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Abstract—Excessive self-weight of bridge inspection vehicles 

increases the safety risk of the inspected bridge structures. In this 

study, a bridge inspection vehicle arm structure self-weight 

optimization design model is proposed to improve the efficiency 

and safety of bridge structure inspection. The model uses a finite 

element model of the arm structure to generate force data to 

validate and train a back propagation (BP) neural network-based 

self-weight prediction model of the arm structure, and uses an 

improved genetic algorithm to assist the prediction model in 

searching for the optimal solution. The experimental results show 

that the maximum stress and maximum deformation of the 

optimal solution from the optimization model designed in this 

study are lower than the allowable values of the material, and the 

total weight of the structure from the optimal solution is the 

lowest, 4687.5 kg. The computational time of the optimization 

model designed in this study is lower than all the comparison 

models. The experimental data show that the optimized model 

for the self-weight optimization of the bridge inspection vehicle 

arm structure designed in this study has good optimization effect 

and has some application potential. 
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I. INTRODUCTION 

Currently, the design of mechanical structures in China is 
generally completed through manpower, specifically relying on 
the personal experience and professional knowledge of 
engineers to complete the preliminary design of products [1-3]. 
This approach highly relies on the personal abilities of the 
designer, and the design cycle is long, and the design efficiency 
is also relatively low [4-6]. For large construction machinery 
such as excavators and bridge inspection vehicles, in most 
cases, their structural optimization design goal is to minimize 
the weight of the structure as much as possible while meeting 
the stress requirements, thereby improving the operational 
efficiency of the mechanical structure, saving energy and 
reducing emissions, and reducing construction risks caused by 
excessive mechanical self-weight [7-9]. As an important part of 
transport infrastructure, bridges play an irreplaceable role in 
maintaining traffic safety and ensuring economic development 
[10-12]. Periodic inspection and maintenance are essential 
during the operation of bridges [11-13]. As the main equipment 
for bridge inspection, the design and optimization of the bridge 
inspection vehicle arm directly affect the effectiveness and 
efficiency of bridge inspection [14-16]. With the rapid 
development of artificial intelligence technology represented 

by neural networks, applying artificial intelligence technology 
to mechanical structure design has become one of the 
development trends in mechanical structure design [17-19]. 
Some previous research has attempted this type of method, but 
there are still some shortcomings, such as insufficient 
automation of the designed method and the need to incorporate 
a certain degree of expert experience into the method. The 
main reason for this phenomenon is that the parameters in 
mechanical structure design are complex and numerous, and it 
is difficult to model using a high level of automation. 
Therefore, this study attempts to combine finite element model 
analysis with artificial intelligence algorithms to explore a fast 
and sufficiently accurate lightweight design method for bridge 
inspection vehicle arm structures, and uses genetic algorithms 
to assist in searching for the optimal solution in the 
optimization model. In addition, considering the inherent 
drawbacks of genetic algorithms such as being prone to falling 
into local optima and having poor stability in optimization 
results, this study innovatively improves the selection operator, 
mutation, and poor probability calculation methods of genetic 
algorithms, which is also the importance of this study. 

