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Abstract—Generating a three-dimensional (3D) 

reconstruction of tumors is an efficient technique for obtaining 

accurate and highly detailed visualization of the structures of 

tumors. To create a 3D tumor model, a collection of 2D imaging 

data is required, including images from CT imaging. Generative 

adversarial networks (GANs) offer a method to learn helpful 

representations without annotating the training dataset 

considerably. The article proposes a technique for creating a 3D 

model of lung tumors from CT scans using a combination of 

GAN and LSTM models, with support from ResNet as a feature 

extractor for the 2D images. The model presented in this article 

involves three steps, starting with the segmentation of the lung, 

then the segmentation of the tumor, and concluding with the 

creation of a 3D reconstruction of the lung tumor. The 

segmentation of the lung and tumor is conducted utilizing snake 

optimization and Gustafson–Kessel (GK) method. To prepare the 

3D reconstruction component for training, the ResNet model that 

has been pre-trained is utilized to capture characteristics from 

2D lung tumor images. Subsequently, the series of characteristics 

that have been extracted are fed into a LSTM network to 

generate compressed features as the final output. Ultimately, the 

condensed feature is utilized as input for the GAN framework, in 

which the generator is accountable for generating a sophisticated 

3D lung tumor image. Simultaneously, the discriminator 

evaluates whether the 3D lung tumor image produced by the 

generator is authentic or synthetic. This model is the initial 

attempt that utilizes a GAN model as a means for reconstructing 

3D lung tumors. The suggested model is evaluated against 

traditional approaches using the LUNA dataset and standard 

evaluation metrics. The empirical findings suggest that the 

suggested approach shows a sufficient level of performance in 

comparison to other methods that are vying for the same 

objective. 
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I. INTRODUCTION 

Among men, lung cancer is the cancer type that occurs the 
second most frequently. In recent times, a number of data-
based tools have been created by researchers to assist in the 
diagnosis and treatment of this condition. The ability to 
comprehend the 2D/3D shape of a tumor is crucial for 
visualizing the progression of its growth and for surgical 
purposes. 3D images offer comprehensive insights into the 
form and structure of the tumor [1]. 

CT is the favored imaging method for the detection of lung 
tumors among a variety of diagnostic imaging methods. 
Despite the fact that CT provides valuable information about 

tumors, evaluating an increasing number of images can pose a 
challenge for radiologists, potentially creating risks. 
Consequently, it is crucial to create intelligent diagnostic 
approaches that can aid radiologists and doctors in making 
faster and more accurate judgments than those reliant 
exclusively on CT images [2]. 

Recently, several studies have been conducted on 3D tumor 
healing with a special focus on healing brain tumors. Although 
these methods have achieved promising results, they fail to 
offer a high-quality 3D reconstruction of lung tumors. This is 
due to the fact that tumors may have complex and random 
shapes. Additionally, high-quality 3D reconstruction heavily 
relies on the availability of accurate data in all three 
dimensions. To the knowledge, the most recent study [3] 
utilizes conventional methods to reconstruct lung cancer in 
three dimensions. In this study, significant characteristics are 
identified from a two-dimensional shape during the 
reconstruction process. This method includes multiple stages, 
such as surface reconstruction and smoothing, which can be 
computationally intensive. As a result, applying this approach 
in real-world situations where time is a crucial factor may be 
impractical. Furthermore, the proposed approach is tailored 
exclusively to lung tumors and may not be readily adaptable to 
other types of tumors or organs. Convolutional neural networks 
(CNNs) are capable of automatic feature extraction. 
Nonetheless, teaching CNNs necessitates a substantial quantity 
of classified information, which may be lacking, particularly in 
the medical sector. The processing power and memory 
requirements for CNNs training may also be high. Transfer 
learning (TL) may be used instead of training from scratch to 
deal with these difficulties. In TL, CNNs parameters are set to 
the values that have been trained on large-scale datasets. Many 
TL networks, particularly ResNet, have achieved satisfactory 
results in medical imaging applications [4].  The use of GAN 
in medical image reconstruction is not extensively studied [5]. 
Wang et al. [6] developed an U-Net model with skip 
connections that are sparse by merging two GAN methods, an 
encoder-decoder method, and an U-Net method, to enhance 
imaging quality and decrease the size of imaging equipment. 
Meanwhile, Yang et al. [7] created a generator network with 
skip connections based on the U-Net architecture, and they also 
incorporated a refinement learning approach to ensure the 
stability of GAN training and facilitate faster convergence with 
less parameter tuning. Despite achieving satisfactory results in 
their respective tasks, these methods lack the ability to perform 
3D reconstruction of lung tumors. 
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To produce a 3D image, it is vital to extract a 
comprehensive representation from a series of 2D images in 
the form of a single vector that encapsulates all the necessary 
details. Recursive networks, such as LSTM [8],  can address 
this challenge and have been found to be suitable for sequence 
data in previous studies [9, 10]. LSTM utilizes special blocks 
called cells. Each cell has three gates: input, output, and forget 
[11]. The input gate handles the storage of new information in 
the cell. The output gate is responsible for selecting which 
portion of the cell state should be transmitted to the cell's 
output. The forget cell is responsible for forgetting (throwing 
away) data as time passes, which helps with the vanishing 
gradient problem [12]. 

