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Abstract—Opinion Mining or Sentiment Analysis (SA) is a
key component of E-commerce applications where a vast number
of reviews are generated by customers. SA operates on aspect
level where the views are expressed on a specific aspect of a
product and have a big influence on the customers’ choices and
businesses’ reputation. Aspect Based Sentiment Analysis (ABSA)
is the task of categorizing text by aspect and identifying the
sentiment attributed to it. Implicit Aspect Identification (IAI) is
a subtask of ABSA. This paper aims to empirically investigate
how external knowledge (e.g. WordNet) is integrated into SVM
model to address some of its intrinsic issues when dealing with
classification. To achieve this research goal, we propose an ap-
proach to improve Support Vector Machines (SVM) model to deal
with IAI. Using WordNet (WN) semantic relations, we suggest an
enhancement for the SVM kernel computation. Experiments are
conducted on three benchmark datasets of products, laptops, and
restaurant reviews. The effects of our approach are examined and
analyzed according to three criteria: (i) kernel function used, (ii)
different experimental settings, and (iii) SVM behavior towards
Overfitting and Underfitting. The research finding of our work
is that the integration of external knowledge (e.g. WordNet)
is experimentally proved to be significantly helpful to SVM
classification for IAI and especially for addressing Overfitting and
Underfitting that are considered as two of the main structural
SVM issues. The empirical results demonstrate that our approach
helps SVM (i) improve its performance for the three considered
kernels and under different experimental settings, and (ii) deal
better with Overfitting and Underfitting.
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Abbreviations

ABSA Aspect Based Sentiment Analysis
ACD Aspect Category Detection
ATE Aspect Term Extraction
IAI Implicit Aspect Identification
IAT Implicit Aspect Term
IR Improvement Rate
LDA Latent Dirichlet Allocation
LSTM Long Short Term Memory
NLP Natural Language Processing
POS Part Of Speech
RNN Reccurent Neural Network
SA Sentiment Analysis
SVM Support Vector Machines
WN WordNet
WSD Word Sense Disambiguation

I. INTRODUCTION

Sentiment Analysis (SA), also known as opinion mining,
is a research area in the field of Natural Language Processing
(NLP) [1] that aims to display emotions and automatically
identify the sentiments conveyed in text. SA studies have
been conducted at three granularity levels: document level
[2], sentence level [3], and aspect level [4]. In Document-
level Sentiment Analysis, the entire document is analyzed to
determine whether it expresses a positive or negative sentiment.
However, in Sentence-level Sentiment Analysis, the opinion of
each sentence in the document is analyzed. In Aspect-Based
Sentiment Analysis (ABSA), opinions regarding each aspect
of the text’s existing entities are collected.

The majority of studies are interested in aspect identifica-
tion task since it is the key task in aspect-level SA. Aspects
can be either implicit or explicit. Explicit aspect extraction
has attracted a lot of interest, whereas implicit aspects haven’t
received much attention. Explicit aspects are defined as specific
terms that are explicitly stated in the document, they can be
expressed using a noun or noun phrase. On the other side, an
implicit aspect is not explicitly stated in the text. It takes the
form of an adjective, verb, or adverb as shown in [5], [6],
and [7]. Implicit aspects are crucial since they can capture
the emotions expressed in the text and improve the Opinion
Mining Task.

In this study, we propose a method for enriching SVM
model by combining its basic kernel function with similarity
function inspired from Lesk algorithm [8] when applied to
Word Sense Disambiguation (WSD) introduced by Weaver
et al. [9]. WSD is the process of automatically assigning
a meaning to the ambiguous words in a given context, as
defined in [10], [11] and [12]. According to the original Lesk
algorithm, a word’s appropriate meaning in a particular context
is one that has the maximum degree of overlap between its
dictionary definition and the given context.

In this paper, we use the fundamental idea of Lesk Al-
gorithm for WSD. However, the originality of our work is
established on two different levels: (i) The idea logic: We
use WordNet dictionary (WN), developed in [13], to design
a similarity function between terms inspired from the Lesk
algorithm. We then use this function to create a novel SVM
Kernel that assigns higher weights to semantically similar
words in terms of the degree of influence they have on
classifying new observations. (ii) Model construction: Our
similarity function amplifies the similarity score between terms
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by first squaring the original score and then adding 1. This
new formulation ensures significantly greater similarity scores
for terms with similar semantic properties. Nevertheless, it
maintains the same basic SVM Kernel value for words with
different meanings.

We prepare several experiments in accordance with proto-
cols that are intended to support the goals of our investigation.
The key findings of our study are summarized as follows:
(i) Our method enhances SVM’s performance for the three
kernels Gaussian, Anova, and Bessel, for the three considered
datasets and under different experimental settings, and (ii) Our
approach helps SVM perform better even when dealing with
Overfitting and Underfitting which are known to be serious
intrinsic issues for SVM classification.

The breakdown of the paper’s structure is as follows.
Related works on Aspect-based SA are discussed in the second
section. Our proposed approach is described in the third
section. The experimental setting is provided in section four,
which is followed by a section on the results and discussion.
The final section concludes this work.

II. RELATED WORKS

There are two major types of techniques used for As-
pect Identification. Lexicon based approaches mainly include
dictionary-based methods and corpus-based methods, where
as machine learning approaches [15] and deep learning-based
approaches [14] include supervised, unsupervised, or semi
supervised learning methods.

Finding co-occurrence patterns of opinion words with
context-specific orientation is the goal of corpus-based ap-
proaches. These techniques rely on syntactic patterns and seed
opinion words to find additional opinion words and their
orientation in domain corpora [16].

Dictionary-based techniques are methods that make use
of WordNet or any other dictionary semantic relations. The
work in [17], is an earlier dictionary-based method to identify
aspects conveyed by adjectives. The authors of [18] perform an
implicit aspect identification task for adjectives and verbs using
definition and synonym relations extracted from WordNet. In
[19], authors propose a new hybrid model for implicit aspect
identification that uses semantic relations combined with a
frequency-based method and supervised classifiers.

