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Abstract—Most researchers are beginning to appreciate the 

use of remote sensing satellites to assess PM2.5 levels and use 

machine learning algorithms to automate the collection, make 

sense of remote sensing data, and extract previously unseen data 

patterns. This study reviews delicate particulate matter (PM2.5) 

predictions from satellite aerosol optical depth (AOD) and 

machine learning. Specifically, we review the characteristics and 

gap-filling methods of satellite-based AOD products, sources and 

components of PM2.5, observable AOD products, data mining, 

and the application of machine learning algorithms in 

publications of the past two years. The study also included 

functional considerations and recommendations in covariate 

selection, addressing the spatiotemporal heterogeneity of the 

PM2.5 -AOD relationship, and the use of cross-validation, to aid 

in determining the final model. A total of 79 articles were 

included out of 112 retrieved records consisting of articles 

published in 2022 totaling 43 articles, as of 2023 (until February) 

totaling 19 articles, and other years totaling 18 articles. Finally, 

the latest method works well for monthly PM2.5 estimates, while 

daily PM2.5 and hourly PM2.5 can also be achieved. This is due to 

the increased availability and computing power of large datasets 

and increased awareness of the potential benefits of predictors 

working together to achieve higher estimation accuracy. Some 

key findings are also presented in the conclusion section of this 

article. 

Keywords—AOD; machine learning; PM2.5; remote sensing; 

pollutant 

I. INTRODUCTION 

Interest in the study of PM2.5 (particulate matter 
aerodynamic diameter ≤ 2.5 μm/m

3
) concentration estimates 

from various outdoor and indoor particle sources has increased 
dramatically recently, as evidenced by the number of academic 
journals that have published articles on it. Studies identified the 
impact of PM2.5 contamination on humans as the initial 
problem of various adverse effects on the health of fetal growth 
during pregnancy to early death [1]. Direct and long-term 
exposure can significantly impact climate change, visibility 
degradation, ecosystem disruption, and social, ecological, and 
economic impacts [2]–[4]. 

PM2.5 monitoring is a critical need for public health, 
especially in densely populated areas, where exposure to 
airborne particles poses significant health risks [5]. Ground 
station monitoring is the most direct and accurate method of 
PM2.5 monitoring. However, it is impossible to fully identify 
the spatial distribution and obtain historical measurements of 
PM2.5 concentrations across the region. Most researchers are 

beginning to appreciate the use of remote sensing satellites to 
assess PM2.5 levels. Estimating PM2.5 concentrations using 
Aerosol optical depth (AOD) as a remote sensing satellite 
derivative can be used to fill the gap of spatial and temporal 
data gaps left by ground stations [6]. Various remote sensing 
satellite sensors, such as Moderate Resolution Imaging 
Spectrometer (MODIS) [7], [8] The Visible-infrared Imaging 
Radiometer Suite (VIIRS) [9], [10], the Advanced Himawari 
Imager [11], [12] the Advanced Geosynchronous Radiation 
Image (AGRI) [13], [14] have been applied to estimate PM2.5 
concentrations. 

Models for predicting PM2.5 concentrations can be useful 
for filling data gaps from existing monitoring networks. Air 
pollutant concentration prediction methods can generally be 
classified into three categories: numerical, statistical, and 
artificial intelligence (AI) models. Numerical models simulate 
the physical and chemical changes and transport processes of 
atmospheric pollutants by specifying and solving complex 
differential equations. Recent representative numerical models 
include Community Multiscale Air Quality (CMAQ) and 
Weather Research and Forecasting coupled with Chemistry 
(WRF-Chem). The accuracy of these models relies heavily on 
detailed emission data from pollutant sources, which often 
need to be made more precise and available. In addition, the 
complex modeling process requires more time and computing 
power [15]. Therefore, it is necessary to develop a faster and 
more accurate model to improve the prediction of air 
pollutants. 

Statistical models have not involved complex physical 
changes, chemical reactions, and transportation processes. 
Statistical models rely entirely on data-driven mining of 
internal relationships to historical data. Therefore, the 
computational effort is significantly lower compared to 
numerical models. It is easy to implement classical statistical 
models such as autoregressive integrated moving average 
(ARIMA) [16] and autoregressive moving average (ARMA). 
However, these models are suitable for small data sets and 
univariate time series models. In addition, these models are 
based on linear assumptions that require strict stationarity of 
the data. Therefore, capturing nonlinear relationships in the 
data is inherently complex. These limitations greatly restrict 
the performance and applicability of classical statistical models 
in air pollution forecasting. 

In contrast, adopting machine learning models in remote 
sensing is considered the optimal solution for predicting PM2.5 
concentration time series due to its advantages of flexible 
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nonlinear regression capabilities and classification features 
based on large data sets with complex data relationships 
between many variables. [17], [18]. The initial study that 
utilized a Neural Network (NN) to tackle the intricate 
correlation between AOD-PM2.5 [19]. Since the 1990s, 
Machine Learning algorithms have been used to automate the 
collection, understand remote sensing data, and extract 
previously unseen data patterns [20], [21]. 

Machine learning capabilities make it possible to non-
parametrically examine the relationship between predictors of 
pollutant concentrations and measured pollutant concentrations 
[22], [23]. A number of research investigations have indicated 
that machine learning [17], [24], [25] such as deep learning 
[26], Random Forest [27] , and deep ensemble models [28], 
have a remarkable ability to estimate PM2.5 concentrations at 
various temporal and spatial scales. Several models have been 
developed to predict indoor [29] and atmospheric PM2.5 
concentrations based on data obtained from air quality 
monitoring stations, such as meteorological variables from 
weather stations such as air temperature (T), relative humidity 
(RH), wind speed (WS), wind direction, Precipitation (PRE). 
Land variables, such as NDVI. Variables related to population) 
such as population density, road network density, height, and 
the number of buildings, and others, including data on PM2.5, 
carbon monoxide (CO), ozon (O3 ), nitrogen oxides (NO), 
nitrogen dioxide ( NO2), and sulfur dioxide (SO2) [10], [11], 
[14], [26], [30]. 