A GAN is composed of two neural networks, namely a 
generator and a discriminator. The generator creates synthetic 
data, and the discriminator attempts to tell actual samples from 
synthetic ones. The GAN model's capacity to generate superior 
synthetic data has made it highly popular in academics and 
business. Promising outcomes have been demonstrated by 
using GAN in different fields of application, including but not 
limited to generating high-resolution images, translating text to 
images, and transforming images to other types of images [13]. 
Acceptable generalization can be achieved by training DNNs 
using a combination of limited real data and large amounts of 
synthetic data generated by GANs. The creative technique of 
GANs has been employed in diverse medical imaging 
assignments, such as image partitioning, image enhancement, 
and image creation. By instructing the generator network on an 
extensive compilation of images, GANs can produce fresh 
images that have corresponding attributes to the source dataset. 
In medical imaging, this has been used to create new images 
that can help diagnose diseases or assist in surgical planning. 
On the other hand, the discriminative approach of GANs has 
been used to improve the quality of medical images. 
Discriminative GANs aim to distinguish between real and fake 
images and use this information to improve the generator 
network. By doing so, discriminative GANs can learn to 
regularize or normalize images and remove any artifacts or 
noise that might be present. Both approaches have shown great 
promise in medical imaging, and researchers are continually 
exploring new ways to apply GANs in this field. However, 
challenges remain, such as the need for large datasets and the 
difficulty of interpreting the outputs of GANs. Nevertheless, 
the potential benefits of GANs in medical imaging make it an 
area of active research and development [14]. 

For this study, a GAN-driven approach is suggested to 
produce 3D lung tumor reconstructions. The procedure 
comprises of three steps: segmentation of the lung, 
segmentation of the tumor, and creation of a 3D representation. 
The first stage employs the snake optimization method [15] to 
identify the left and right lungs. The suggested method 
simplifies the complexity of the issue by dividing it into 
multiple lower-dimensional problems with search areas that are 
gradually reduced [16]. The second stage utilizes GK 
clustering [17] to segment tumors and extract tumor masses 
from the affected lungs. The third stage involves an LSTM and 
a GAN. Initially, a pre-trained ResNet model extracts features 
from 2D lung tumor images, and subsequently, important 
features are extracted from the tumor sequence using the 

LSTM and passed as input to the GAN. The generator uses the 
LSTM's output to construct the 3D reconstruction, while the 
discriminator distinguishes between the generated and real 
images. The proposed approach is tested and evaluated using 
the commonly used LUNA dataset. The LUNA dataset has 
been extensively used in lung cancer diagnosis and is 
considered a standard benchmark for evaluating algorithms 
related to lung nodule detection and classification. It comprises 
more than 1,000 chest CT scans, with each scan annotated with 
multiple nodules. The main contributions are listed below: 

 The majority of current approaches for reconstructing 
3D tumors concentrate on brain cancer and do not yield 
satisfactory outcomes for lung cancer tumors. 
Accordingly, this study concentrates only on the 3D 
construction of tumors related to lung cancer. 