In [20] and [21], two of the most well-known co-
occurrence-based approaches are presented. In [20], Schouten
et al. predict implicit aspects according to the co-occurrence
frequency between explicit aspects and opinion terms. Poten-
tial implicit aspects are determined based on a defined thresh-
old value. In [21], the training data are enhanced by the use of
WordNet’s semantic relations and the co-occurrence score is
computed for each extracted implicit aspect and its WordNet
synsets. Additional co-occurrence methods are presented in
[22] and [23]. The researchers Devi et al. [22] proposed a novel
method to detect implicit aspects from opinionated documents
using the co-occurrence of aspects with feature indicators and
ranking the pair according to how frequently they co-occur. To
determine how well a given candidate implicit aspect matches
an opinion word, Rana et al. [23] identified implicit aspects
using the co-occurrence approach and normalized Google
distance.

Traditional machine learning techniques have been fre-
quently used for ABSA. In [24], Sivakumar et al. make use of
semantic relatedness between aspect term and opinion sentence
to improve some machine learning algorithms for sentiment
classification task. Gupta et al. [25], use an ensemble machine
learning technique to perform ATE task. They combine the out-
put of different supervised learning algorithms using a majority
voting technique. Topic modeling, an unsupervised machine
learning technique, has been widely applied to ACD. [26],
[27], and [28] all make use of the well-known topic modeling
technique Latent Dirichlet Allocation (LDA). Garcı́a-Pablos
et al. [26] suggest an unsupervised system called W2VLDA.
To conduct ACD and sentiment classification, the system uses
LDA combined with a Maximum Entropy classifier and word
embedding. In [27], Poria et al. provide an original LDA
technique to group aspect terms into corresponding aspect
categories. To enhance the clustering process, semantic sim-
ilarity between two words is used. Pathik et al. [28] suggest
an unsupervised model for ACD using LDA in combination
with linguistic rules. To perform ACD, Aspects are first ranked
according to their probability distribution values and then
clustered into predefined categories using domain knowledge
with frequent terms.

Deep learning algorithms have recently begun to be used
for ABSA after experiencing great success across a number of
application domains. A recent work, [29], provides a hybrid
method for detecting implicit aspects that combines a recurrent
neural network (RNN) with a similarity function from spaCy
and similarity metrics based on WordNet. The authors of [30]
suggest a deep learning-based topic-level model for sentiment
analysis. They performed ACD and sentiment classification us-
ing an LSTM network with a topic-level attention mechanism.
Authors in [31] propose a two-step unsupervised model that
combines deep learning techniques with language patterns in
order to improve the ATE task. First, they extract aspects
using a rule-based technique, and then they prune the perti-
nent aspects using fine-tuned word embedding. The extracted
elements from the first phase are used as labeled data in the
second phase to train the attention-based deep learning model.

There are numerous challenges and limitations for related
works. Some of them conduct evaluations of their proposed
models under optimal conditions without considering special
situations like Overfitting and Underfitting. Others do not
test their models on multiple experimental settings to figure
out how they behave in different situations including non-
ideal conditions. In addition to the aforementioned general
shortcomings, some directly related approaches suffer from
particular limitations. It is important to note that every study
addresses the same problem, namely “Implicit Aspect Identifi-
cation”. They do, however, operate at various levels. While the
techniques proposed in [18] and [19] concentrate on improving
training data quality by acting at the data level which is
a less challenging level, the approach proposed in [26] and
our suggested method operate at the algorithmic level by
suggesting modifications or additions. The works in [21], [17],
[20] and [28] are hybrid methods that operate at both data level
and algorithmic level. The work in [17], treats only aspects
implied by adjectives without considering verbs that are very
important implicit aspect indicators. In [21], the category is
given to a sentence if the greatest conditional probability is
greater than the corresponding trained threshold. the main
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limitation of this technique is that it needs a sufficient amount
of training data to work properly. The amount of training
data needed to perform well presents also a limitation for
the method proposed in [26] since additional text reviews are
needed to compute the topic model and domain-based word
embeddings. The technique proposed in [20] suffers from two
limitations, the first one is the obvious need for labeled data,
and the second one is selecting only one implicit feature for
each sentence, since they are working on sentence-level and
their datasets contain more than one implicit feature and some
implicit aspects can be missed by the algorithm. A common
limitation to all these directly related approaches and our
technique is that they do not address broad aspects which are
often omitted, like the “anecdotes/miscellaneous” aspect on
the Restaurant dataset [34]. Unlike [20], [21], and [26], our
technique doesn’t require a huge amount of training data to
work properly.

Our research concentrates on implicit aspect-level sen-
timent analysis and its applications, and how to develop
more semantic-oriented sentiment analysis. The motivation
of our work is to address some of the structural issues of
machine learning classification models applied to Implicit
Aspect Identification like Overfitting and Underfitting. In this
paper, the proposed approach is using semantic relations from
WordNet lexical database for enhancing the SVM classification
model so that it can better cope with some of its intrinsic
issues. To achieve this motivation, we propose our approach
which is specifically appropriate thanks to the fact that it cap-
tures similarity information between two aspect terms (from
WordNet) and uses this similarity to increase the degree of
influence on classification between these two aspect terms.
Our approach operates at the SVM kernel which controls this
degree of influence on classification between two aspect terms
and therefore determines how each training term affects the
final SVM classification results.

III. PROPOSED APPROACH

In this section, we describe our method, which is illustrated
in Fig. 1. Its goal is to integrate relevant external knowl-
edge, namely semantic knowledge obtained from WN lexical
database into SVM Kernel calculation. For this purpose, we
propose three new semantic kernel functions to SVM.