The success of PM2.5 concentration estimation studies using 
machine learning and satellite remote sensing data depends on 
the quantity and quality of the researcher's domain knowledge, 
regional knowledge, and time spent. This review article aims to 
summarize the literature on the use of machine learning and 
satellite remote sensing in estimating large-scale and long-term 
PM2.5 concentrations. This literature review includes articles 
from 2022 to 2023 related to this crucial topic. However, some 
articles that can provide insights into various remote sensing 
technologies on PM2.5, air pollution, and other specific studies 
were also added without being limited by the year of 
publication period. Specific search terms and study selection 
are illustrated in the second section to summarize the current 
state of development in estimating PM2.5 concentrations. The 
third section investigates factors affecting PM2.5 
concentrations, levels, and model measurements. The 
following section is a personal presentation on using machine 
learning models. 

II. LITERATURE SEARCH AND SELECTION 

In line with the multidisciplinary research topics, several 
other disciplines, ranging from computer science, forestry, 
remote sensing, atmosphere, and disaster, which intersect with 
the main topic without being limited by the year of publication 
period to provide additional insight, are included. Four general 
stages of literature search and determination were conducted, 
such as: 

 Identification: The initial set was conducted by 
identifying keywords to search for articles relevant to 
the topic of this literature review from electronic 
databases Web of Science, Google Scholar, and sources 
of Elsevier, ScienceDirect, and Springer, both from 

National and International journals. Based on the topic 
raised, this study needs to summarize (1) literature from 
indoor PM2.5 concentration research, (2) specific indoor 
PM2.5 sources (cooking, cigarettes, vacuum cleaners, 
and more.), and (3) monitoring via landline networks. 
Application of keywords as follows: "Estimating 
PM2.5", "machine learning," "satellite remote sensing," 
"PM2.5", and "outdoor." Findings of article titles 
corresponding to the research topic were then stored 
and evaluated. The search continued by checking for 
other articles cited or quoted in this set and removing 
double-identified documents. Due to the core topic of 
this literature review, we focused on published articles 
from January 2022 to February 2023. 

 Screening: The articles found were screened by labeling 
them as relevant or not to this study after checking the 
abstracts. These potential papers were then carefully 
reviewed to ensure their eligibility as references in this 
literature review. 

 Eligibility: Eligibility was determined by reading the 
main findings, use of data, results, and discussion. The 
authors considered journal articles and books published 
by reputable publishers as high-quality research and 
included them in summary. The authors used "Scimago 
Journal & Country Rank" to check the rankings of the 
included articles. 

 Inclusion: The research then lists literature articles that 
correspond to the main topic. 

Our initial search yielded 112 articles. After passing the 
initial screening to eligibility assessment, this study used 61 
primary and 18 other articles.  

 is a summary flowchart of the following literature search 
and selection statistics: 

 
Fig. 1. Literature search and selection flow chart. 

 

 illustrates the number of references in the literature review. 
The collected articles from 2022 totaled 43 articles, 2023 (up to 
February) totaled 19 articles, and the other years totaled 18 
articles. 
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Fig. 2. Number of literature review references. 

III. REMOTE SENSING TECHNIQUE 

A. Moderate Resolution Imaging Spectroradiometer(MODIS) 

MODIS is an instrument on the Aqua and Terra satellites 
capable of detecting small changes in surface reflectance due to 
changes in PM2.5 concentrations. Reflectance changes estimate 
PM2.5 concentrations through a statistical approach that does 
not require calibration or data collection from ground-level 
locations. In addition, this method is more resistant to noise 
than other methods [31]. The MODIS instrument captures data 
from 36 spectral bands with wavelengths ranging from 0.4 to 
14.385 μm and observes the entire Earth's surface every one to 
two days. The Terra satellite follows a north-south orbit and 
crosses the equator in the morning, while the Aqua satellite 
travels in the opposite direction and flies over the equator in 
the afternoon. Various sources provide various MODIS data 
products: 

 MODIS level 1 data, geolocation, cloud mask and 
atmospheric products: http://ladsweb.nascom.nasa.gov/ 

 MODIS ground products: https://lpdaac.usgs.gov/. 

 MODIS cryosphere products:: 
http://nsidc.org/daac/modis/index.html. 

 MODIS ocean color and sea surface temperature 
products: http://oceancolor.gsfc.nasa.gov/. 

MODIS images have spatial resolutions of 250 m, 500 m, 
and 1km. The range of wavelengths between 0.47 and 2.12 μm 
in various channels is utilized to determine aerosol properties, 
specifically AOD, in order to estimate PM2.5 [7], [8]. A 
research study based on theoretical analysis of data gathered by 
a multiangle imaging spectrometer aboard the Terra satellite in 
the US has shown that the range of particle sizes appropriate 
for AOD retrieval, which closely corresponds to the particle 
size range of PM2.5, falls between 0.1-2 nm in the visible and 
near-infrared wavelength bands. 

B. Himawari-8 

The Japan Meteorological Agency (JMA) operates 
Himawari-8, a geosynchronous weather satellite. The satellite 
was launched on 7 October 2014, and is stationed at 140.7 
degrees east longitude, providing uninterrupted observations 
over the Asia-Pacific region, which includes Southeast Asia, 
Australia, Japan and the Western Pacific. Himawari-8 carries a 

suite of advanced instruments to observe the Earth's 
atmosphere and weather systems. These instruments include 
the Advanced Himawari Imager (AHI), which provides high-
resolution images of the Earth's surface and clouds, and the 
Himawari Cast data collection system, which receives data 
from other weather satellites and ground-based weather 
stations [32]. Himawari-8 can be used to measure Aerosol 
Optical Depth (AOD) to investigate the diurnal variation of air 
pollution with high temporal resolution. [12]. Recently, some 
studies have started to estimate hourly ground-level PM2.5 in 
real-time from Himawari-8 AOD products [33]–[35]. 