II. RELATED WORKS 

Various artificial intelligence algorithms, including BP 
neural network algorithms, have been applied to a variety of 
industries and mechanical structure optimization design. Wang 
D et al. found that the traditional tunnel inspection and 
reconnaissance methods have high workload and high risk 
factor. Considering the high mobility of micro-rotor UAV, the 
authors designed an autonomous tunnel reconnaissance UAV 
incorporating information from multiple sensors such as 
inertial measurement units, vision and LIDAR, and used 
convolutional neural networks to optimize the self-weight of 
the UAV. The test results show that the optimized UAV 
reduces its self-weight by 15.7% compared to the pre-
optimized UAV, which effectively improves the UAV's 
endurance [20]. The current additive design capability of Patel 
D's research team could not meet their production requirements 
well, so they designed an intelligent additive design system 
using two neural network architectures, and the test found that 
the system effectively improved the design efficiency of 
additive materials [21]. Kien DN et al. constructed a structural 
defect detection method for mechanical components using 
Alex neural network and tested that the method resulted in an 
8.2% improvement in the accuracy of detecting production 
defects in mechanical structure design [22]. Li Y et al. 
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designed a lightweight optimization model for battery structure 
using radial-based neural network in order to solve the problem 
of lightweight design of automotive batteries. The 
experimental results showed that the application of the model 
reduced the mass of the designed battery pack by 17.62% and 
the maximum deformation by 30.78% [23]. Fan Y's research 
team found that the geometry of high-temperature sealed 
ceramic parts has a significant impact on their compressive 
resilience performance, so an accurate and large-scale artificial 
neural network was built to match the relationship between 
structural parameters and mechanical properties of ZrO2 parts 
fabricated through 3D printing. The prediction results show 
that the combination of artificial neural network and finite 
element is a better method to optimize the structure and guide 
the 3D printing method to fabricate complex ceramic parts 
[24]. Han X et al. proposed a fast, efficient and convenient 
method to optimize the shape design of centrifugal pump 
impeller and worm housing by combining genetic algorithm 
and back propagation neural network. The experimental results 
showed that the optimized impeller increased the head and 
efficiency by 7.69% and 4.74%, respectively, at the design 
flow conditions, while the optimized power was reduced by 
2.56%. The hydrostatic pressure across the optimized impeller 
is more uniform, and the hydraulic performance of the 
centrifugal pump with the optimized impeller exceeds that of 
the original centrifugal pump at low and design flow conditions 
[25]. To AC et al. proposed a new topological optimization 
method that uses a neural style to simultaneously optimize the 
mechanical structural performance and geometric similarity of 
the reference design for a given load condition; this method 
pre-trains the convolutional layers of the neural network and 
extracts the geometric similarity. This method also pre-trains 
the convolutional layers of the neural network and extracts 
quantitative features from the reference and input data to 
perform structural optimization. Test results show that the use 
of this method to optimize the design of mechanical 
components resulted in the production of components with a 
16.7% reduction in dead weight with only a 2.82% increase in 
maximum stress [26]. 

In summary, experts in artificial intelligence and 
mechanical design have conducted extensive research to 
analyze the possibility and effectiveness of using intelligent 
algorithms for automatic design of mechanical components. 
The ideas behind designing these methods may have some 
inspiration for this study, which is also the connection between 
this study and previous studies. However, there are still some 
shortcomings in previous studies, such as insufficient 
automation of design methods, a certain degree of expert 
experience still needs to be incorporated into the method. At 
the same time, the application of this approach to the 
lightweight design of bridge inspection vehicle structures in 
previous studies is quite rare. At the same time, the automatic 
lightweight design of bridge inspection vehicle structures is of 
great significance in improving the work efficiency of bridge 
inspection vehicles, saving operating energy consumption, and 
even reducing the possibility of potential accidents caused by 
excessive self-weight of inspection vehicles. This is the 

purpose or objective result of this study. The research may 
provide some improvement suggestions for the design and 
manufacturing of future bridge inspection vehicles, which is 
the impact of this study on the future. 

III. MODEL DESIGN FOR WEIGHT OPTIMIZATION OF TRUSS 

BRIDGE INSPECTION VEHICLE ARM STRUCTURE 

A. Finite Element Modeling of the Structure of the Inspection 

Arm of the Truss-type Bridge Inspection Vehicle 

In order to optimize the arm structure of the inspection 
vehicle, the arm structure needs to be abstracted and modeled 
first, specifically by establishing its finite element model, in 
order to remove elements that have no or little influence on the 
optimization problem and highlight the computational elements 
that determine the structural optimization results [27]. The 
loading arm system of truss bridge inspection vehicle consists 
of gear slewing structure, telescopic working platform, inner 
and outer working platform, vertical lifting tower and lower 
slewing truss. The truss bridge inspection vehicle, which is 
commonly used in bridge construction projects, was selected as 
the object of this study, and the dimensions of the components 
to be optimized in its design structure are shown in Fig. 1. 