 Afshar et al. [3] conducted the latest research on the 
reconstruction of lung cancer tumors, which has a 
relatively high level of computational complexity. 
However, the suggested technique surpasses Afshar's 
investigation in regards to effectiveness and 
computational intricacy. 

 Although GAN has the potential to generate high-
quality synthetic images, its application in medical 
diagnosis, particularly for lung cancer diagnosis, has 
been limited. This investigation seeks to examine the 
utilization of GAN in constructing three-dimensional 
lung tumor representations, which is a novel approach 
in the field. 

 In the medical domain, it is frequently encountered to 
have insufficient labeled training data. To address this, 
pre-trained models (transfer learning) are often used. 

 Reconstructing 3D images of lung cancer tumors 
involves using a series of 2D CT images. To exploit the 
sequential nature of this information, recurrent neural 
networks such as LSTM are utilized. 

The paper is structured in the following manner: Section II 
discusses related work, Section III details the suggested 
methodology, while Section IV displays the experimental 
findings, and Section V discusses the results. Section VI 
concludes the paper and provides future directions. 

II. RELATED WORK 

A. Generative Adversarial Network 

Liao et al. [18] utilized incorrect sampling to reconstruct 
cone beam CT (CBCT). The model involved the utilization of 
pyramidal neural networks and computer-generated maps for 
descriptive discriminants. This approach enabled the 
reconstruction of results while simultaneously preserving the 
anatomical structure. MR image reconstruction evaluates k-
space data in the frequency domain model. Different loss 
functions have been employed to identify localized image 
structures in image restoration, such as coherence loss and 
cycle consistency loss, when suppressing cardiac CT noise. 
Wolterinket et al. [19] proposed a low-dose CT noise after 
attenuation of losses in several areas. However, the result 
prevented the projection of the local image. MRI image 
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reconstructions are uncommon because they have well-defined 
back-and-forth formulas such as Fourier transforms. 

B. Pre-trained Model 

More training data leads to deep models with better 
performance [20]. That is why significant efforts have been put 
into gathering and annotating large-scale datasets such as 
ImageNet, PASCAL VOC, MS COCO, etc [21]. At the start of 
training, setting the initial parameters of deep models to the 
parameters of deep models that have already been trained on 
these large datasets improves the convergence speed of 
training. It boosts the final performance of the model [22]. 

3D semantic segmentation is quite common in the medical 
domain. For example, small organ segmentation in 3D 
abdominal CT scans has been tackled using an RNN [23]. 
Most medical 3D image analyses, including [24], train a deep 
model from scratch, which is challenging due to insufficient 
annotated data. Alternatively, the model's parameters can be 
initialized to values pre-trained on a source dataset. The model 
can then be fine-tuned using (possibly limited) target dataset. 
To get reasonable results, the distribution of the source and 
target datasets should be as similar as possible [25]. Therefore, 
for training deep models on 3D medical images, the model 
should be initialized to values pre-trained on another 3D 
medical dataset. 

C. 3D Tumor Reconstruction 

Lately, 3D models have been created in various medical 
areas, allowing doctors to provide improved treatment to their 
patients [26-28]. For example, 3D models were applied to liver 
resection, assisting surgeons in studying the liver structure 
[29]. 3D reconstruction of the brain based on magnetic 
resonance imaging (MRI) [30, 31] has been tackled as well 
[32, 33]. Amruta et al. [34] proposed a 3D method for brain 
tumor recovery in which brain tumors were segmented by 
morphological manipulations and 3D shapes were generated 
using 3D interpolation. Jaffar et al. [35] considered a multi-step 
process for segmenting and visualizing brain tumors evaluated 
on different datasets. Kamencay et al. [36] used the medium 
screening method to segment the images. For modeling the 3D 
shape, a combination of the Sum of Squared Differences (SSD) 
and Speeded-Up Robust Features (SURF) was used to find the 
corresponding pixels in the image. The method provides an 
accurate 3D model of the human pelvis. Sun et al. [37] 
proposed a two-step 3D segmentation that involves identifying 
active shape models and finding the optimal surface. Several 
studies have developed valuable methods to address 3D tumor 
reconstruction [38]. 