C. Sentinel 5-P 

The Sentinel-5 Precursor Satellite (Sentinel-5P) was 
launched on October 13, 2017, carrying the following 
TROPOspheric Monitoring Instrument (TROPOMI) to 
generate global high-coverage total/tropospheric vertical 
columns of precursors (e.g., NO2) for PM2.5 and PM10. 
TROPOMI has a legacy to the Ozone Monitoring Instrument 
(OMI) as well as the Scanning Imaging Absorption 
spectroMeter for Atmospheric CartograpHY (SCIAMACHY) 
TROPOMI is a single instrument from the Sentinel-5P 
spacecraft covering wavelengths from ultraviolet (UV) to 
ShortWave InfraRed (SWIR). This hyperspectral spectrometer 
is designed to provide routine observations of key atmospheric 
constituents including ozone, NO2 , SO2 , CO, CH4 , CH2O and 
aerosol properties at high spatial resolution using passive 
remote sensing methods. [36]. The typical pixel size (near 
nadir) is defined as 7 × 3,5 km

2
 for all spectral bands except 

UV1 (7 × 28 km
2
) and SWIR band (7 × 7 km

2
). In terms of 

accuracy, the evaluation results show that the quality of the 
TROPOMI atmospheric product meets the requirements in 
PM2.5 pollutant estimation [37], [38]. 

IV. PREDICTORS USED FOR ESTIMATION OF PM2.5 

CONCENTRATIONS 

A. Sources of  PM2.5 

There are several types of outdoor PM2.5 sources 
originating from the combustion of fossil materials, such as 
automotive vehicle exhaust emissions, coal, and biomass 
combustion [39], industrial activities, soil dust, secondary 
sulfates, secondary nitrates, as well as through release into the 
volcanic atmosphere [40]. The sources and concentrations of 
PM2.5 can vary significantly between locations due to the 
different characteristics of climatic conditions, emission 
sources, and distribution patterns [41]. Black carbon, aryl 
hydrocarbons, polycyclic aromatic hydrocarbons, volatile 
organic hydrocarbons, biological materials, heavy metals, 
minerals, inorganic ions, and organic compounds are the 
primary constituents of PM2.5, which account for around 79-
85% of the entire mass when considered together [42]. 

B. Explanatory Variables of PM2.5 

Two characteristics of variables used in PM2.5 research are 
dependent and independent variables. The dependent variable 
contains PM2.5 values (µg/m3) obtained through air quality 
measurements using ground stations. On the other hand, the 
independent can contain co-pollutant, meteorological, and 
anthropic information that can significantly improve the 
model's accuracy. Regarding this critical difference, 

http://ladsweb.nascom.nasa.gov/
https://lpdaac.usgs.gov/
http://nsidc.org/daac/modis/index.html
http://oceancolor.gsfc.nasa.gov/
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independent data is essential information to help estimate 
PM2.5, including AOD.  

1) Aerosol optical depth: (AOD is a quantitative measure 

of the reduction of light by aerosol particles in the Earth's 

atmosphere. AOD describes how much light from the sun is 

reduced or blocked by aerosol particles in the atmosphere. The 

higher the AOD value, the more significant the attenuation of 

light caused by aerosol particles. AOD can be measured using 

devices such as spectrometers or photometers [43]. Thus, 

AOD is an essential predictor of PM2.5, according to the close 

relationship with AOD. 
The starting point for knowing satellite AOD about surface 

PM2.5 is through Equation (1) [44], which shows the 
dependence of PM2.5 and cloud-free AOD relationships on 
various factors: 

AOD = PM2.5 × H × f (RH) × 
          
                       (1)  

where H is the boundary layer height (BLH), f (RH) is the 
ratio of the ambient and dry extinction coefficient to the 
relative humidity (RH), ρ is the aerosol mass density (g m

-3
), 

Qext,dry is the Mie extinction efficiency, and      is the effective 
radius of the particle.   is the specific extinction efficiency (m

2
 

g
-1

 ) of the aerosol at ambient RH. This equation assumes the 
aerosol is homogeneously distributed throughout the BLH. 

The relationship between PM2.5 and AOD could take the 
form of a multivariate function that is linked to numerous 
meteorological and spatial factors that influence it. [45], [46]. 
AOD is a variable that includes changes in PM2.5, resulting 
from a comprehensive combination of emissions, chemical 
reactions, and others. However, there are still three main 
differences between AOD and PM2.5 data: 

 AOD is a unitless value that reflects the total light 
blackout effect of the aerosol in the column, while 
PM2.5 is the mass concentration at the soil surface. 

 In the presence of moisture, water-soluble particles will 
become more prominent through the water absorption 
process, thus affecting the light-extinguishing ability of 
the aerosol. 

 PM2.5 is only part of aerosols with a diameter equal to or 
less than 2.5 g/m

3
, but this does not apply to all aerosols. 

Some AOD products that can be found: 

a) AERONET AOD: The Aerosol Robotic Network 

(AERONET) is a global aerosol monitoring network widely 

recognized as the benchmark for evaluating satellite source 

AID products. It provides long-term AOD ground 

measurements with low drift (0.01-0.02) and high time 

resolution (15 minutes).  AOD measurements in the 550nm 

band are not available through AERONET. However, to 

estimate AOD in this band, the Angstrom exponent is typically 

used to interpolate AOD values between 440nm and 675nm. 

AERONET AOD is currently categorised into three quality 

levels: L1.0, L1.5, and L2.0, which represent unfiltered data, 

filtered and quality-controlled data, and quality-assured data, 

respectively. Version 3 of the database is currently under 

development, which will feature more stringent quality control 

measures, particularly for cirrus cloud pollution [47]. 

b) DT AOD: The development of the Dark Target (DT) 

Algorithm is enabled to obtain AOD values in high vegetation 

cover, dark soil, and low sea surface albedo environments at 10 

Km or 3 Km spatial resolution. DT selects dark pixels with 

atmospheric reflectance (TOA) of 0.01-0.25 in the 2.12 μm 

channel to retrieve AOD. DT provides fine (low, medium, 

high) and coarse three-surface aerosol models. Furthermore, it 

selects from these three models according to the season and 

geographical conditions [45]. Collection 6 DT AOD (C6 DT 

AOD) was established in early 2014 and has completed 

updates to calibration, cloud mask, and land/ocean symbols. 