In the optimization problem of truss bridge inspection 
vehicle arm structure, since the total length of the inner and 
outer telescopic working platform of the arm truss and the 
parameters of the lowering depth of the lift tower are 
determined through the working conditions, it is more 
reasonable to choose the constructed interface size as a design 
variable here. Specifically, the sheet thickness and profile 
dimensions of the interface are selected as design variables. 
Here, the design variables are first treated as continuous 
variables to solve the optimization problem, and then the 
values of the optimal solution are rounded to obtain the 
appropriate discrete values according to the actual situation. 
The distribution of design variables of interface dimensions for 
each type of carriage arm truss rod is shown in Fig. 2. 
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Fig. 1. Common truss bridge inspection vehicle core structure dimensions. 
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Fig. 2. Distribution of design variables of the arm section of truss bridge 

inspection vehicle. 

The specific meaning of each section design variable, the 
range of variables, and the initial value of each section design 
variable of the truss bridge inspection vehicle arm truss in Fig. 
2 are shown in Table I. The value range of each variable in 
Table I is obtained by referring to the corresponding design 
range of truss bridge inspection truck arm trusses in the 
industry, and the respective initial values are determined 
according to the most common values of the same type of 
products on the market. 

TABLE I.  DESIGN VARIABLE SPECIFIC INFORMATION DISPLAY TABLE 

Parameter 
number 

Variable 
Symbols 

Initial 
Value 

Value 
range/mm 

Variable Meaning 

*01 
1x  82 [60,90] 

Lifting tower chord cross-
sectional dimensions 

*02 
2x  11 [5,15] 

Cross-sectional material 
thickness of lift tower 
stringers 

*03 
3x  50 [40,60] 

Lifting tower web cross 
section size 

*04 
4x  7 [5,17] 

Lifting tower web material 
thickness 

*05 
5x  50 [45,60] 

Cross-sectional dimensions 
of stringers on workbench 

*06 
6x  3 [1,8] 

Material thickness of 
stringers on the workbench 

*07 
7x  67 [42,75] 

Cross-sectional dimensions 
of the lower chord of the 
working table 

*08 
8x  22 [10,33] 

Cross-sectional dimensions 
of the lower chord of the 
working table 

*09 
9x  5 [2,10] 

Material thickness of the 
lower chord of the working 
table 

*10 
10x  45 [25,60] 

Cross-sectional dimensions 
of the lower web of the 
working table 

*11 
11x  2.5 [1,8] 

Thickness of material of 
lower web bar of worktable 

Considering all kinds of possible working conditions of the 
inspection vehicle, the most dangerous working condition was 
selected to carry out the study, i.e. the working condition when 
the vertical lift tower descends to the lowest position. In this 
case, the vertical relationship between the telescopic inspection 
platform and the bridge is vertical, the load borne by the 
inspection vehicle is 300 M/kg, and the safety factor is 1.5 
according to industry regulations. 

The parametric model of the truss structure of the 
inspection vehicle is designed again below. Considering the 
actual structure of the inspection vehicle arm, it is stipulated 
that the contact points between the guiding and positioning 
rollers and the lift tower flange plate are connected by fixed 
constraints, and the upper and lower end plates of the arm 
structure are connected by using the gears and bolts of the 
slewing structure. Although the rotating truss is also connected 
to the slewing structure and the inner and outer table lap joints 
using bolts, this part of the modeling is too complex and will 
significantly increase the number of finite element units and 
nodes, so the connection structure is ignored and the 
connection between them is considered as direct coupling. 
Using the established finite element model to carry out 
structural statistics and static calculations, it was found that the 
total mass of the model was 5519.48 kg, and the maximum 
equivalent stress of the structure was 250.4 MPa, which 
appeared at the bolt hole of the lower end plate of the rotary 
structure, while the stress at other locations was much smaller 
than this value. The strength requirement is satisfied. The 
maximum displacement of the structure is 98.58mm in the 
vertical direction of the arm truss, which also meets the 
structural requirements. 