In the context of lung cancer, Afshar et al. [3] recently 
proposed a method for tumor segmentation and 3D 
reconstruction of CT images. While this is a significant step 
towards improving lung cancer treatment, the method has a 
high computational complexity. This drawback limits its 
practical applications and motivates the development of new 
approaches with improved performance and reduced 
computational costs. Therefore, this study aims to explore a 
novel approach using GAN for 3D reconstruction of lung 
cancer tumors, which can potentially overcome the limitations 
of existing methods. 

III. THE PROPOSED MODEL 

GANs were first proposed by Goodfellow et al. [39], in 
which two separate networks are similarly trained: the 
generator and discriminator networks. The purpose of the 
generator is to produce data such as images, text, etc. [40], 
which are structurally similar to real data but are fake. On the 
other hand, the task of the discriminator network is to 
strengthen the generator. These two networks engage in a two-
player min-max game with a value function V (D.G) [41]: 

   
 

   
 

      

                        

                
           

(1) 

where   and   represent input data and noise, respectively. 
  and   denote the generator and discriminator, respectively. 
         and       show the probability distributions of the 
input data and the noise, respectively.    represents 
mathematical expectation. 

The objective is to evaluate the 3D morphology of lung 
tumors using a limited set of 2D CT images. The general 
outline for the suggested model is presented in Fig. 1. Based on 
this illustration, the model comprises three stages, namely lung 
partitioning, tumor partitioning, and 3D rebuilding. Using the 
snake optimization method, lung segmentation aims to separate 
two lungs from a CT image. In the tumor localization phase, 
the region of the tumor in the lung is identified from the 
healthy region on each 2D slice using snake optimization and 
GK clustering. Then, a GAN-based model is utilized to 
reconstruct the 3D model of the tumor. The following sections 
will be described separately. 

A. Lung Segmentation 

Segmentation of the lungs is a vital stage in the task and 
can influence the model's efficacy considerably. The method 
used for lung segmentation was adopted from a recent study 
[42]. 

The approach involves using the snake optimization 
method to separate the lungs from the background. This 
method allows the lung outline of one section to serve as the 
initial outline for subsequent sections in the algorithm [43]. 
The snake model refers to a curve that starts at a specific point 
and then moves towards the boundaries of an object. This 
procedure is referred to as a semi-automated process since it 
requires some degree of user involvement. This article uses the 
point-based snake model, which considers a contour as a 
collection of distinct points, although there are various snake 
models available [44]. The procedure aims to reduce an energy 
function [45, 46] that includes internal and external energies, 
where the internal energy is associated with the form of the 
contour. On the other hand, external energy relies on image 
characteristics. Given coordinates      and      in the 
direction of the contour, where   is a variable between zero and 
one, the contour can be defined in the following way [47]: 

                   (2) 
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Fig. 1. The proposed model. 

Where      represents the snake curve variable, the energy 
function is defined as follows: 
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where       indicates constant external forces.      and 
       denote the internal energy and the image forces, 

correspondingly, which can be calculated as: 

          
  

  
        

   

   
   

(4) 

                   (5) 

The initial term turns the snake into a membrane. 
Increasing the value of   results in an increase in the internal 
energy, while the image energy comprises the energy of edge, 
line, and terminations. The value of         corresponds to the 
intensity of the pixel located at      . The negative sign at the 
beginning of Equation 5 is utilized since the image gradient is 
more prominent on the object boundary, and the objective of 
energy minimization is to detect the object boundary. The aim 
of the energy function with the damping term is to detect object 
boundaries. The Viterbi algorithm [48], a widely used 
technique for optimizing energy functions, is used in this study. 

B. Tumor Segmentation 

After the lung segmentation stage, tumors are segmented 
utilizing the GK clustering method. GK is a fuzzy-based 
approach with the benefits of using covariance and distance 
matrixes to make clusters with various shapes. The objective 
function of this method is defined as follows: 

         ∑ ∑    
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Where   stands for the membership matrix, and   is a 
coefficient describing the degree of fuzziness.    shows a 
regional norm-inducing matrix for each cluster optimized.   
and   are the number of data points and clusters, respectively, 
and    indicates the squared space between data points and 
cluster centers., which is calculated as: 

  
    

                   (7) 

The matrix is used to incorporate the topological 
characteristics of the data structure into the distance norm. 