Subsequently, the C6-based C6.1 DT AOD was released to 

address the continuous changes in surface reflectivity caused 

by the rapid growth of tall buildings worldwide [48]. 

Specifically, in a pixel network covering an area of 

10km×10km, consisting of ≥ 50% coastal pixels or ≥ 20% 

water pixels, C6.1 DT will reduce the capture quality to zero 

and modify it with surface reflections in certain AOD areas 

[48]. The observed rise in value confirms a 2.17% increase in 

the correlation coefficient between C6.1 DT and AERONET 

AOD in certain urban locations, suggesting that C6.1 DT AOD 

provides a more accurate representation of the urban situation. 

The unfiltered product for AOD C6.1 DT, lacking quality 

detection, is denoted as "Image_-

Optical_Depth_Land_And_Ocean," whereas the filtered 

product with Quality Assurance (QA) greater than 1 (for 

ocean) and QA equal to 3 (for land) is denoted as 

"Optical_Depth_Land_And_Ocean." 

c) DB AOD: The Deep Blue (DB) algorithm is designed 

to capture AOD at 10 km spatial resolution for environments 

with high surface albedo in deserts, drylands, and cities. It can 

overcome the defects of the DT algorithm on shiny surfaces. 

Contrary to DT, DB first picks up aerosols at 1Km resolution, 

and then combines the 10Km pixels. The Collection 6 DB 

AOD (C6 DB AOD) product is named "Enhanced Deep Blue" 

to differentiate it from C5 and extend to other global layers 

beyond snow and ice C6.1 DB has the following improvements 

over C6: (1) reduction of artefacts from heterogeneous terrain, 

(2) improved elevation terrain surface models, and (3) updated 

seasonal or regional aerosol models and better smoke detection 

[48]. The product without quality detection in AOD C6.1 DB is 

named "Deep_Blue_Aerosol_Optical_Depth_550_Land" and 

filtered by QA=2 and QA=3 is named 

"Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimat

e". 

d) MAIAC AOD: MAIAC AOD refers to the 

atmospheric aerosol optical depth (AOD) product generated by 

the Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) algorithm. The MAIAC algorithm is a sophisticated 

technique for atmospheric correction of satellite imagery, 

which allows for the retrieval of high-quality AOD data. 

MAIAC AOD is derived from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) instrument on board the 

Terra and Aqua satellites, which are operated by the National 

Aeronautics and Space Administration (NASA). MAIAC AOD 
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provides high-resolution AOD data with spatial and temporal 

coverage, making it a valuable tool for studying air pollution 

and its impacts on human health and the environment.. 

Therefore, MAIAC has a high level of quality (L2) [49], [50]. 

In addition, the 1 km resolution is another important feature of 

MAIAC AOD. MAIAC has uncertainties under extreme 

conditions, indicating that MAIAC cannot obtain AOD 

accurately at high altitudes (>4.2 km). Lyapustin [51] showed 

that MAIAC could not get the AOD accurately at altitudes 

(>4.2 km). Tao [49] showed that daily bias varies dramatically 

in areas where airborne transportation and dusting occur. 

Otherwise, Lyapustin [51] compared MAIAC products with 

different surface cover types and found significantly different 

detection precision. The miscalculation of regression 

coefficients of surface reflectance at different wavelengths 

caused MAIAC to be systematically overestimated due to 

particle scattering properties in northwest China's desert areas. 

e) Other AOD products: In addition to the 

aforementioned AOD products, several radiometers offer 

satellite-based AOD products, such as the Climate Change 

Initiative (CCI) products from the European Space Agency 

(ESA), which include AATSR Dual View (AATSR-ADV), 

AATSR Swansea University (AATSR-SU), AATSROxford-

RAL Retrieval of Aerosol and Cloud (AATSR-ORAC), and 

AATSR-ENSEMBLE (AATSR-EN), as well as AOD products 

from other sensors, including the Advanced Very High-

Resolution Radiometer (AVHRR), Multi-angle Imaging 

Spectroradiometer (MISR), Sea-viewing Wide Field-of-view 

Sensor (SeaWiFS), Visible Infrared Imaging Radiometer 

(VIIRS), and Polarization and Directionality of the Earth's 

Reflectance (POLDER) [52] and Advanced Himawari Imager 

(AHI). Some AOD products are not widely used for PM2.5 

estimation due to low time resolution, poor overall accuracy, or 

limited application range. 

2) Co-pollutant and meteorological variabels: When 

hydrocarbons (HC) and nitrogen oxides (NOx) react in 

sunlight, they produce the secondary pollutants ozone (O3) 

and secondary organic carbon (SOC). The photochemical 

reaction of gaseous precursors of primary organic carbon 

(POC) results in the formation of SOC [53]. Meteorological 

factors affect the dispersion and transport of fine particles. 

Commonly used meteorological variables are relative 

humidity (RH), temperature (TEMP), u/v wind, surface 

pressure (SP), and wind direction (WD) [54]. Additional 

studies based on observation have demonstrated that the 

correlation between PM2.5 and AOD is influenced by the 

Planetary Boundary Layer Height (PBLH). When the PBLH is 

greater, the AOD is also higher; however, the PM2.5 

concentration is lower. [55]. RH changes aerosol particles, 

affecting AOD by increasing humidity, hygroscopicity (the 

ability of a substance to take up water molecules from its 

surroundings, either by absorption or adsorption), and aerosol 

particles. Furthermore, evaporation has a strong positive 

correlation with temperature (R > 0.6) and a strong negative 

correlation with relative humidity (R < -0.6). 