B. Mapping Relationship Model and Mathematical Model 

Design for Structure Optimization 

The computational efficiency of using manual debugging 
of design variables and then running the finite element model 
to calculate the optimization target values is particularly low. 
Therefore, this study uses a BP neural network to construct a 
mapping relationship between the structural design variables 
and the optimization objective, i.e., the structural weight of the 
arm, in order to achieve the goal of fast optimization. The 
reason for using BP neural network instead of other more 
complex and advanced neural network algorithms to construct 
the mapping relationship model is that the target problem in 
this study is not complicated in terms of features and does not 
require repeated and high-latitude abstraction extraction, which 
would substantially increase the computational and training 
time of the mapping model. And it is difficult to provide a 
large number of data samples that can make the latter training 
effective in this study. Before building the mapping model, it is 
also necessary to select a suitable training sample set. Now, we 
choose to use the orthogonal test method to obtain the sample 
data because it generates data samples with neat comparability 
and balanced distribution, i.e., it is possible to obtain a data set 
with as complete a distribution as possible with fewer samples. 

The orthogonal table 
11

50 (5 )L
 is chosen to obtain the training 

samples, which contains 5 levels, 50 samples and 11 design 
factors, as shown in Table II. As shown in Table II, the truss 
self-weight, maximum deformation and maximum equivalent 
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force of the model structure are taken as the output in turn, and 
the required calculation results can be quickly generated by 
using the finite element model of the inspection vehicle arm. 

TABLE II.  
11

50 (5 )L
 ORTHOGONAL TEST DETAILS 

Design 
Variables 

Level 1 Level 2 Level 3 Level 4 Level 5 

1x  81 82 84 85 88 

2x  10 11 12 13 14 

3x  49 51 54 55 57 

4x  8 10 11 12 13 

5x  49 51 55 57 59 

6x  3.0 3.5 4.0 4.5 5.0 

7x  61 62 64 65 68 

8x  21 22 25 27 29 

9x  4.0 4.5 5.0 6.0 6.5 

10x  43 44 47 48 51 

11x  3.0 3.5 4.0 4.5 5.0 

Therefore, the size of the designed BP neural network input 
data is fixed to 11×50, and the output is the maximum 
equivalent force and overall mass of the model. Since some of 
the design variables vary greatly in order of magnitude and 
may even be out of oversaturation, thus slowing down the 
convergence or even failing to complete the convergence, the 
input data need to continue the normalization process. The BP 
neural network in the mapping model adopts the classical four-
layer organization structure, and after several debugging, each 
layer is substituted with S-type tangent function, S-type 
logarithmic function, and pure linear function as the transfer 
function in turn. 

The mapping model can be used to quickly calculate the 
predicted optimization results of the opposing structural 
solution for the input design variables, but the output value is 
not the global optimal solution. Therefore, it is also necessary 
to perform an optimization search operation on the neural 
network mapping model. The following is a mathematical 
model of structural optimization required for the optimization 
search process. 

The optimization objective of the mathematical model is to 
minimize the total weight of the structure while satisfying all 
the constraints, so as to achieve the effect of improving the 
efficiency of the drive system and the whole vehicle. 
Therefore, the objective function and constraints of the 
structure optimization mathematical model of the detection 
vehicle are shown in formula (1) and (2), respectively, by 
calling the three trained BP neural network implicit functions. 

min ( ) ( , )f x sim net G x   (1) 

( , ) [ ]

( , ) [ ]

  


 

sim net S x

f sim net f x f
  (2) 

In formula (1), 
( )f x

 and 
net G

 are the self-weight 
function and auto-implicit function of truss respectively, the 
former is calculated by finite element model and the latter is 
obtained by BP mapping network training; in formula (2),   

and 
f

 are structural stress and vertical displacement 

respectively, 
 

 and 
 f

 are allowable stress and allowable 

stiffness respectively, 
net S

 and 
net f

 are structural stress 
implicit function and vertical maximum displacement implicit 
function respectively. The input data x  satisfy the relationship 
of formula (3). 

1 2 11[ , , ..., ]  Tx X x x x   (3) 

C. Design of Optimization Model Solving Method Based on 

Improved Genetic Algorithm 

Genetic algorithm is an optimization algorithm designed 
after biological genetic rules, which has excellent adaptive 
ability and large solution set coverage, so it is widely used in 
solving various complex optimization problems. This time, 
genetic algorithm is also chosen as the mapping model 
optimization method, but the traditional genetic algorithm has 
the following disadvantages. Firstly, the traditional genetic 
algorithm population initialization is carried out randomly, 
which may make the mapping model miss the optimal solution, 
secondly, due to the complex computational content of the 
mathematical model for structural optimization of the detection 
vehicle, it will lead to slow convergence of the algorithm, and 
finally, the traditional genetic algorithm also has the problem 
that it may fall into local convergence. To alleviate these 
problems, this study improves the traditional genetic 
optimization algorithm in many aspects, and the improvement 
process will be analyzed in detail below. 