C. 3D Reconstruction Method 

In this paper, 3D reconstruction is carried out using a deep 
learning model. As shown in Fig. 1, the tumor segmentation 
stage yields   sequences of 2D images. These images are fed 
to the pre-trained ResNet network to perform feature 
extraction. The parameters of this network have been 
determined by training on the ImageNet dataset. The output of 
the ResNet is used as input to LSTM units, the output of which 
is fed to a GAN model. GAN aims to reconstruct 3D images 
from sequences of 2D data fed to it.  The GAN discriminator 
distinguishes between the synthetic images produced by the 
generator and the real ones. 

D. Overall Algorithm 

The overall algorithm of the suggested method is displayed 
in Algorithm 1. Let          {             } be the set 

of available patients with   examples, where    corresponds to 

the  -th patient. Every    contains a collection of   CT images. 
In every iteration, for every minibatch with size  , the lung 
segmentation and tumor segmentation operations are 
performed, respectively. After that, the sequence of selected 
lung tumors for every patient whose length is   enters the 
ResNet model. The  -sample sequence outputted by ResNet is 
fed into an LSTM. Finally, LSTM output comes into the 
generator to generate a 3D lung tumor. Updating the 
components, i.e., LSTM, generator, and discriminator, is done 
based on introduced standard methods. 
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Algorithm 1 Overall algorithm for the suggested model. 

Input:          {             }: the set of available patients,        {             }: the set of 

available real 3D images,  : the number of patients,  : the number of CT images for every patient,  : 

generator,  : discriminator; 

for the number of training iterations, do 

         for every minibatch with size   do         

                for     to   do 

                       for     to   do 

                                
  
 : segment      using the snake algorithm; //    shows the  -th CT image for the  -th 

patient 

               for     to   do 

                     {  
     

     
       

  }: select       consecutive samples containing tumors recognized by the 

GK clustering from  

                     {  
     

     
       

  };         

                     {  
     

     
       

  }: extract features every item of {  
     

     
       

  } using the ResNet 

model; 

                       
 : enter {  

     
     

       
  }  into the LSTM network and get the latest unit of LSTM; 

               update the LSTM network by its stochastic gradient; 

               update the generator by descending its stochastic gradient: 

                         

 

 
 ∑          (  

 )  
     

               Update the discriminator by ascending its stochastic gradient: 

                         

 

 
 ∑       (  )                (  

 )   
     

IV. EMPIRICAL EVALUATION 

A. Dataset 

The suggested method was evaluated using the LUNA 
subset of a dataset (referred to as LIDA-IDRI) [49]. The LIDC-
IDRI is a lung CT scan public dataset, which includes 220 
patients with more than 130 slices.  The LUNA 2016 dataset 
was designed to analyze lung nodules and received 888 CT 
scans with a section thickness of less than 3 mm and 512 × 512 
pixels picture size. The node has a total of 36,378 notes 
annotated by various radiologists. However, nodes 2290, 1602, 
1186, and 777 are annotated by radiologists 1, 2, 3, and 4, 
respectively. Node annotations approved by at least three 
radiologists are called valid annotations. Diameter and position 
annotations are average annotations in LIDC-IDRI. The LUNA 
dataset originally was not a 3D image, so the 3D image was 
created manually using Rhinoceros 3D software. 

B. Lung Segmentation and Tumor Detection 

The lung and surrounding area have been isolated from the 
images utilising snake optimization. The method was 
contrasted with fuzzy-based techniques, namely FCM [50], 
KFCM [51], SAFCM [52], and FRFCM [53]. The evaluation 
was based on the metrics of Intersection over Union (IoU) [54] 
and Hausdorff distance [55], and the results are shown in Table 
I. The FRFCM method performed better than SAFCM and 
KFCM, with an improvement of approximately 20% and 13%, 
respectively. However, even though FRFCM is considered a 
robust algorithm, it still does not match the performance of 
Snake. The Snake algorithm showed a 22% improvement in 
the IoU metric compared to FRFCM. Examples of lungs 
delineated using the Snake algorithm are shown in Fig. 2. 

