
covariance between variables   and  , and      represents the 
product of the standard deviations of variables   and  . The 
estimation is based on the sample with respect to the variance 
and covariance. 
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Bring (2) and (3) into (1). The absolute Pearson coefficients 
of the samples are obtained as follows. 
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With the EEG channels considered as variables and their 
corresponding data as observations, the Pearson correlation 
coefficients were calculated for all channels and the three 
channels most closely associated with motor imagery, C3, C4, 
and Cz. To ensure that negative correlations between channels 
and changes in EEG signals in the motor cortex of the brain 
were not overlooked, the absolute values of the Pearson 
correlation coefficients were taken. The correlation degree 
between all channels and the three motor imagery-related 
channels was calculated, and the channels with the highest 
correlation were selected as “Free Channels” for model input. 
The number of “Fixed Channels” and “Free Channels” selected 
for different datasets are shown in Table I. 

C. Graph ResNet 

The graph convolution network can be divided into two 
categories: spectral graph convolution network and spatial 
graph convolution network [24]. The spectral method defines 
graph convolution in the spectral using the convolution 
theorem, while the spatial method aggregates the central node 
and its neighboring nodes by defining an aggregation function 
in the node domain. In this paper, the spectral graph 
convolution method is employed. 

1) Graph represents: For an undirected graph, it can be 

represented as   *     + , where | |    denotes the 

number of nodes,   denotes the set of edges, and   denotes 

the adjacency matrix that defines the connectivity between 

nodes. The Laplacian matrix of the graph is denoted by 

     , where   is a diagonal matrix. The normalized 

Laplacian matrix [24] is defined as 

      
 
 

    
 

   

and since   is a real symmetric matrix, an eigen-
decomposition of   yields       , where   denotes the 
identity matrix of  ,   is the diagonal array of eigenvalues. The 
correlation matrix, Pearson matrix, absolute Pearson 
coefficient matrix, adjacency matrix, degree matrix, and 
Laplace matrix of subject 1 in SHU-Dataset are given in in Fig. 
4. 

2) Graph convolution: In the spectral, the graph 

convolution of signals       is defined as 

        (( 
   )  (    )) 

where    represents the graph convolution operator and   

represents the Hadamard product. For an input signal  , the 
graph convolution operation through a convolution kernel filter 
     is defined as 

      ( 
      )

Define   as        ( 
  ) ,then the graph convolution 

operation for   can be simplified to 

          
   

To parameterize the convolution kernel   , Chebyshev 
network (ChebyNet) [25] is used instead of the convolution 

kernel in the spectral.    is defined as    ∑     ( ̃)
 
   , 

where  ̃ can be represented as 

 ̃  
  

    
     

 DISTRIBUTION OF DIFFERENT CHANNEL TYPES TABLE I. 

Dataset 
Number of 

Channels 

Fixed 

Channels 

Free 

Channels 

SHU Dataset 
32   

16 13 3 

Physionet MI Dataset 

64   

32 21 11 

16 3 13 

 
(a)                                                      (b)                                                      (c) 

 
(d)                                                     (e)                                                      (f) 

Fig. 4. The correlation matrix, Pearson matrix, absolute pearson coefficient matrix, adjacency matrix, degree matrix, and Laplace matrix of subject 1 in SHU-

dataset. 
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and the Chebyshev polynomial is defined as   ( )  
      ( )      ( ) , where   ( )    and   ( )   . 
Therefore, the ChebyNet graph convolution operation is 

       (∑     ( ̃)
 
   )    

Let  ̃  
  

    
   , then   ( ̃)     ( ̃) 

 , and the 

ChebyNet graph convolution operation can be simplified as 

      ∑     ( ̃)
 
     

ChebyNet convolution does not require feature 
decomposition of the Laplacian matrix, and the convolution 
kernel has only     trainable parameters [25]. Therefore, the 
parameter complexity is significantly reduced. 

3) Graph pooling: ChebyNet implements pooling 

operation using a complete binary tree. In the coarsening 

phase based on the Graclus multi-level clustering algorithm 

[26], the input feature tensor is divided into blocks of equal 

size. These blocks are then aligned based on the nature of 

complete binomial trees where each non-leaf node has 2 

children. At each non-leaf node, the most matching feature 

block is selected for pooling using the greedy criterion, 

Pooling two nodes into one node. The pooling process is 

shown in Fig. 5. 