The survey results summarize the various source variables 
and individual chemical constituents of the data set used for the 
PM2.5 study. The chemical sources were divided into the 
categories of natural and anthropogenic-biogenic [42] : 

 Natural Sources 

 Biomass (Potassium (K)) 

 Sea spray aerosols (Sodium (Na)) 

 Coal burning (Aluminium (Al), Selenium (Se), 

Cobalt (Co), Arsenic (As)) 

 Soil and road dust (Aluminium (Al), Silicon (Si), 

Calcium (Ca)) 

 Volcanic dust particles and wild land fire particles 

(Potassium (K), Zinc (Zn), Lead (Pb)) 

 Anthropogenic-biogenic sources 

 Diesel, petrol and coal combustion (Elemental 

carbon (EC), Sulfates (SO4) 

 Heavy industry—high temperature combustion 

(Iron (Fe), Zinc (Zn), Copper (Cu), Lead (Pb), 

Nitrates (NO3) 

 Fertilizer and animal husbandry (Ammonium 

(NH4) 

 Oil burning (Vanadium (V), Nickel (Ni), 

Manganese (Mn), Iron (Fe), Organic carbon (OC) 

3) Anthropic variables: According to existing research on 

PM2.5 forecasting, road and rail density, population density, 

and proportion of land use (agricultural land and forest land) 

as human influencing factors of PM2.5 [56], [57]. Land use 

variables have always been the conventional choice in PM2.5 

driving research, representing the degree of landscape 

modification by humans and as a proxy for local emissions 

and background air pollution levels. Land use variables 

approximate air pollutant emissions, often at the kilometer or 

sub-kilometer scale. Land use can be (1) type of land use 

coverage, (2) distance to the nearest highway, (3) distance to 

the coastline, (4) elevation, and (5) NDVI (normalized 

vegetation difference index). (6) The distribution of PM2.5 is 

influenced by elevation due to the difficulty of reaching 

PM2.5 at a higher elevation above the earth's surface from sea 

level [58]. 

Land use variables are potential sources of PM2.5 and are 
the areas of most significant concern. Existing studies on the 
dependence of land use variables on AOD or PM2.5 show 
significant differences between lower and higher areas. 
Grassland, shrubs, water bodies, and artificial surfaces 
positively depend on AOD (maximum partial dependence of 
about 0.63) and are insignificant on PM2.5 [43]. Since land 
cover properties can be assumed to change gradually, missing 
values at the temporal scale are then replaced through linear 
interpolation between adjacent values [59]. 

Nighttime (Nigh Light (NLT) population density variables, 
such as road network density, height, and number of buildings, 
are used to identify the degree of population agglomeration and 
urbanization in the scale of urban industrial development [30]. 
For example, coal, forest fires and vehicle emissions can be a 
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major source of haze, as the larger composition of released fine 
soot particles affects the higher AOD and PM2.5 measurements 
in MODIS. Another study showed that NLT has an increased 
MSE: about 30 n plots with partial dependence on PM2.5 
generally increase slowly as NLT increases [60]. This suggests 
that high NLT represents densely populated areas and still 
operating factories. However, the impact of emissions in a 
short period is not very influential on high PM2.5. Studies by 
[61] have shown that population density is significantly 
positively correlated with AOD, with PM2.5 concentrations 
increasing sharply near population density = 6 (people/KM) 
then increasing slowly. This pattern shows the contribution of 
population density to PM2.5 concentrations, which can rise 
above pollutant limits due to high human activity. 

C. Analysis of Variables Affecting PM2.5 

Understanding the variables that trigger PM2.5 is essential. 
The study by Su [56], adopted spatial autocorrelation analysis 
to explain the spatial correlation of PM2.5 in the study area and 
period. This study uses spatial cluster and outlier methods to 
analyze the distribution and spatial-temporal variation of the 
PM2.5 surface. Meanwhile, the Random Forest algorithm was 
used to analyze the influence variables on PM2.5. The 
relationship between PM2.5 concentration and the explanatory 
variables was well modeled, and the explanation level of the 
drivers to PM2.5 was more than 0.9. Temperature, rainfall, and 
wind speed are the main driving forces of PM2.5 emissions. The 
impact of forest fires is also slowly influencing the driving 
force of PM2.5 concentration [61]. Another study related to the 
importance of explanatory variables in explaining PM2.5 
variations, using ensemble models (deep learning (DL), 
Random Forest Distribution (DRF), and Gradient Boosting 
Machines (GBM)) by explaining PM2.5 variations such as wind 
speed, inversion strength, and aerosol optical depth (AOD) to 
be the most influential in DRF and GBM models. For the deep 
learning algorithm, wind direction emerged as the most 
influential, followed by the land cover variable [62]. 

D.  Missing Values 

The relationship between AOD and PM2.5 varies 
considerably across regions, seasons, and time periods. Hence, 
studies that employ a single machine learning technique to 
estimate PM2.5 concentrations over a vast area require some 
enhancements in spatial distribution. Additionally, the 
accuracy of machine learning methods for PM2.5 estimation is 
linked to the training sample used. Since satellites cannot 
detect atmospheric aerosols below the clouds, it has a gap of 
missing values in the spatial distribution. 

The advantages of atmospheric model data are fully utilized 
to obtain comprehensive coverage results. Therefore, the map 
produced by the interpolation analysis of PM2.5 concentration 
distribution using measured values from each monitoring 
station can be evidence of the validity of the PM2.5 
concentration prediction technique. To obtain values for 
unknown spatial data, a spatial interpolation approach can be 
used. Various researchers have referred to standard spatial 
interpolation methods such as Trend Surface (TS) 
interpolation, Collaborative Kriging (CK), Inverse Distance 
Weighted (IDW) interpolation, Ordinary Kriging (OK) 
interpolation [56],  and radial basis function. 

1) The OK; interpolation method assumes that the spatial 

correlation of surface changes can be explained based on the 

distance or direction between sampling points, and it adjusts a 

mathematical function at all points to determine the value of 

each outlet by considering a certain number of nearby points 

or a certain radius. Calculated through Eq. (2) as follows: 

   
 ( )   ∑  

 

   

 (  ) (2)  

Where Z(x) is the measurement of position i, λi is the 
unknown weight of the measurement value at a position i, is 
the predicted position, and n is the number of measurements. 
Wong [56] used the OK method to generate continuous air 
pollutant concentrations and meteorological factors covering 
Taiwan. 