Following the segmentation of lungs with the Snake 
algorithm, clustering methods including FCM, K-means, and 
GK were employed to create two clusters for lung tumor 
segmentation. Evaluation was carried out using the IoU and 
HD metrics, and the results are presented in Table II. 
According to the table, GK clustering is the most effective 
method for segmenting lung tumors. Lung cancers can also be 
segmented using FCM and K-means clustering, as shown in 
the table. Fig. 3 illustrates examples of tumor detection with 
the GK clustering technique. 

TABLE I.  EVALUATION OF THE SEGMENTATION EFFICIENCY OF 

DIFFERENT FUZZY ALGORITHMS 

HD IoU Method 

1.496 0.621 FCM 

1.715 0.746 KFCM 

1.852 0.721 SAFCM 

2.019 0.785 FRFCM 

2.151 0.831 Snake 

TABLE II.  ANALYSIS OF THE PROPOSED MODEL IN COMPARISON TO 

PREVIOUS WORKS 

HD IoU Method 

2.122 0.751 FCM 

1.615 0.780 K-mean 

1.419 0.786 GK 
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Original 

Fig. 2. The instances of lungs that were segmented using the snake algorithm. 

     
Ground truth 

     
Proposed 

Fig. 3. The samples of identifying tumors using the GK method. 

C. 3D Reconstruction 

The evaluation of the 3D reconstruction model included 
comparing four different methods: MC [56], MC and fairing 
[57], interpolation [34], and MC, and Afshar et al. [3]. The 
evaluation metrics used were HD and ED, which measured 
shape accuracy and pixel-wise distance, respectively. The 
results of the evaluation are presented in Table III, where MC 
performed the worst with values of 8.50 and 3.21 for HD and 
ED, respectively. However, the addition of fairing to MC 
decreased the values to 6.82 and 2.99. Interpolation with MC 
further reduced the error by approximately 0.555 and 0.855 for 
the two metrics, respectively. Despite these improvements, the 
recent work of Afshar et al. outperformed all other methods, 
including MC and MC + fairing, with values of 5.39 and 1.45 

for HD and ED, respectively. Interestingly, the proposed 
model, which uses a strong GAN to create 3D shapes, 
outperformed Afshar et al.'s method, even though they had 
similar lung segmentation and tumor detection. The difference 
in performance may be attributed to the nature of the methods, 
as the proposed model relies on GANs, which have proven to 
be effective in generating complex data distributions. On the 
other hand, other methods use mathematical operations to 
create 3D shapes, which may not capture the underlying 
complexity of the data as well as GANs. In conclusion, the 
proposed model with a strong GAN is a promising approach 
for accurate 3D reconstruction, especially for complex medical 
imaging data. 
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TABLE III.  THE EVALUATION AND COMPARISON OF THE SUGGESTED 

APPROACH WITH OTHER EXISTING METHODS 

Model HD ED 

MC 8.50 2.31 

MC+ fairing 6.82 3.29 

Interpolation + MC 5.85 2.57 

Afshar et al. [3] 5.39 1.45 

Proposed 2.99 1.06 

Table IV demonstrates that the model is effective in 
accurately reconstructing 3D shapes from the provided input 
images. The reconstructed shapes closely resemble the original 
ones, and the input images are smooth, which is critical for 
accurate medical diagnoses. The smoothness issue faced by 
other methods can lead to incorrect diagnoses, and the 
generated images by these methods do not resemble the 

original ones. The proposed model has successfully addressed 
these issues, demonstrating its superiority over other methods. 
Table V shows the computational efficiency of the suggested 
model and other approaches. The traditional methods take 
more time because of their lower computational efficiency. 
Nonetheless, the ResNet model, which is utilized for image 
recognition, consumes the most time in the proposed model. 
Despite this, the proposed model still outperforms other 
methods that use heavy computational operations, indicating its 
superiority in terms of accuracy and computational efficiency 
trade-off compared to existing methods. The results suggest 
that the proposed model has great potential for real-world 
medical applications. Its ability to generate smooth and 
accurate 3D images can help physicians make more precise 
diagnoses, which can lead to improved patient outcomes. 
Additionally, the model's computational efficiency makes it 
suitable for use in clinical settings where time is a critical 
factor. 