4) Residual learning: Deep neural networks are known for 

their improved ability to fit nonlinear functions as the number 

of layers and neurons increases. However, simply stacking 

layers can lead to problems such as vanishing gradients, 

exploding gradients, and network degradation. To address 

these issues, Residual Learning proposed in [27]. This 

framework assumes that  ( )    represents the optimal 

solution mapping, and the general convolutional neural 

network is directly fitted with  ( )   . In contrast, the 

residual network aims to fit the residual mapping,  ( )  
 ( )   . The optimal solution mapping is then given by 

 ( )   ( )   . 

 
Fig. 5. ChebyNet implements pooling operators using complete binary trees[25]. 

IV. RESULTS AND DISCUSSION 

A. Dataset Description 

1) SHU dataset: This work utilized the SHU Dataset, a 

publicly available motor imagery dataset from Shanghai 

University in 2022[28]. The dataset includes 25 subjects who 

underwent a total of 5 sessions every 2-3 days. Each session 

included 100 trials, which were automatically labeled by using 

EEGLAB with amplitudes greater than 100  V. Experts then 

reviewed and eliminated any bad segments, resulting in a 

small number of missing trials in some sessions. The motor 

imagery tasks consisted of left-hand (L) and right-hand (R). 

EEG data were recorded using 32 electrodes based on the 

International 10-10 system with a 250 Hz sampling rate and a 

4-second time window. Each subject had a total of 500 trials 

(5 sessions * 100 trials), and each trial included 1000 

sampling points. The EEG data acquisition paradigm is shown 

in Fig. 6. 

 
Fig. 6. Timing paradigm of SHU dataset. 

2) PhysioNet dataset: The PhysioNet dataset included 109 

subjects who performed motor imagery tasks using their left 

hand (L), right hand (R), both fists (B), and both feet (F). EEG 

data was recorded from 64 electrodes based on the 

International 10-10 system, with a sampling rate of 160 Hz 

and a time window of 4 seconds. Each subject completed 84 

trials (3 runs * 7 trials * 4 tasks), with each trial consisting of 

640 sampling points. 

B. Channel Selection Results 

1) SHU dataset: The original SHU-Dataset had 32 

channels. Firstly, three channels C3, C4, and Cz -were 

selected, and then 10 additional channels were selected based 

on their spatial location: FC1, FC2, FC5, FC6, T3, T4, CP1, 

CP2, CP5, and CP6. In total, 13 channels were selected and 

has been marked in Fig. 7(a). Finally, three Free Channels are 

selected based on the absolute Pearson coefficients, and a total 

of 16 channels were used as input for the model. 

Taking the first three subjects in the dataset as an example, 
computing the sum of the absolute Pearson coefficients for all 
channels and C3, C4, and Cz channels. The computation 
results are presented in Fig. 7(b), and the channels that were 
selected based on this result are listed in Table II. 

2) PhysioNet dataset: The original dataset consists of 64 

channels, which are reduced to 32 and 16 channels 

respectively. In both cases, three channels (C3, C4, Cz) were 

first selected from the source channels, and the remaining 

channels were selected using the following method: 
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 For the 32 EEG channels, 18 channels were initially 
selected based on their spatial location, resulting in a 
total of 21 Fixed Channel as shown in Fig. 8. Then, 11 
Free Channels were selected based on the absolute 
Pearson coefficients. 

 For the 16-channel subset, due to the densely arranged 
64 channels based on the international 10-10 system 
and the need for fewer channels, the remaining 13 Free 
Channels were all selected based on the absolute 
Pearson coefficients. 

 
(a) 

 
(b) 

Fig. 7. (a) Shows schematic diagram of SHU Dataset Fixed Channels, (b) 

Shows the sum of the absolute Pearson coefficients between all channels and 

the C3, C4, and Cz channels for the first three subjects in the SHU-Dataset 

was calculated. 

 FREE CHANNELS SELECTED OF THE THREE SUBJECTS TABLE II. 

Subject Added channels label Added channels 

1 7、23、24 F8、Pz、P3 

2 3、6、17 Fz、F7、A1 

3 25、26、27 P4、T5、T6 

 

Fig. 8. Schematic diagram of physionet dataset fixed channels. 