In the iterative process of genetic algorithm, variation 
probability and crossover probability play a significant role in 
the calculation results of the algorithm, and it is necessary to 
optimize these two parameters because they may even directly 
lead to the failure of optimization if they are not set properly. 
In classical genetic algorithms, the variation probability and 
crossover probability change with the increase of iterations, 
thus increasing the genetic diversity of the population and 
reducing the possibility of falling into local optimum. For the 
classical genetic algorithm, when the fitness of an individual is 
greater than the average fitness of the population, it means that 
it is a good individual, and the corresponding variation and 
crossover probabilities are both a small value, making it easier 
to save to the next generation. On the contrary, it means that 
the current individual is a poor adaptor, and its variation and 
crossover probability are larger values, aiming to improve the 
quality of its offspring. However, if the individual fitness is 
equal to the maximum fitness of the population, the 
corresponding two probability metrics will be reduced to 0. 
Although this internal regulation model is more reasonable in 
the later stages of the iteration, when the majority of 
individuals in the population are excellent and the impact of 
variation adjustment should be minimized. However, in other 
stages of the iteration, this approach makes the evolution and 
convergence process too slow, and this is the optimal 
individual may not be the global optimum. To address the 
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drawbacks of this adaptive adjustment, previous work has 

improved the calculation of the crossover probability cp
 and 

the variance probability mp
, as in formulas (4) and (5). 
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In formulas (4) and (5), 1cp
, 2cp

, 1mp
, and 2mp

 are the 

parameters to be set, and 
'f
, avgf

, and maxf
 represent the 

fitness values of the individuals to be mutated, the average 
fitness of the population, and the maximum fitness, 
respectively. This improved calculation method uses an elite 
retention strategy, which protects the best individuals in each 
generation. However, the parameter of the number of iterations 
of the population needs to be added to ensure that the two 
probabilities will change dynamically, so this study adjusts the 
calculation of the crossover probability and the variation 
probability to formulas (6) and (7). 
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In formulas (6) and (7)   is a very small positive number, 
which is added to prevent the occurrence of a situation in the 
population where the average fitness is equal to the maximum 
fitness. n , for the number of iterations, the two probabilities 
are combined with the number of iterations and the 
trigonometric function, so that they satisfy both non-zero and 
changeable with the fitness to avoid the situation of falling into 
local optimum. The selection operation is an indicator to judge 
whether an individual can be inherited or not. In the 
optimization problem of this study, the size of the adaptation 
degree of the optimized solution is closely related to its total 
structural weight, which means that when the total structural 
weight is too large, the corresponding solution should be 
eliminated. For this characteristic, elite retention and roulette 
selection methods can be chosen to screen genes. The roulette 
selection strategy allows individuals with greater fitness to be 
preferentially selected for inheritance to the next generation, 
facilitating the process of optimization and iteration, which is 
more common and will not be repeated here. The elite selection 

strategy can make the better individuals not be destroyed by 
the hybridization strategy, so the elite selection strategy is 
chosen as the selection operator of the algorithm. The specific 
treatment of the elite selection strategy is that when the best 
individual appears in the population, it is directly copied to the 
next generation and the subsequent steps are skipped. 

The mutation operation serves to increase the genetic 
richness of the population and prevent the algorithm from early 
convergence. For the characteristics of the inspection vehicle 
arm structure weight optimization problem, the mutation 
operation was chosen to be carried out in this genetic algorithm 
using the inversion mutation method. The specific processing 
method is shown in Fig. 3. 