2) The IDW: interpolation method calculates pixel values 

by linearly combining a series of sample points, with the goal 

of minimizing the distance between the mapped variable and 

the sample locations. Calculated through Equation (3) as 

follows: 
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This formula represents the calculation of the inverse 
distance weighting (IDW) method, which is a spatial 
interpolation technique used to estimate values at unsampled 
locations based on the values of neighboring sampled 
locations. In the formula, "   " represents the estimated value at 
the unsampled location, "n" is the number of neighboring 
sampled locations, "   " is the value at each neighboring 

sampled location, "  " is the distance from the unsampled 
location to each neighboring sampled location, and "   " is a 
power parameter that determines the influence of the distance 
on the estimated value. The formula calculates the weighted 
average of the neighboring sampled values based on their 
distances to the unsampled location, where the weights are 
determined by the inverse of the distances raised to the power 
of "   ", and divides the sum of the weighted values by the sum 
of the weights to obtain the estimated value. Chae [63] used the 
IDW method to interpolate the missing values uniformly and 
generate grid-shaped data in the Convolutional Neural Network 
(ICNN) Interpolation prediction model in South Korea from 
January 1, 2018, to December 31, 2019, with PM2.5 and PM10 
measurements [63]. 

3) The TS: method involves applying statistical techniques 

to create continuous mathematical surfaces by matching them 

to known spatial points to examine patterns of change in 

regional and local geological variables. It is calculated through 

Equation (3) as follows: 

                                (4)  

Where Z is the address variable,   and   are the 
coordinates of the observation point. 

The CK method refers to kriging interpolation, which is a 
geostatistical method based on variogram theory and structural 
analysis. It is considered an unbiased and optimal estimation 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 5, 2023 

 

365 | P a g e  

www.ijacsa.thesai.org 

method for regional variables [64], [65]. Liu [66], employed 
the CK Method to generate simulation maps depicting the 
spatial distribution of PM2.5 mass concentration on Changsha's 
Third Ring Road. Furthermore, an additional interpolation 
analysis map was generated using the measured values from 
each monitoring station, to serve as a reference for the map 
generated using predicted values. The aim is to validate the 
PM2.5 concentration prediction method, which uses the CK 
method. This method uses one or more secondary variables to 
interpolate the primary variable of interest. The method 
assumes that the correlation between these variables can 
improve the accuracy of the primary predictor [66].  Usually, 
some measurement points correspond to a normal distribution. 
To estimate each unknown point, the estimator is expressed as 
a linear combination of the valid sample values. In other 
words, a linear combination of valid sample values is used as 
an estimator for each unknown point to be estimated: 

 ̂(  )  ∑  

 

   

 (  ) (5)  

where  ̂(  )  is the estimated value of the variable at 
location   ,  (  )  is the observed value of the variable at 

location   ,    is the weight assigned to the observed value at 

location   , and n is the total number of observed values used 

in the estimation. 

One way to guarantee that the model provides unbiased 
estimates is by: 

∑  

 

   

   (6)  

The value of  ̂(  ) can be determined while ensuring that 
the kriging variance is kept at a minimum. 

V. APPLIED MACHINE LEARNING MODELS 

Advanced machine learning models have been applied to 
PM2.5 forecasting by developing methods that reflect transport 
and formation characteristics in suitable algorithms. Compared 
to classical statistical models and generalized additive models 
that have been used to calculate empirical models of PM2.5[67], 
machine learning has become a popular method for developing 
satellite-based AOD-PM2.5 models due to its advantages in 
selecting and using many independent factors that can affect 
the dependent variable to be estimated [62], [68]. 

The feed-forward neural network [69] and Recurrent 
Neural Network (RNN) [41] are some of the fundamental 
algorithms to simulate the temporal variation of PM2.5 
concentration by describing the stratigraphic characteristics of 
the predicted area. Observation data from monitoring stations 
in the forecast area and surrounding areas are utilized to 
develop Convolutional Neural Network (CNN) and Graph 
Neural Network (GNN) models that directly capture 
transportation characteristics [41], [70]. These models can 
effectively represent the spatial correlation between the 
forecast area and the downwind emission source. 

Hybrid models that combine CNN and GNN with the 
temporal property of LSTM, such as CNN-LSTM and GNN-

LSTM, can reflect the temporal variation of the forecast area 
and the transmission of the wind direction area. Theoretically, 
the convolutional LSTM (ConvLSTM) network structure 
makes it an ideal algorithm for combining transportation and 
formation features; however, these features cannot be 
accurately predicted after 12 hours [71]. The ensemble 
technique of Deep Neural Network (DNN) [69], RNN, CNN 
algorithmic models for real-time estimation of PM2.5 is 
considered capable of reducing the average bias and improving 
the accuracy index of models that are substantially limited by 
the uncertainties in the input data of anthropogenic emissions 
and meteorological fields, as well as the inherent limitations of 
each model [65]. 

The paper by Wong [56] uses four types of machine 
learning algorithms GBM, eXtreme gradient boosting 
(XGBoost), LightGBM, and CatBoost, after influential 
variables are identified through interpolation models. The 
results of the study by comparing the ensemble mixed spatial 
model and LUR showed that the forecast performance 
increased from 0.514 to 0.895 (from 0.478 to 0.879) during the 
day and from 0.523 to 0.878 at night [56]. 

Note that both the LightGBM model [72] and the eXtrem 
Gradient Boosting (XGBoost) model [72], [73] are decision 
tree-based Gradient Boosting frameworks. The XGBoost 
objective function equation is as follows: 

  ( )   ∑[     
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where: 

 Ob^(t) is the objective function at iteration t 

 T is the total number of leaf nodes in the tree 

   and    are the cumulative sum of the first-order and 

second-order partial derivatives of the samples 
contained in leaf node j, respectively 

 λ and γ are constants 

    is the score value of the j-th leaf node 

   is the weight of the j-th leaf node 

LightGBM uses the same gain formula      
 

 
(   

 )  
 as as XGBoost, however, it employs a histogram-based 

algorithm, as well as techniques like leaf-wise growth with 
depth restrictions and Gradient-based One-Side Sampling 
(GOSS) to accelerate the training process. These approaches 
enable LightGBM to attain better prediction accuracy and 
lower memory consumption. 