C. Evaluation Metrics 

To evaluate this algorithm, this work introduces the 
Information Translate Rate (ITR) [29] as an additional 
evaluation metric, in addition to the traditional precision 
metric. ITR is a standard method for measuring communication 
systems, expressing the amount of information transmitted per 
unit time. The bit rate depends on both speed and accuracy. 
The formula for calculating ITR is as follows 

       
             (   )    

   

   

  
 

Here,    represents the prediction time of each sample in 
the model,   represents the number of categories, and 
 represents the classification accuracy. The unit of ITR is 
bits/min. 

D. Equipments 

This work utilized a remote server that runs on the Ubuntu 
18.04 operating system to conduct experiments. The 
experiments were conducted in a Python 3.6 environment using 
the TensorFlow 1.15 deep learning framework. The models 
were trained and evaluated using 1 NVIDIA Tesla V100-PCIE-
32GB GPU and 1 Intel Xeon Processor (Skylake) 2.4GHz 
CPU. The system was equipped with 147GB RAM for system 
memory and had 6TB hard disk capacity. 

E. Model Parameters 

The network architecture consists of 12 convolutional 
layers, each connected to a pooling layer every two layers. The 
dataset is split into 90% training data and 10% test data. A 
training cycle of 100 batches is utilized and the performance of 
the trained model is evaluated on the test set after each cycle. 
Evaluation metrics including ITR and accuracy are calculated, 
and finally the average value of the successive ITR is taken to 
reduce randomness. The model hyperparameters are shown in 
Table III. 

 MODEL HYPERPARAMETERS TABLE III. 

Hyperparameter Value 

Chebyshev Order 3 

Activation Function Leaky ReLu 

Batch size 1024 

Epoch 50 

Optimization Algorithm Adam 

Learning Rate 0.001 

Dropout 0.5 

F. Experimental Results 

1) SHU dataset: For this dataset, choosing to train the 

EEG dataset of the first 15 subjects separately, and the 

outcomes are presented in Fig. 9. 

Table IV presents the results of motion imagery 
classification accuracy using all 32 channels, with an 
impressive accuracy of 83.98% reported in [16]. This 
outperforms the various benchmark classification methods 
used in [28], which achieved a maximum accuracy of 78.9% 
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on the cross-session task. After applying proposed method to 
halve the channels, the classification accuracy improved by 
1.86%, the ITR improved by 14.4%, and the sample prediction 
time decreased by 22.7%. This result indicates that reducing 
the number of channels effectively reduces interference 
information, reduces data redundancy, and improves 
information transmission rate. In particular, some subjects who 
previously had poor classification accuracy and ITR, such as 
subjects 4, 5, 8, and 10, showed significant improvement after 
channel reduction. Using only half of the channel data, higher 
average classification accuracy and ITR were achieved 
compared to using all 32 channels. Furthermore, after applying 
the Adaptive Channel Selection algorithm, significant 
improvements were observed in classification accuracy and 
ITR compared to using all channels and only 16 channels. The 
classification accuracy improved by 5.36% and 3.5%, ITR 
improved by 29.24% and 12.97%, and single-sample 
prediction time was reduced by 12.56% and 13.13%, 
respectively. 

2) Physionet dataset: For this dataset, training the EEG 

data of the first 20 subjects separately, and the experimental 

results were obtained by taking the mean values of the 

different subjects. These results are presented in Fig. 10. 

Table V shows that with the input of all 64 channels data 
[16], the classification accuracy is improved by 1.26% and 
8.21% compared to 32 and 16 channels, respectively, due to 
the availability of more extracted features. However, this leads 
to more data redundancy and the longest single-sample 
prediction time, resulting in a lower ITR compared to 32 
channels. Although the ITR of 16 channels has only a 3.85% 
difference compared to 64 channels, the classification accuracy 
loss is higher due to less information available and less training 

time. By using the proposed Adaptive Channel Selection 
algorithm, the classification accuracy is improved by 0.98%, 
2.24%, and 9.19% compared to 64, 32, and 16 channels, 
respectively, and the ITR is improved by 26.75%, 7.66%, and 
22.05%, respectively. 

 
(a) 

 
(b) 

Fig. 9. (a) Shows the classification accuracy of the model under different 

channel strategies. (b) Shows the ITR of the BCI system under different 
channel strategies. 

 SHU DATASET EXPERIMENTAL RESULT TABLE IV. 