Ti and Tj are two implicit aspect terms (IAT) in the dataset,
and Defi and Defj correspond to their respective sets of
Wordnet definitions. Defi and Defj are defined as follows:

Defi = {subseti1, ..., subsetis}, s ∈ [1, n] (1)

Defj = {subsetj1, ..., subsetjt}, t ∈ [1,m] (2)

Where n and m are respectively the numbers of definitions
in Defi and Defj , subsetis is the set of words representing
the sth definition in Defi, and subsetjt is the set of words
representing the tth definition in Defj . The new kernels are
computed according to the following formulas:

score(Defi, Defj) = maxNCWij(s, t), s ∈ [1, n], t ∈ [1,m]
(3)

sim(Ti, Tj) = score2(Defi, Defj) + 1 (4)

GaussianNew(Ti, Tj) = exp(−γ(∥Ti − Tj∥2/sim(Ti, Tj)))
(5)

AnovaNew(Ti, Tj) =

n∑
k=1

exp(−σ((Tik−Tjk)/sim(Ti, Tj))
2)d

(6)

BesselNew(Ti, Tj) = J0(σ∥Ti − Tj∥) ∗ sim(Ti, Tj) (7)

Since equivalent word senses are commonly defined by
the same terms, the score is determined by comparing word
definitions collected from WordNet lexical database [13]. We
can make the following assumption: for two terms, the more
similar words that their definitions contain the more similar
these two terms are. We inspire from Lesk algorithm [8]
to create the proposed score. The Lesk algorithm suggests
comparing two concepts using the number of common words
in their glosses. First, the number of common terms between
each subset in Defi and each subset in Defj is computed.

Let’s note this number as follows:

NCWij(s, t) = the number of common terms between
subsetis ∈ Defi and subsetjt ∈ Defj .

As stated in equation (3), the score is then computed as
the maximum of all these numbers NCWij(s, t).

Equation (4) shows how sim(Ti, Tj) is obtained. This latter
is calculated by adding 1 to the square of score(Defi, Defj).

If Ti and Tj are dissimilar (score(Defi, Defj) = 0), then
the new kernel between them is computed as follows :

• For Gaussian and Anova kernels, the new distance
between Ti and Tj is set to the standard distance since
sim(Ti, Tj) is equal to 1.

• For Bessel kernel, J0 ( the Bessel function of the first
kind ) is set to its basic value since sim(Ti, Tj) is
equal to 1.

The score is squared to provide higher similarity of terms
having a larger number of common words between subsets
of their definitions.

In equations (5) and (6), the new SVM kernels
(GaussianNew(Ti, Tj) and AnovaNew(Ti, Tj)), are calcu-
lated by dividing the standard distances used in the original
Gaussian and Anova kernel functions by the proposed similar-
ity in equation (4). In each of these new kernels, the division
of the distance by the proposed similarity aims to decrease the
distance between similar terms and then increase the degree of
influence they have on the classification of each others. In other
terms, by decreasing the value inside the exponential function,
the resulting value of the kernel is amplified for similar terms.

In equation (7), the new Bessel kernel is calculated by mul-
tiplying J0, which is the Bessel function of the first kind, by
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Fig. 1. Summary of our approach.

the proposed similarity in equation (4). The new Bessel kernel
value is defined as J0 multiplied by the proposed similarity
function. Consequently, this resulting value is amplified which
increases the degree of influence on classification between the
nearest terms.

IV. EXPERIMENTS AND RESULTS

This section presents the experiments conducted to assess
our proposed method. The pre-processing techniques applied,
the classifier used, the utilized datasets, the performance met-
rics adopted, and the experimental protocols implemented are

all detailed below.

A. Experimental Setup and Protocols

1) Pre-processing: Pre-processing begins with corpus pars-
ing to extract a list of adjectives and verbs using Part of Speech
Tagger (POS). And then all stop words are removed from the
initial list to create the final one.

2) Classifier used: Support Vector Machines (SVM) [32]
are a group of supervised learning techniques for classification
and regression. Putting more emphasis on classification task,
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the goal of SVM is to create a hyperplane that divides instances
into distinct classes while maximizing the distance (or margin)
with the closest data points, known as support vectors.

3) Datasets: To evaluate our technique, we used Restau-
rant, Products and Laptop datasets. Products dataset was cre-
ated by Cruz-Garcia et al. [33] who manually labeled each IAT.
This dataset is based on the customer review corpus described
in [36]. It includes five corpora for various electronic products.
The primary considered implicit aspects are functionality,
performance, appearance, price, quality, weight, and size.

Restaurant dataset is used for SemEval-2014 ABSA task 4
[35]. It contains 3044 English sentences from Ganu et al.’s [34]
restaurant reviews with five predetermined implicit aspects:
price, food, ambiance, service, and anecdotes/miscellaneous.

Laptop dataset is a modified version of SemEval-2015
ABSA dataset for laptop domain [37]. This corpus is used
for SemEval-2016 task 5 for Aspect Based Sentiment Analysis
[38]. The primary addressed implicit aspects are operation per-
formance, usability, price, quality, design features, portability,
and connectivity.

4) Evaluation measures: Accuracy, precision, recall, and
F1-score are the most widely utilized evaluation measures for
assessing the model’s performance. Accuracy is the proportion
of correctly predicted samples. Precision, recall, and F1-
score are employed instead of accuracy when the dataset is
unbalanced since accuracy alone is insufficient. The F1-score
is the equally weighted average of precision and recall [39].

F1 =
2× Precision×Recall

Precision+Recall
(8)

Where Precision is the percentage of correct predictions
over all positive label samples, whereas recall is the percentage
of correct predictions across all positive predictions.