However, the disadvantage of this mutation algorithm is 
that there is no way to know whether the mutated chromosome 
is superior to the parent, and if the mutated chromosome 
becomes worse instead, it will instead increase the possibility 
of local convergence of the algorithm. To avoid this situation, 
the validity of this mutation needs to be judged after the 
inversion mutation operation is finished. Here, we choose to 
use fitness as an indicator to judge the level of chromosomal 
excellence of the offspring. If the judgment result shows that 
the chromosome fitness of the offspring is smaller than that of 
the parent, the mutation operation is deleted, and the result is 
accepted on the contrary. The improved genetic algorithm was 
designed by combining the above improved results, and its 
computational process is shown in Fig. 4. As shown in Fig. 4, 
firstly, the mapping model based on BP neural network was 
input into the algorithm, and then the binary coding method 
was applied to encode the parameters of the improved genetic 
algorithm, in which several populations were randomly 
generated, and the fitness function was used to calculate the 
genetic probability of each individual. Before carrying out the 
chromosome crossover mutation operation, it is necessary to 
retain a few good individuals according to the elite strategy, 
and then judge whether the current operation is inbred, because 
if it is inbred, it will bring serious adverse effects to the 
optimization results. If the judgment result is "yes", reselect the 
operation object and judge again. If the answer is "no", 
crossover and mutation operations are performed on all 
individuals according to formulas (6) and (7) to generate new 
offspring, and finally determine whether the current population 
and algorithm parameters meet the stop iteration condition, and 
if so, stop the iteration and output the optimal individual, i.e., 
the optimal detection vehicle arm structure optimization 
scheme, and if not, return to the calculation of genetic 
probability. Step to continue running the algorithm. 

This completes the design of the optimized model for the 
weight of the arm structure of the truss bridge inspection 
vehicle. 
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Fig. 3. Schematic diagram of inversion variant treatment. 
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Fig. 4. Flow chart of improved genetic algorithm calculation. 

IV. OPTIMIZE MODEL PERFORMANCE TESTING 

In order to verify the effect of the optimization method 
designed in this study on the optimization of the bridge 
inspection vehicle arm structure, the optimization model 
designed was implemented using Python language, and its 
input interface with the finite element model calculation data 
was built. After several tests and adjustments, the experimental 
BP neural network model was selected from Trainlm learning 
method, the maximum number of training steps was fixed to 
1000, and the target error was set to 1×10-10. At the same 
time, the Faster-Regions with CNN features (Faster-RCNN) 
neural network algorithm, which is widely used in current 
application scenarios and has excellent performance, was 
selected to form a comparison model, and finally The 
following four optimization model schemes are formed: 
classical genetic algorithm + BP neural network, improved 
genetic algorithm + BP neural network, classical genetic 
algorithm + Faster-RCNN neural network, improved genetic 
algorithm + Faster-RCNN neural network, hereinafter referred 
to as CGA+BP, IGA+BP, CGA+FRCNN, IGA+FRCNN, 
respectively. 

In order to verify the reasonableness of using neural 
network algorithm instead of finite element model, after 
constructing and training the mapping model based on BP and 
Faster-RCNN, five groups of data different from the training 
samples were randomly selected to carry out the simulation 
test, and the test results are shown in Fig. 5. The horizontal axis 
in Fig. 5 shows each prediction model and the prediction index 
of the output, the left vertical axis represents the total structural 
self-weight of the output of various models, and the right 

vertical axis represents the maximum structural stress of the 
output of each model. The right vertical axis represents the 
maximum structural stress output of each model, and the data 
with percent sign in the figure is the absolute value of the 
relative error of the output value of the prediction model 
relative to the output value of the finite element model. As can 
be seen in Fig. 5, the predicted mean structural dead weight 
and maximum structural stress of the predictive models based 
on BP neural network and Faster-RCNN for the five groups of 
test design variables are 5164.8 kg, 5170.4 kg, 223.63 MPa, 
223.95 MPa, and 0.81%, 0.92%, 1.62%, 1.48% respectively. It 
can be seen that the absolute values of the average relative 
errors are within the allowed range (less than 5%), indicating 
that the two selected prediction models can be used. Although 
the relative error of the structure maximum self-weight 
prediction value of the Faster-RCNN-based prognostic model 
is smaller than that of the BP network-based one, the 
fluctuation of the former prediction is significantly larger, so it 
is reasonable to select the BP algorithm to construct the 
prognostic model. 