TABLE IV.  CREATED 3D SHAPES RESEMBLING TUMORS 

Original MC MC+ fairing Interpolation + MC Afshar et al. Proposed 
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TABLE V.  THE DURATION OF TIME TAKEN BY ALGORITHMS TO EXECUTE (IN MILLISECONDS) 

                    Model 

Image 
MC MC+ fairing Interpolation + MC Afshar et al. Proposed 

1 506 496 435 408 351 

2 475 527 498 449 410 

3 365 336 279 319 230 

4 614 595 591 585 563 

5 651 639 626 574 480 

6 720 661 705 680 621 

7 561 538 477 499 425 

8 741 729 742 691 670 

9 481 507 489 452 430 

10 558 579 578 539 500 

1) Analysis of pre-trained models: The experiments 

carried out in this research demonstrate the superiority of the 

ResNet model compared to other pre-trained models, namely 

AlexNet [58], GoogleNet [59], Inceptionv3 [60], DenseNet 

[11] , and MobileNet [62] (refer Table VI). Although other 

models have been extensively utilized in diverse image 

recognition works, they cannot match the ResNet model's 

performance in 3D reconstruction. The ResNet model 

significantly outperforms the other models, leading to a 

remarkable improvement in the HD and ED error metrics. 

These results highlight the importance of selecting an 

appropriate pre-trained model for achieving optimal 

performance in 3D reconstruction. Thus, the experimental 

findings provide solid evidence for the use of the ResNet 

model as the feature extractor in the suggested model. 

2) Explore the hidden size: The LSTM network's hidden 

vector serves as a practical tool to compress data from a 

sequence of 2D images and aid in drawing 3D shapes. 

Increasing the hidden size can add more data to the model, but 

it may not always be useful. A limited capacity of the hidden 

size is inadequate to store the required data. Eight different 

values ranging from 16 to 2056 were evaluated to explore the 

influence of the hidden dimension on the suggested model. 

The outcomes are depicted in Fig. 4. Upon examination, it was 

observed that for HD and ED, the chart shows a descending 

trend when the hidden size is within the range of [16, 128], 

and an ascending trend from [128, 2056]. As a result, the 

optimal hidden size is 128. 

3) Analysis of loss function: Selecting an appropriate loss 

function is vital for the success of deep learning models, as 

neglecting it may cause the model to be trapped in local 

optima. Therefore, the study aimed to assess how the 

discriminator's performance was affected by various loss 

functions. Five functions were selected for this purpose, 

namely Weighted Cross-Entropy (WCE) [63], Balanced 

Cross-Entropy (BCE) [64], Dice Loss (DL) [65], Tversky 

Loss (TL) [66], and Sensitivity Specificity Loss (SSL) [67]. 

WCE is a modified version of BCE that assigns different 

weights to examples from one class. Even though DL was 

originally developed to compare two images, it has been 

suggested as a loss function. The outcomes of these loss 

functions are presented in a tabular format in Table VII. 

Among the examined loss functions, TL exhibited the most 

superior performance, attaining an ED of 1.06 and an HD of 

3.02. Although WCE assigns weights to the samples, TL still 

outperformed it, improving the error of WCE by 

approximately 1.64 and 2.50. 

TABLE VI.  THE RESULTS OBTAINED FOR USING VARIOUS PRE-TRAINED 

MODELS 

Model HD ED 

AlexNet 3.49 1.98 

GoogleNet 4.85 3.11 

Inceptionv3 4.19 2.51 

DenseNet 6.46 3.79 

MobileNet 6.84 4.93 
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Fig. 4. The HD and ED performance metrics plot corresponding to different 

units in hidden layers. 

TABLE VII.  THE OUTCOMES ACHIEVED WITH VARIOUS DISCRIMINATOR 

LOSS FUNCTIONS 

Loss function HD ED 

WCE 4.58 3.49 

BCE 3.80 3.16 

DL 3.59 2.69 

TL 3.09 1.08 

SSL 3.32 2.15 

V. DISCUSSION 

The study's proposed approach for 3D lung tumor 
reconstruction using deep learning techniques offers promising 
results for medical diagnosis applications. The superior 
performance compared to traditional approaches on the LUNA 
dataset demonstrates the potential of deep learning techniques 
in the diagnosis and treatment of lung cancer. However, the 
study also highlights several limitations that should be 
addressed in future work. 