5) Experimental protocols: Our experimental protocols are
prepared in order to evaluate our method according to the
following issues:

a) SVM behavior depending on kernel functions used,
b) SVM behavior under different experimental settings,
c) SVM behavior under Overfitting and Underfitting,

To lower the uncertainty of data splitting between test-
ing and training data, 10-fold cross-validation is used in all
experiments. The experimental protocols will be detailed in
the following four subsections, with an emphasis on each
protocol’s intended purpose and how each protocol is designed
to achieve its goal.

a) Kernel functions used: The main function of the
kernel is to transform the input data into the required form.
There are various types of kernels. In order to evaluate our
approach, we used three different kernels.

Gaussian RBF kernel: The Gaussian RBF kernel is one
of the most used kernels with SVM. This kernel function is
preferred when we do not have any prior knowledge of the
data. The equation of Gaussian RBF is presented as follows:

K(x, z) = exp(−γ∥x− z∥2) (9)

Where ∥x−z∥ denotes the Euclidean distance between the
two data points x and z, respectively. The parameter γ controls
the Gaussian curve’s shape and determines how each training
sample affects the classification result.

Anova kernel: The ANOVA kernel is a radial basis func-
tion that is frequently used in kernel-based techniques, such
as SVM. The ANOVA kernel is formulated as:

K(x, z) =

n∑
k=1

exp(−σ(xk − zk)
2)d (10)

Where x and z are two data points, and d denotes the
ANOVA kernel’s degree. The parameter σ influences both the
border of the categorization problem and the shape of the
ANOVA kernel.

Bessel kernel: The Bessel kernel is a radial basis function
used in kernel-based methods in mathematics, such as SVM.
The equation of Bessel kernel is given by:

K(x, z) = J0(σ∥x− z∥) (11)

Where x and z are two data points, J0 is the Bessel
function of the first kind, and ∥x−z∥ is the Euclidean distance
between them. The parameter σ impacts the boundary of the
categorization problem, which also impacts the Bessel kernel’s
structure.

b) SVM behavior under different experimental settings:
SVM is a machine learning classification technique whose
performance depends not only on kernel function but also
on its parameters. The most critical parameters are C, γ,
and σ. Parameter C is the error penalty misclassification, It
controls the trade-off between maximizing the margin and
minimizing the misclassification error. Parameter γ determines
the speed of the decrease of the similarity of two points as the
distance between them increases. It is in charge of finding the
balance between SVM abilities to fitting training data and to
generalizing to testing data. Whereas parameter σ decides the
boundary uniformity with respect to the quantity of nearby
data points considered for Building this boundary. It decides
the breath of its corresponding kernel. Thus, both parameters σ
and γ determine how far the influence of each training instance
reaches.

Protocol 1: Experiments for issues (a) and (b):

For our comparative protocol, we execute BasicSVM and
NewSVM using a grid search with respect to combinations
{C,γ} (for Gaussian RBF Kernel) and {C,σ} (for Anova and
Bessel Kernels), where C, γ and σ range within [2−5, 215]
interval, in order to obtain as many as possible significant
values for performance ranging from Underfitting values up
to Overfitting values.

As the parameter setting changes, the performance of each
of NewSVM and BasicSVM models ranges from Minimum to
Maximum values that correspond respectively to Underfitting
and Overfitting situations. For each model, we identify from
its performance range three different pertinent F1 performance
values Minimum Value, Median Value, and Maximum Value.
The identified Minimum and Maximum performance values
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are chosen to be different, if possible, from Underfitting and
Overfitting values respectively. This is because Underfitting
and Overfitting are treated separately in the next part of this
section. Our protocol aims to conduct objective comparisons of
F1 performances of both NewSVM and BasicSVM models. In
fact, it compares each of the three identified F1 performances
of each model to the F1 performance, of the other model, ob-
tained under the same experimental parameter setting leading
to the identified performance of the former model.

To deal with issues (a) and (b), we conduct our experiments
according to the following protocol:

Protocol 1: kernel functions used and different experi-
mental settings:

For each dataset from {Laptop,Products, Restaurant}:

For each Kernel from {Gaussian RBF, Anova,
Bessel}:

If (the best performance is identified for Ba-
sicSVM) / (OR the best performance is iden-
tified for NewSVM):

Let’s denote:
1) BestBasicSVM as the BasicSVM algo-
rithm with the best F1-score performance.
(OR BestNewSVM as the NewSVM algo-
rithm with the best F1-score performance.)
2) NewSVMParam−BestBasicSVM as
the NewSVM algorithm using the same
parameters used by BestBasicSVM. (OR
BasicSVMParam−BestNewSVM as the
BasicSVM algorithm using the same
parameters used by BestNewSVM.)
Compare F1-score average performances
of NewSVMParam−BestBasicSVM

and BestBasicSVM (OR Compare
F1-score average performances of
BasicSVMParam−BestNewSVM and
BestNewSVM)

If (the median performance is identified for
BasicSVM) / (OR the median performance is
identified for NewSVM):

Let’s denote:
1) MedianBasicSVM as the BasicSVM
algorithm with the median F1-score per-
formance. (OR MedianNewSVM as the
NewSVM algorithm with the median F1-
score performance.)
2) NewSVMParam−MedianBasicSVM as
the NewSVM algorithm using the same
parameters used by MedianBasicSVM.
(OR BasicSVMParam−MedianNewSVM

as the BasicSVM algorithm using the same
parameters used by MedianNewSVM.)
Compare F1-score average performances
of NewSVMParam−MedianBasicSVM

and MedianBasicSVM (OR Compare
F1-score average performances of
BasicSVMParam−MedianNewSVM and
MedianNewSVM)

If (the worst performance is identified for
BasicSVM) / (OR the worst performance is

identified for NewSVM):
Let’s denote:
1) WorstBasicSVM as the BasicSVM al-
gorithm with the worst F1-score per-
formance. (OR WorstNewSVM as the
NewSVM algorithm with the worst F1-
score performance.)
2) NewSVMParam−WorstBasicSVM as
the NewSVM algorithm using the same
parameters used by WorstBasicSVM. (OR
BasicSVMParam−WorstNewSVM as the
BasicSVM algorithm using the same pa-
rameters used by WorstNewSVM.)
Compare F1-score average performances
of NewSVMParam−WorstBasicSVM

and WorstBasicSVM (OR Compare
F1-score average performances of
BasicSVMParam−WorstNewSVM and
WorstNewSVM)