The Random Forest (RF) regression algorithm produced a 
good fit in detecting the relationship between PM2.5 and its 
drivers [61], [74], [75]. Liu [12] utilized RF as a gap filler on 
the Himawari-8 AOD, using MERRA-2 to estimate hourly 
PM2.5 concentrations, respectively. The results of this random 
forest study indicate that a set of input variables are used at 
each node to grow the tree. The algorithm (random forest) used 
resulted in gap-filling capability with AOD MERRA-2 can 
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provide reliable spatial and temporal PM2.5 predictions and 
significantly reduce errors in PM2.5 estimation [12]. he PM2.5 
concentration estimation model (night) was also conducted by 
Ma [77] by integrating Visible Infrared Imaging Radiometer 
Suite (VIIRS) Day/Night Band (DNB) radiance, moon phase 
angle, and meteorological data in the Beijing Tianjin-Hebei 
region. The study developed a NightPMES model using 
random forests and compared its cross-validation results with 
those of MLR and DNN models. The NightPMES model 
achieved an R2 of 0.82, and an RMSE and MAE of 16.67 and 
10.20, respectively. In addition, the NightPMES model 
performed better than most previous models [76]. 

The general framework for estimating PM2.5 concentrations 
in RF is as follows: 

 ( )  ∑    (      )
 
      

 ̂      (         ) 

 

(8)  

The formula involves the regression tree function,  ( ) where 

the output value is the estimated PM2.5 value. The sample (xi, 

yi) is taken from the Z region (R1, R2, ..., Rz), and there are N 

samples in total. The best estimate of the output mean for the 

data set is denoted as ĉz. The RF division strategy is expressed 

as follows: 
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where, m is the splitting variable, n is the split point. 
Diagrammatic representation of it is given in Fig. 3. 

 

Fig. 3. Random forest based prediction process. 

The study by Aguilera [62], used three base learners 
available within the H2O framework for machine learning: 
deep learning, random forest (RF), and Gradient Boosting. 
Each model was trained individually on all response (PM2.5) 
and independent variables, with the optimal parameters of each 
machine learning algorithm selected by performing a grid 
search which was then stacked to find the optimal combination 
of the set of prediction algorithms (H2O's Stacked Ensemble 
method). Of the three machine learning algorithms, the optimal 

combination of three base learners (RF, deep learning, and 
gradient boosting) achieved excellent prediction performance 
(R2 of 0.78 and RMSE of 3.51 µg m-3 ) [62]. 

Feng conducted a study in the Beijing-Tianjin-Hebei 
region, where they developed an integrated model using RF 
and LightGBM after wavelet decomposition of PM2.5 
observations. The study showed a high degree of consistency 
between the estimated and actual values. The cross-validation 
using time-based R2, RMSE, and MAE showed good model 
performance, with respective values of 0.91, 11.60, and 7.34 
[77]. A later study by Falah [73] explored the use of RF and 
XGBoost models based on the fusion of multiple satellite-
borne remote sensing aerosol products retrieved from two 
platforms (Aqua and Aura), two sensors (MODIS and OMI), 
and three retrieval algorithms (MAIAC, DB, and OM AE 
RUV). This study developed thirteen different performance 
models for each algorithm based on the input data sources 
MODIS/MAIAC (AOD, aerosol type), MODIS/DB (Angstrom 
exponent), and OMI (UV Aerosols Index). The UVAI OMI is 
used to classify aerosols into three categories: scattering 

aerosols, UVAI < 0.25; mixed-type aerosols, 0.25 ≤ UVAI < 

0.25; and absorbing aerosols, 0.25 ≤  UVAI. Similarly, 

MODIS/DB AE is used to classify aerosols into three size 

fractions: coarse, e.g., dust, AE < 0.7; mixed mode, 0.7 ≤ AE 

< 1.3; and delicate, e.g., smoke, 1.3 ≤ AE. Overall, both RF 

and XGBoost models showed good performance, with variance 
(RF; R2 0.753 and NRMSE 0.884 - XGBoost R2 0.741 and 
NRMSE 0. 874) explained by high cross-validation and low 
normalized root mean square error even for the base model 
(MAIAC AOD: AOD, CWV, PBLH, SP), with both models 
showing much better overall weighting performance when the 
model input data is subdivided into categories representing 
different aerosol types/properties [72]. 

Mahmud [54] conducted a study that used six supervised 
machine learning algorithms for regression and classification to 
predict PM2.5 values from 2015 to 2019 in the North Paso 
region. The variables were analyzed by six different machine 
learning algorithms using various evaluation metrics. The 
study showed that the ML model successfully detected the 
effects of other variables on PM2.5, made accurate predictions, 
and identified areas of potential risk. The random forest 
algorithm showed the best performance among all machine 
learning models with 92% accuracy[54]. This technique has 
several advantages over other machine learning methods, such 
as shorter computation time, ease of handling high-dimensional 
data, strong fault tolerance, and parallel processing, making it 
suitable even for very high-dimensional data. 