The following analysis of the BP and Faster-RCNN neural 
network training process in the structural optimization model is 
shown in Fig. 6. The horizontal axis is the number of model 
iterations and the vertical axis is the value of the loss function, 
with different line shapes representing different optimization 
models. Since the loss function decreases extremely fast in the 
early stage of model training, the vertical axis is shown in 
segments. The loss function values after convergence of the 
two models IGA+BP and IGA+FRCNN constructed using the 
improved genetic algorithm are significantly lower than those 
of the other two models, and the former is higher than the 
latter, at 1.52 and 3.15, respectively, indicating that the global 
search capability of the algorithm is indeed significantly 
enhanced after improving the genetic algorithm along the lines 
of this study. From the perspective of the number of iterations, 
the model using BP neural network converged significantly 
faster than the model using Faster-RCNN neural network, for 
example, IGA+BP and IGA+FRCNN converged after 91 and 
169 iterations, respectively. 
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Fig. 5. Comparison of the prediction results of the prediction models. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 5, 2023 

347 | P a g e  

www.ijacsa.thesai.org 

Number of iterations

0.00

L
o
ss

 f
u
n

c
ti

o
n

 v
a
lu

e

0 20 40 60 80 100 120 140 160 180 200

4.00

8.00

12.00

14.00

16.00

50.00

60.00

70.00

80.00

90.00

IGA+FRCNN

IGA+BP

CGA+FRCNN

CGA+BP

 
Fig. 6. Comparison of the training process of each optimization model. 

In the following, the calculation results of the optimal 
solution parameters output from each model corresponding to 
the circular integer value scheme are compared again, as 
shown in Table III. Observing Table III, it can be seen that 
after the calculation and processing of each optimization 
model, some of the design variables of the four optimal integer 
solutions derived have increased compared to the initial values, 
but most of the design variables have a significant decrease. 
From the perspective of maximum stress and maximum 
deformation, the IGA+FRCNN model is the smallest with 
213.9 MPa and 74.64 mm, respectively, followed by the 
IGA+B0P model with 219.50 MPa and 79.31 mm, 
respectively. But the maximum stress and maximum 
deformation of the optimal integer solutions of all the 
optimized models are smaller than the initial design values and 
lower than the allowable values. From the perspective of 
measuring the total structural weight of the measuring arm, the 
IGA+B0P model has the lowest total structural weight of 
4687.5 kg. 

Finally, the computational efficiency of each optimization 
model is analyzed, so different groups of design variables are 
input and the statistics are obtained in Fig. 7. The horizontal 
axis in Fig. 7 represents the number of groups of design 
variables processed by the model consecutively, and the 
vertical axis represents the total computational time spent. 
Different curve types represent different optimization models, 
and the gray vertical lines are auxiliary lines. As can be seen in 
Fig. 7, the computational time of the model incorporating the 
FRCNN algorithm is significantly more than that of the model 
constructed based on the BP algorithm, mainly because the 
former has a complex structure and more computational levels. 
Also the computation time of the model using the improved 
genetic algorithm is significantly lower than that of the model 
using the same prediction algorithm but without the improved 
genetic algorithm. For example, when the number of groups of 
variables with computation is 50, the computation time of each 
scheme of CGA+BP, IGA+BP, CGA+FRCNN, and 
IGA+FRCNN is 5.88s, 4.62s, 10.24s, and 9.57s, respectively. 

To further compare and study the designed methods, a 
bridge inspection vehicle optimization method based on 
incremental algorithm is designed here, and the parameters in 

the algorithm are determined through multiple debugging 
methods. The data obtained from the experiment is relatively 
simple, and it is described in text here. According to the 
statistical experimental data, it was found that the optimal 
structural parameters optimized by the IGA+BP model 
designed in this study still have lower self-weight than the 
incremental algorithm, indicating that the optimization effect of 
the latter is worse than that of the former. 