Compute all Improvement Rates (IR) of
NewSVM over BasicSVM
Report F1-score averages and IR results

c) SVM behavior under overfitting and underfitting: We
design a protocol that is intended to examine and compare the
impact of Overfitting and Underfitting on the performance of
NewSVM and BasicSVM with three kernels, Gaussian RBF,
Anova, and Bessel. To accomplish this aim, our suggested
protocol should:

1. Be built under conditions that cause SVM Underfitting
and Overfitting. Generally, Overfitting and Underfitting are
induced by respectively large values of C, γ and σ, and
small values of C, γ and σ. The small and large values
of these parameters are experimentally identified using grid
search along with cross-validation.

The parameters γ and σ determine the extent of a single
training example influence (γ is the hyper-parameter of Gaus-
sian RBF Kernel, and σ is the hyper-parameter of Anova and
Bessel kernels). When gamma and sigma are very small the
model is too constrained and cannot capture the complexity of
the data. Consequently, the region of influence of any selected
support vector would include the whole training set. In addition
to that, small values of γ and σ consider only nearby points
in calculating the separation line. As a result, a low value of
γ and σ will loosely fit the training dataset, which causes
Underfitting. In contrast to small values, large values of γ
and σ consider all the data points in the calculation of the
separation line. Consequently, a high value of γ and σ will
exactly fit the training dataset, which causes Overfitting.

Parameter C represents the error penalty for misclassifica-
tion for SVM. The C parameter trades off correct classification
of training examples against maximization of the decision
function’s margin. For larger values of C, a smaller margin
will be accepted thus the model will be less tolerant, in
other words, the model will be more specific and therefore
this leads to Overfitting. A lower C will encourage a larger
margin, therefore a simpler decision function at the cost of
training accuracy, thus the model will be more tolerant to
misclassifications, which causes Underfitting. In other words,
C behaves as a regularization parameter in SVM.
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2. Provide a measure to analyze the impact of Underfitting
and Overfitting on SVM performance, in order to make a
comparison between BasicSVM and NewSVM with regard to
how they behave under Overfitting and Underfitting situations.
In Overfitting, SVM has a good training performance and a bad
test performance. In contrast, in Underfitting SVM performs
poorly on both testing and training data. For assessing how
sensitive both models are to Underfitting and Overfitting, we
propose different measures that are presented and described in
detail in section B “Results and Discussion”.

Protocol 2: Experiments for issue (c):

We compare the performances of NewSVM and BasicSVM
for each of the three kernels (Gaussian RBF, Anova, and
Bessel) and for Overfitting and Underfitting conditions. For
this comparison, we execute a grid search with respect to
{C,γ} and {C,σ} combinations, where C, γ and σ range within
[2−5, 215] interval. This range is chosen to be very large (with
very small lower bound and very large upper bound) so that
grid search results in many combinations of {C,γ} and {C,σ}
from which we extract relevant values leading to Overfitting
and Underfitting that are used to conduct our experimental
comparisons of BasicSVM and NewSVM.

In fact, for each situation of Underfitting and Overfitting,
grid search identifies several relevant combinations resulting
in the same F1-score performance. Thus, for our comparative
experiments, we select the combinations of the largest val-
ues {Cmax, γmax} or {Cmax, σmax} and the smallest values
{Cmin, γmin} or {Cmin, σmin} (depending on the kernel
used) for respectively Overfitting and Underfitting conditions.

Protocol 2: Overfitting and Underfitting: For each
dataset from {Laptop,Products, Restaurant}:

For each Kernel from {Gaussian RBF, Anova,
Bessel}:

For each Model from {NewSVM, BasicSVM}:
If Kernel = Gaussian RBF :

If Overfitting :
Select {Cmax, γmax} for compar-

ing NewSVM and
BasicSVM

Else //Underfitting // :
Select {Cmin, γmin} for compar-

ing NewSVM and
BasicSVM

If Kernel = Anova or Kernel = Bessel :
If Overfitting :

Select {Cmax, σmax} for compar-
ing NewSVM and

BasicSVM
Else //Underfitting // :

Select {Cmin, σmin} for compar-
ing NewSVM and

BasicSVM
Report F1-score average results of Model

B. Results and Discussion

The results of the experiments are shown and discussed in
this part considering the following aspects:

• SVM behavior depending on kernel functions used,

• SVM behavior under different experimental settings,

• SVM behavior under Overfitting and Underfitting.

1) SVM behavior depending on kernel functions used
and under different experimental settings:: Table I is
defined to show the behavior of both BasicSVM and
NewSVM models with respect to different experimental
settings. It presents, on one hand, the F1-score average
performances of BestBasicSVM, MedianBasicSVM,
and WorstBasicSVM compared respectively to F1-score
average performances of NewSVMParam−BestBasicSVM ,
NewSVMParam−MedianBasicSVM and
NewSVMParam−WorstBasicSVM , and on the
other hand, the F1-score average performance of
BestNewSVM, MedianNewSVM, and WorstNewSVM
compared respectively to F1-score average
performances of BasicSVMParam−BestNewSVM ,
BasicSVMParam−MedianNewSVM and
BasicSVMParam−WorstNewSVM . It outlines these
comparisons for the three considered kernels and the
three datasets. Table I reveals that NewSVM outperforms
BasicSVM for all kernels and all datasets used (shown
by positive IR for all cases). In fact, when we introduce
our proposed similarity in SVM kernels this results in
tuned kernel values and then enhances the classification
performance. These tuned values are obtained by integrating
the proposed similarity function in the three considered
kernels (Gaussian RBF, Anova, and Bessel), which amplifies
kernel values and then increases the level of influence between
the nearest terms. As a result, the new kernel functions allow
SVM to improve its classification performance.