One major limitation of the proposed method is the 
relatively small size of the LUNA dataset, which may limit the 
model's generalizability. Therefore, future studies could focus 
on expanding the dataset size to validate the proposed method's 
effectiveness on a larger scale. Additionally, incorporating 
other imaging modalities, such as PET scans, could improve 
the accuracy of the lung tumor reconstruction. Furthermore, the 
proposed method's generalizability to different datasets and 
populations should be thoroughly investigated in future studies 
to assess its practicality in clinical settings. The evaluation of 
the proposed method was done only on the LUNA dataset, and 
further evaluation on other datasets would be necessary to 
validate its performance. Additionally, the proposed method 
requires a large amount of labeled data for training, and the 
scarcity of such data in medical imaging remains a challenge. 
Therefore, further studies could focus on developing 
techniques for efficient data labeling to improve the availability 
of labeled data. Lastly, the interpretability of the proposed 
model could be improved. While the model can generate 3D 
lung tumor images, it is not always clear how the model 
arrived at a particular result. Future work could explore ways 
to make the model more interpretable, such as using attention 
mechanisms or visualization techniques. This could help 

increase the transparency of the model's decision-making 
process and improve trust among clinicians and patients. 

In addition to the limitations discussed earlier, there are 
also other aspects of the proposed method that could be 
improved in future work. For instance, the proposed method 
involves several complex steps, including lung isolation, tumor 
detection, and 3D lung tumor re-creation. Each of these steps 
requires careful tuning of hyperparameters and may introduce 
errors that can affect the overall performance of the model. 
Therefore, future studies could explore ways to simplify the 
proposed method by combining some of these steps or using 
alternative segmentation methods. Moreover, the proposed 
method assumes that the lung tumor is visible in the input 
image, which may not always be the case. For instance, small 
tumors or tumors that are located close to other organs may be 
challenging to detect using the proposed method. Therefore, 
future studies could explore ways to incorporate other features, 
such as patient history or genetic information, to improve the 
model's sensitivity and specificity. Another disadvantage of the 
suggested method is the computational cost, which may limit 
its practicality in clinical settings. While the proposed method 
shows promising results, it requires substantial computational 
resources, including high-end GPUs and extensive training 
time. Therefore, future studies could focus on developing more 
efficient models that can achieve similar performance with 
fewer computational resources. Lastly, the ethical implications 
of the proposed method should also be taken into account in 
future research. Deep learning models can be used to make 
critical medical decisions, and it is crucial to ensure that such 
models are fair and unbiased. Therefore, future studies could 
explore ways to ensure that the proposed method does not 
reinforce existing biases or discriminate against certain patient 
populations. 

VI. CONCLUSION 

The study proposes a novel method for constructing 3D 
lung tumors, which combines an LSTM and GAN network 
with a ResNet model serving as the feature extractor. The 
technique is divided into three stages: lung isolation, tumor 
isolation, and 3D lung tumor reconstruction. To achieve lung 
isolation and tumor isolation, the snake optimization and GK 
techniques are employed. In the 3D reconstruction phase, the 
pre-trained ResNet model is used to extract features from 2D 
lung tumor images, followed by the provision of these features 
into an LSTM to produce compressed features. The 
compressed characteristics are then utilized as input for GAN, 
where the generator is accountable for producing 3D lung 
tumor images, and the discriminator ascertains the authenticity 
of the image. The suggested model is evaluated on the LUNA 
dataset, and standard evaluation metrics are used to compare its 
effectiveness with conventional techniques. 

One potential future work based on this study could be to 
investigate the proposed technique's applicability to other types 
of cancer or medical imaging modalities. It would be 
interesting to see how the proposed model could be adapted 
and optimized to handle different types of tumors, such as 
those found in breast or prostate cancer. Additionally, 
exploring the potential of incorporating other deep learning 
architectures or loss functions could further enhance the 
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accuracy and efficiency of the proposed method. Finally, 
conducting a clinical validation study to assess the proposed 
model's usefulness in real-world settings would be a valuable 
next step towards its eventual clinical adoption. 
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