TABLE III.  COMPARISON OF OPTIMAL INTEGER SOLUTIONS FOR EACH 

OPTIMIZATION MODEL 

Name 
Initial 
design 
value 

CGA+
BP 

IGA+B
0P 

CGA+FRC
NN 

IGA+FRC
NN 

1x /mm 82 74 67 71 69 

2x /mm 11.00 6.00 6.00 6.00 6.00 

3x /mm 50 61 58 60 59 

4x /mm 7.00 7.50 6.50 7.00 6.50 

5x /mm 50 56 58 58 60 

6x /mm 3.00 2.50 2.00 2.50 2.50 

7x /mm 67 52 50 52 50 

8x /mm 22 16 15 15 16 

9x /mm 5.00 4.50 4.00 5.00 4.50 

10x /mm 45 54 60 62 60 

11x /mm 2.50 3.50 4.00 4.00 4.00 

Maximum 
stress/MPa 

250.48 227.1 219.50 224.8 213.9 

Maximum 
deformation/

mm 
101.36 96.49 79.31 87.15 74.64 

Self-weight/ 
kg 

5574.2 
5271.

0 
4687.5 5188.3 4962.3 
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Fig. 7. Comparison of the computational efficiency of each optimization 

model. 
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In summary, the difference between the self-weight and 
maximum structural stress of the inspection vehicle designed in 
this study using neural networks instead of the finite element 
model output and the finite element model is less than 2%. In 
the engineering application environment of bridge inspection 
vehicles, this degree of error can be considered more accurate. 
The main reason for this situation is that neural networks have 
strong nonlinear relationship search and extraction capabilities, 
and there is indeed a complex nonlinear mapping relationship 
between the structural parameters of the bridge inspection 
vehicle and the corresponding structural self-weight and 
maximum stress. From the perspective of algorithm training 
speed, the IGA+BP model designed in this study has a slightly 
faster training speed than the comparison algorithm, because 
the BP neural network that makes up the algorithm itself is a 
three-layer structure, and the parameters to be optimized and 
the number of samples required for training are smaller than 
neural network algorithms such as Fast-RCNN. From the 
optimized parameter results, it can be seen that the optimal 
solution output by the design algorithm in this study 
corresponds to a significantly smaller self-weight than other 
algorithms, and the maximum stress and strain of the structure 
has not significantly increased compared to other methods, 
indicating that this method has certain application value in 
optimizing the structural parameters of bridge inspection 
vehicles. 

V. CONCLUSION 

In order to reduce the self-weight of the bridge inspection 
vehicle boom structure, this study designed an improved 
genetic algorithm and built an intelligent optimization model of 
the inspection vehicle boom structure by combining the BP 
neural network prediction model and the finite element model. 
The simulation experimental results show that the prediction 
value of the output of the test design variables from the 
prediction model constructed based on BP and Faster-RCNN 
neural network is less than 5% relative error to the calculation 
result of the finite element model, and can be used for the 
prediction model. The values of loss functions after 
convergence of the two models constructed using improved 
genetic algorithm, IGA+BP and IGA+FRCNN, are 
significantly lower than the other two models, and the former is 
higher than the latter with 1.52 and 3.15, respectively. Analysis 
of the optimal integer solutions of each optimized model 
reveals that the IGA+FRCNN model is the smallest in terms of 
maximum stress and maximum deformation, with 213.9 MPa 
and The maximum stress and maximum deformation of the 
IGA+FRCNN model are 213.9 MPa and 74.64 mm, 
respectively, followed by the IGA+B0P model with 219.50 
MPa and 79.31 mm, respectively, which are lower than the 
allowable values of the material. From the perspective of 
measuring the total structural weight of the measuring arm, the 
IGA+B0P model has the lowest total structural weight of 
4687.5 kg. Also the computation time of the model using the 
improved genetic algorithm is significantly lower than that of 
the model using the same prediction algorithm but without the 
improved genetic algorithm. When the number of groups with 
computational variables is 50, the computation time of 
CGA+BP, IGA+BP, CGA+FRCNN, IGA+ The computation 
time of each scheme is 5.88 s, 4.62 s, 10.24 s, and 9.57 s, 

respectively. It can be seen that the optimization model 
designed this time can obtain better self-weight optimization 
results of the bridge inspection vehicle arm structure quickly. 
However, the optimization effect of the model on other 
uncommon types of bridge inspection vehicles was not 
analyzed in the study, and this part will be added in the 
subsequent study. 
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