In addition to global findings marked by positive perfor-
mance improvement rates of NewSVM over BasicSVM, there
are some noteworthy points that clearly show NewSVM’s
superiority:

a) We observe that NewSVM outperforms BasicSVM
with the lowest, the middle, and the highest average
IR over all kernels and datasets respectively for the
best, the median, and the worst performances of both
models. (IR average values are {5, 78%, 36, 94%},
{34, 48%, 118, 97%}, and {193, 53%, 211, 89%}, for
respectively the best, the median, and the worst
performances). NewSVM is shown to outperform
BasicSVM for all cases but its outperformance rate
changes with the level of the performance consid-
ered for comparison. Indeed, the best performance,
that is chosen for any one of both models, usu-
ally corresponds to optimal hyperparameters for both
NewSVM and BasicSVM. This fact allows this latter
to reach high performances in general, and therefore
not to be largely exceeded by NewSVM. Conversely,
the worst performance, that is identified for any
of both models, leads to the worst hyperparameters
mainly for BasicSVM. Hence, this latter achieves its
worst performance, which helps NewSVM to highly
outperform it.

b) We notice that NewSVM outperforms BasicSVM
with higher average IR over all kernels and
datasets when best and median performances
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TABLE I. IMPROVEMENT RATES OF NEWSVM OVER BASICSVM UNDER DIFFERENT EXPERIMENTAL SETTINGS FOR THREE DATASETS AND THREE
KERNELS

Restaurant Products Laptop
Model Gaussian Anova Bessel Gaussian Anova Bessel Gaussian Anova Bessel Average-IR
BestBasicSVM 81.94% 81.94% 81.94% 77.27% 77.27% 77.02% 85.60% 85.60% 85.60%
NewSVMParam−BestBasicSV M 85.53% 86.56% 87.23% 81.13% 78.76% 80.99% 92.33% 92.47% 92.06%
IR-BestBasicSVM 4.38% 5.63% 6.45% 5% 1.93% 5.15% 7.86% 8.03% 7.55% 5.78%
BasicSVMParam−BestNewSV M 34.38% 81.94% 81.94% 71.64% 77.02% 58.42% 46.32% 85.60% 85.60%
BestNewSVM 85.67% 87.29% 87.23% 81.13% 79.57% 81.14% 92.41% 92.73% 92.06%
IR-BestNewSVM 149.19% 6.53% 6.45% 13.25% 3.31% 38.39% 99.50% 8.33% 7.55% 36.94%
MedianBasicSVM 53.64% 75.89% 49.59% 64.75% 77.02% 58.42% 69.11% 67.29% 64.13%
NewSVMParam−MedianBasicSV M 85.67% 84.50% 87.23% 79.67% 79.57% 81.14% 87.24% 86.66% 91.90%
IR-MedianBasicSVM 59.71% 11.35% 75.90% 23.04% 3.31% 38.72% 26.23% 28.79% 43.30% 34.48%
BasicSVMParam−MedianNewSV M 36.16% 75.89% 15.21% 76.31% 77.27% 77.02% 17.66% 85.60% 64.13%
MedianNewSVM 85.53% 84.50% 86.51% 78.48% 77.90% 80.99% 87.24% 92.29% 91.90%
IR-MedianNewSVM 136.53% 11.35% 468.77% 2.84% 0.82% 5.14% 394% 7.82% 43.30% 118.97%
WorstBasicSVM 24.95% 49.59% 15.21% 26.27% 58.91% 12.63% 31.63% 67.29% 23.88%
NewSVMParam−WorstBasicSV M 52.34% 79.35% 86.51% 62.85% 70.46% 80.88% 60.36% 86.66% 91.79%
IR-WorstBasicSVM 109.78% 60.01% 468.77% 139.25% 19.61% 540.38% 90.83% 28.79% 284.38% 193.53%
BasicSVMParam−WorstNewSV M 24.95% 49.59% 15.21% 26.27% 58.91% 12.63% 16.95% 67.29% 23.88%
WorstNewSVM 52.34% 79.35% 86.51% 62.85% 70.46% 80.88% 60.36% 86.66% 91.79%
IR-WorstNewSVM 109.78% 60.01% 468.77% 139.25% 19.61% 540.38% 256.11% 28.79% 284.38% 211.89%

are used for NewSVM than when they are used
for BasicSVM (Average-IR(IR-BestNewSVM)
¿ Average-IR(IR-BestBasicSVM) and Average-
IR(IR-MedianNewSVM) ¿ Average-IR(IR-
MedianBasicSVM)). In fact, the newly included
similarity into SVM kernels helps NewSVM to be
much less sensitive to the change of setting, the
error misclassification, and the influence of training
data instances that are controlled by hyperparameters
(C, γ, and σ). Whereas, BasicSVM remains very
sensitive as usual to these factors. Therefore, the
performances of NewSVM do not significantly
change even when we change hyperparameters
from values leading to its best, median, and worst
performances to values corresponding respectively
to the best, median, and worst performances
of BasicSVM. At the same time, BasicSVM is
generally penalized when its own parameters are
changed to NewSVM parameters.

c) We also note that for the worst performances,
NewSVM outperforms BasicSVM with higher aver-
age IR over all kernels and datasets (Average-IR(IR-
WorstNewSVM) ¿ Average-IR(IR-WorstBasicSVM).
However, NewSVM is shown to exceed BasicSVM
with the same IR for every kernel and dataset except
for the Gaussian kernel on Laptop dataset. This
is simply explained by the fact that both models
share the same hyperparameter values for their worst
performances. In others terms, the values of the
parameters that correspond to the worst performance
of BasicSVM lead to the worst performance of
NewSVM and vice versa.