Support Vector Machines (SVMs) are flexible and 
powerful techniques for supervised machine learning, which 
are used for classification, pattern recognition, and functional 
regression problems. SVMs find an N-dimensional hyperplane 
with large margins to classify data into specific groups or 
labels [78]. A hyperplane divides the class into two, and the 
margin is used to divide the hyperplane. The predicted value, 
close to the best margin, is sampled to one of the classes. The 
predicted output includes one of the high-dimensional spaces 
as class 1 or 0, which concludes the prediction as traffic or less 
traffic area. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 5, 2023 

 

367 | P a g e  

www.ijacsa.thesai.org 

Recent research indicates that artificial neural networks are 
effective in both classification and regression tasks. One 
approach to predict areas with high levels of air pollution is by 
utilizing support vector machines (SVM), which aim to 
identify an N-dimensional hyperplane that maximizes the 
separation gap (margin) for the training data points. The 
optimal hyperplane is located at the center of the margin, and 
the data points located close to this hyperplane are known as 
support vectors. SVMs use kernel functions, such as linear, 
radial basis function, polynomial, Fisher, and Bayesian, to 
bridge linearity to non-linearity. In Masood's work [25], kernel 
functions were found to be crucial in this process. This study 
employed both linear and polynomial kernel functions. A 
visual representation of the SVM approach is shown in Fig.  4. 

               (     )    
    

 
(10)  

                   (     )  (    
   )

  (11)  

Where    and    are independent random vectors, and p is 

a polynomial kernel order. 

The efficacy of the SVM kernels depends on the calibration 
of controlling parameters such as kernel width (σ), 
regularization parameter (C), and gamma parameter (γ). In this 
research, two kernels (linear and polynomial) were employed 
for modeling. The SVM_lin model had NSE, RMSE, IA, R2, 
and R values of 0.938, 22.733, 0.983, 0.938, and 0.968, 
respectively, for the training phase, and 0.896, 29.634, 0.970, 
0.923, and 0.961 for the testing phase. For the SVM_poly 
model, the NSE, RMSE, IA, R2, and R values for the training 
phase were 0.934, 23.334, 0.982, 0.935, and 0.967, 
respectively, and for the testing phase, they were 0.893, 
30.071, 0.939, 0.840, and 0.916. Overall, the results of the 
SVM_lin and SVM_poly models were satisfactory for both the 
training and testing phases, indicating their ability to accurately 
predict PM2.5 concentrations. [25]. 

 
Fig. 4. This diagram illustrates the ideal hyperplane that effectively 

separates the data points, with the support vectors located near it. 

A. Model Validations and Predictions for the Model 

Statistical indicators such as coefficient of determination 
(R2, the higher, the better), correlation coefficient (R), Mean 
percentage error (MPE, the lower, the better), root means 
squared prediction error (RMSE, the lower, the better), index 
of agreement (IA), Mean Absolute Percentage Error, (MAPE 

the lower, the better), mean absolute error (MAE) and Nash-
Sutcliffe efficiency index (NSE), are evaluation metrics 
typically used for model evaluation. The mathematical 
expressions of these metrics are given as follows: 

1) Determination coefficient (R
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2) Correlation coefficient (R) 
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3) Root mean square error (RMSE) 
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4) Index of Agreement (IA) 
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5) Mean Absolute Percentage Error (MAPE) 
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6) Mean Absolute Error (MAE) 

    
 

 
∑|              |

 

   

 (17)  

 

7) Nash–Sutcliffe efficiency index (NSE) 
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VI. CONCLUSIONS 

Although ground stations are considered precise for 
measuring PM2.5 concentrations, obtaining values that reflect 
the overall situation is challenging due to their uneven 
presence. As a result, many researchers are turning to satellite 
remote sensing to fill in the gaps in spatial and temporal data 
left by ground stations. AOD, a satellite remote sensing 
derivative, has been utilized to calculate PM2.5 concentrations 
due to its relationship-based nature. However, satellite products 
have limitations such as being unable to detect atmospheric 
aerosols below clouds and the variation of AOD and PM2.5 
relationship between regions, time, and seasons. To address 
this, researchers commonly use spatial interpolation methods 
like OK, IDW, TS, and CK to obtain missing spatial data. 

In recent years, machine learning has become popular for 
predicting unknown values at spatial and temporal scales, and 
to establish the relationship between PM2.5 concentrations and 
AOD values at each grid. Many new methods, ensembles, and 
refinements of existing methods have been applied to PM2.5 
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estimation based on the derived satellite data. Large datasets, 
increased computing power, and awareness of the potential 
benefits of predictors working together have contributed to 
achieving higher estimation accuracy at different scales and 
spatial-temporal resolutions. 

To support our explanations, we reviewed relevant papers, 
including classic papers, in this study. Key findings include: 

 The distribution of ground-level PM2.5 observatories is 
generally uneven, which makes PM2.5 estimates less 
reliable in areas with fewer stations compared to those 
with more stations. This also raises concerns about the 
effectiveness of the commonly used cross-validation 
approach based on ground stations, as the observational 
data used for training and validation are concentrated in 
areas with more stations. 

 Several factors determine the accuracy of PM2.5 
estimates, including the specific conditions of the study 
area, the resolution of the source data, the use of 
predictors in a particular model, and the details of the 
methods used to estimate PM2.5 concentrations. 

 The low consistency between independent and 
dependent variables in the same atmospheric 
environment can affect the estimation results. 
Therefore, it is essential to have different data as 
predictors to increase confidence in the results obtained. 
However, data availability is a challenge. In some 
research areas, the potential for predicting the temporal 
variation of PM2.5 based on satellite AOD needs to be 
further explored in the future. 

 The use of classical methods to estimate PM2.5 
concentrations is known to be not as accurate as those 
obtained using new methods. On the other hand, to 
estimate PM2.5 concentrations, there are more and more 
models and ensemble methods that can be implemented 
for various conditions. 

 A simple and fast method is a spatial interpolation. 
Several improvements and integrations to various 
methods have been made to obtain more accurate 
results. However, the accuracy of these methods is 
relatively low compared to more complex methods 
(machine learning). 

 Currently, research on PM2.5 concentration estimation 
models is starting to lead to the use of deep learning 
models. In some recent studies, especially those 
published in 2023, deep learning models dominate 
many studies. 

From the importance of variables and correlations between 
variables in different articles, the following conclusions can be 
drawn: 

 Meteorological variables are a class of predictors that 
make an essential contribution to PM2.5 after AOD; 

 The contribution of land use variables has a low 
correlation with meteorological variables; 

 The importance of population-related variables depends 
on the economic development of the study area. 
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