Subject 

Channels Strategies 

32 16 Ada 

ACC 

(%) 

ITR 

(bits/min) 
   

( s) 

ACC 

(%) 

ITR 

(bits/min) 
   

( s) 

ACC 

(%) 

ITR 

(bits/min) 
   

( s) 

1 95.67 1558783 22 89.7 1201300 22 95.67 1558783 22 

2 96.44 1588442 25 93.89 1651697 19 93.89 1651697 19 

3 95.87 1466000 24 86.45 949636 18 95.87 1466000 24 

4 69.1 162564 28 93.32 1356800 18 93.32 1356800 18 

5 67.13 146810 28 88.67 951056 19 88.67 951056 19 

6 97.38 1528246 28 94.34 1688184 21 94.34 1688184 21 

7 95.76 1380068 25 87.23 1146226 19 95.76 1380068 25 

8 58.39 30620 24 84.06 767902 19 84.06 767902 19 

9 55.74 8438 24 53.32 4860 19 55.74 8438 24 

10 74.2 97775 28 77.83 179420 22 74.2 179420 22 

11 76.99 136505 23 91.58 997918 19 91.58 997918 19 

12 92.54 1193187 24 84.53 993657 18 92.54 1193187 24 

13 95.12 1497135 22 86.47 1081009 18 95.12 1497135 22 

14 94.32 1236212 25 84.61 927602 19 94.32 1236212 25 

15 95.03 1315861 24 91.55 1371521 19 95.03 1315861 24 

Average 83.98 889776 24.93 85.84 1017919 19.27 89.34 1149910 21.8 
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(a)                                                                                          (b) 

Fig. 10. (a) Shows the classification accuracy of the model under different channel strategies. (b) Shows the ITR of the BCI system under different channel 

strategies. 

 PHYSIONET DATASET EXPERIMENTAL RESULTS TABLE V. 

Channels Strategies Acc (%) ITR (bits/min)    ( s) 

64 91.53 1123454 33.8 

32 90.27 1322665 30.1 

16 83.32 1166775 27.25 

Ada 92.51 1424018 29.75 

 PERFORMANCE OF DIFFERENT METHODS ON PHYSIONET DATASET TABLE VI. 

Work Channels Strategies Average Acc(%) 

This work Ada 92.51 

Jia et al. [16] All Channels 91.53 

Hou et al. [31] All Channels 92.5 

Ma et al. [32] All Channels 68.2 

In short, the proposed method utilizes less channel data 
while achieving comparable accuracy to some studies using 
full channel data, and higher ITR as shown in Table VI. 
Specifically, the method achieves an average classification 
accuracy of 92.51%, while in [16], using the same feature 
extraction method with full channel data, achieves 91.53% 
accuracy. The method is slightly better than the 92.5% average 
classification accuracy obtained in [30] using scout EEG 
source imaging (ESI) with a convolutional neural network 
(CNN) algorithm. Furthermore, it is much higher than the 
average classification accuracy of 68.20% obtained in [31] 
using Spatial and Temporal Recurrent Neural Networks for 
classification. 

V. CONCLUSION 

This work proposes an Adaptive Channel Selection 
algorithm that automatically selects the optimal combination of 
EEG channels for each subject to maximize the information 
transmission rate of the BCI system. The channel combinations 
include all channels and some selected channels based on the 
spatial location of each channel in the dataset and the absolute 
Pearson coefficients of each channel with the key channels C3, 
C4, and Cz, which are commonly used in motor imagery 
experiments. 

To extract features, this work uses a deep graph 
convolutional neural network with residual blocks added to 

prevent overfitting. Applying this method to the SHU dataset 
improved the classification accuracy by up to 5.36% and the 
information transfer rate (ITR) by up to 29.24% compared to 
using a single channel combination. On the Physionet dataset, 
the classification accuracy is improved by up to 9.19% and the 
ITR is improved by up to 26.75%. The proposed algorithm 
effectively addresses the problems of data redundancy and 
individual differences faced by deep neural networks in 
extracting features, and significantly improves the 
classification accuracy and ITR. 

In summary, the study demonstrates the effectiveness of the 
proposed adaptive channel selection algorithm for decoding 
EEG-based motor imagery. The algorithm outperforms the 
single-channel combination scheme and has the potential to 
improve the generalization capability of deep neural networks 
for BCI applications. Future work will focus on exploring the 
generalization capability of this channel selection algorithm 
across different datasets and experimental conditions. 
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