To better show the behavior of both NewSVM and
BasicSVM with respect to kernel functions for all datasets,
we create Table II that represents an aggregated view of Table
I. Indeed, Table II shows for each kernel function and for each
dataset: (i) Average-F1-BasicSVM which is the average of
F1-score performances of BestBasicSVM, MedianBasicSVM,
and WorstBasicSVM, BasicSVMParam−BestNewSVM ,
BasicSVMParam−MedianNewSVM and
BasicSVMParam−WorstNewSVM , (ii) Average-
F1-NewSVM which is the average of F1-score
performances of BestNewSVM, MedianNewSVM,

and WorstNewSVM, NewSVMParam−BestBasicSVM ,
NewSVMParam−MedianBasicSVM and
NewSVMParam−WorstBasicSVM and (iii) IR which is
the improvement rate of Average-F1-NewSVM over Average-
F1-BasicSVM. From Table II, it can be observed that the
average improvement rates of NewSVM over BasicSVM
reach their highest values with Bessel kernel and their lowest
values with Anova kernel for all datasets. This observation
may be explained by the low BasicSVM performance with
Bessel kernel and the high BasicSVM performance with
Anova kernel. This shows that BasicSVM performance is one
among other impacting factors of the improvement rate of
NewSVM over BasicSVM.

2) SVM behavior under overfitting and underfitting:

a) Overfitting: To analyze the behavior of the new and
original model in Overfitting conditions, and as stated previ-
ously in our protocol, the comparative experiments are con-
ducted using the combination {Cmax, γmax}=[{32768, 32768}
for Gaussian kernel, and {Cmax, σmax} = [{32768, 32768} for
Anova and Bessel kernels, corresponding to the largest values
of parameters.

Table III shows F1-score averages for NewSVM model and
BasicSVM model under Overfitting situations (each average is
obtained across multiple folds). In Overfitting, the two models
perform well on training data but badly on test data.

We provide three indicators in Table III that are utilized
to measure how sensitive BasicSVM and NewSVM are to
Overfitting.

Delta-test (Delta-test = F1-test(NewSVM) − F1-
test(BasicSVM)) values are positive in all experiments
in Table III. This demonstrates that NewSVM outperforms
BasicSVM for all kernels and for all datasets, even in
Overfitting situation. The fact that NewSVM outperforms
BasicSVM on test data is the first indicator of NewSVM’s
less Overfitting sensitivity in comparison to BasicSVM.

The two other indicators of BasicSVM and NewSVM
Overfitting sensitivity are respectively Delta-BasicSVM and
Delta-NewSVM (Delta-BasicSVM = F1-Train(BasicSVM) −
F1-Test(BasicSVM), Delta-NewSVM = F1-Train(NewSVM)
− F1-Test(NewSVM)). These two metrics measure the per-
formance losses that are made respectively by BasicSVM
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TABLE II. AVERAGE IMPROVEMENT RATES OF NEW SVM OVER BASIC SVM WITH RESPECT TO KERNELS AND DATASETS

Dataset / Kernel Gaussian Anova Bessel
Average-F1-BasicSVMRestaurant 42.67% 69.14% 43.18%
Average-F1-NewSVMRestaurant 74.51% 83.59% 86.87%
IRRestaurant 74.62% 20.90% 101.18%
Average-F1-BasicSVMProducts 57.92% 71.07% 49.36%
Average-F1-NewSVMProducts 74.35% 76.12% 81%
IRProducts 28.37% 7.10% 64.10%
Average-F1-BasicSVMLaptop 44.54% 76.44% 57.87%
Average-F1-NewSVMLaptop 79.99% 89.58% 91.92%
IRLaptop 79.59% 17.19% 58.84%
Average-IR 60.86% 15.06% 74.71%

and NewSVM between testing and training data. A higher
Delta-BasicSVM (Delta-NewSVM) results in a poorer perfor-
mance on testing data than on training data for BasicSVM
(NewSVM). This means that BasicSVM (NewSVM) sensitiv-
ity to Overfitting increases. The model that is more sensitive to
overfitting is indicated by Delta (Delta = Delta-BasicSVM −
Delta-NewSVM). The BasicSVM is more sensitive when Delta
is positive; otherwise, the NewSVM is more sensitive. Addi-
tionally, BasicSVM becomes more sensitive than NewSVM as
Delta increases. Table III shows that for all kernels and for
all datasets, all Delta values are positive. This means that the
differences between F1-score averages in training data and F1-
score averages in test data are smaller for the NewSVM model,
and this denotes a lower performance loss between testing and
training data, and thus, lower sensitivity to Overfitting.

Therefore, our method aids SVM coping with Overfitting
more effectively. Thus, the suggested model is less sensitive
than the basic one to Overfitting.

b) Underfitting: To analyze the behavior of the original
and new models under Underfitting, and as stated previously
in our protocol, the comparative experiments are conducted
using the combination {Cmin, γmin}={0.03125, 0.03125} for
Gaussian kernel, and {Cmin, σmin} = {0.03125, 0.03125} for
Anova and Bessel kernels, corresponding to the lowest values
of parameters.

Table IV shows the behavior of BasicSVM and NewSVM
under Underfitting when both models show poor performance
on both testing and training data.

In order to analyze both models sensitivity to Underfitting,
we introduce two indicators in Table IV to measure BasicSVM
and NewSVM tolerence to Underfitting.

Delta-test (Delta-test = F1-test(NewSVM) − F1-
test(BasicSVM)) values are positive in all experiments
in Table IV (except for Gaussian kernel on Restaurant
dataset). This shows that NewSVM outperforms BasicSVM
for all kernels and for all datasets, even in Underfitting
situation. The fact that NewSVM outperforms BasicSVM on
test data is the first indicator of NewSVM’s less Underfitting
sensitivity in comparison to BasicSVM.

Delta-train (which is equal to F1-train(NewSVM) − F1-
train(BasicSVM)) is the second indicator. Delta-train values
are positive in all experiments in Table IV (except for Gaussian
kernel on Restaurant dataset). This implies that NewSVM
is more performant than BasicSVM on training data. This
indicates that NewSVM is more tolerant to Underfitting than

BasicSVM.

V. COMPARISON WITH OTHER WORKS

In order to evaluate the effectiveness of the proposed
approach, it is compared against various existing methods
from the literature. Table V shows a comparison between
the traditional and deep learning methods and our suggested
method for Implicit Aspect Identification. It is crucial to note
that all the works use the same datasets. However, they operate
at distinct levels. While W2VLDA [26], and our proposed
method (using 3 kernels) work at the algorithmic level by
proposing adjustments or additions, the rest of the techniques
focus on enhancing the quality of training data by operating at
the data level. Schouten et al.’s supervised method [21] is an
hybrid method that operates at both data level and algorithmic
level.

From Table V, we observe that:

• In the case of Restaurant dataset, despite the difficulty
of adjusting the core model that is more challenging
and sensitive, our proposed technique (with the three
kernels) shows a highly competitive performance level
when compared to all works even the ones operating
on data level which is less challenging and even
the deep learning methods of [19] that are generally
reputed for high classification performance.

• In the case of the Products dataset, our three pro-
posed approaches, which operate at the algorithm
level without modifying the training data structure, are
mostly surpassed by all methods of [18] and [19] that
make use of data-level techniques. These techniques
enhance the training data by incorporating semantic
relations from WN, which should help mitigate the
issue of high-class imbalance present in the Products
dataset. However, Our technique (with three kernels)
outperforms KNN [40] with its three versions, which
is an algorithmic-level technique.

• In the case of Laptop dataset, our proposed approach
with all kernels outperforms LSTM+WN+Frequency
[19] and Att-LSTM+WN+Frequency [19] which are
not only deep learning methods that are generally
reputed for high classification performance, but also
operating on less sensitive and less challenging data
level.
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TABLE III. F1-SCORE AVERAGE PERFORMANCES OF NEWSVM AND BASICSVM UNDER OVERFITTING FOR ALL
DATASETS AND USING THREE KERNELS

Kernel Gaussian Anova Bessel
{Cmax, γmax} {Cmax, σmax} {Cmax, σmax}

Rest Prod Lap Rest Prod Lap Rest Prod Lap
F1-test(BasicSVM) 80.13 76.30 85.45 74.68 77.27 85.50 81.94 77.27 85.60
F1-test(NewSVM) 86.85 78.61 90.48 85.57 77.38 91.91 87.23 80.95 92.06
Delta-test 6.72 2.31 5.03 10.89 0.11 6.41 5.29 3.68 6.46
F1-train(BasicSVM) 100 96.90 99.52 100 96.90 99.52 100 96.90 99.52
F1-train(NewSVM) 100 96.12 98.91 100 96.32 99.38 100 96.90 99.52
Delta-BasicSVM 19.87 20.6 14.07 25.32 19.63 14.02 18.06 19.63 13.92
Delta-NewSVM 13.15 17.51 8.43 14.43 18.94 7.47 12.77 15.95 7.46
Delta 6.72 3.09 5.64 10.89 0.69 6.55 5.29 3.68 6.46

*Rest refers to Restaurant dataset.
*Prod refers to Products dataset.
*Lap refers to Laptop dataset.

TABLE IV. F1-SCORE AVERAGE PERFORMANCES OF NEWSVM AND BASICSVM UNDER UNDERFITTING FOR ALL
DATASETS AND USING THREE KERNELS

Kernel Gaussian Anova Bessel
{Cmin, γmin} {Cmin, σmin} {Cmin, σmin}

Rest Prod Lap Rest Prod Lap Rest Prod Lap
F1-test(BasicSVM) 15.21 5.07 7.50 15.21 14.97 23.96 15.21 5.07 7.50
F1-train(BasicSVM) 15.23 5.07 7.50 15.23 20.76 24.88 15.23 5.07 7.50
F1-test(NewSVM) 15.21 19.15 26.05 16.98 38.63 50.57 83.35 78.30 88.1
F1-train(NewSVM) 15.23 21.82 26.37 17.48 44.11 53.87 98.47 92.35 98.02
Delta-test 0 14.08 18.55 1.77 23.66 26.61 68.14 73.23 80.6
Delta-train 0 16.75 18.87 2.25 23.35 28.99 83.24 87.28 90.52

*Rest refers to Restaurant dataset.
*Prod refers to Products dataset.
*Lap refers to Laptop dataset.

TABLE V. PERFORMANCES OF SELECTED TRADITIONAL AND DEEP LEARNING TECHNIQUES AND OUR PROPOSED TECHNIQUES FOR IAI ON
RESTAURANT, PRODUCTS AND LAPTOP DATASETS

Method Type F1-score F1-score F1-score
(Restaurant) (Products) (Laptop)

W2VLDA [26] traditional 72.00% - -
Schouten et al. Supervised [21] traditional 83.80% - -
MNB+WN [18] traditional 77.40% 90.00% -
BNB+WN [18] traditional 78.40% 93.30% -
SVM+WN+frequency [19] traditional 85.30% 91.80% -
KNN+WN+frequency [19] traditional 85.30% 91.80% -
MNB+WN+frequency [19] traditional 87.55% 91.80% -
LSTM+WN+frequency [19] deep learning 85.20% 89.09% 86.71%
Att-LSTM+WN+frequency [19] deep learning 87.83% 94.36% 88.26%
KNN with Cosine dist. [40] traditional 87.80% 74.60% -
KNN with Jaccard dist. [40] traditional 84.40% 74.00% -
KNN with Euclidian dist. [40] traditional 77.60% 72.60% -
Proposed SVM with Gaussian traditional 88.83% 80.21% 89.35%
Proposed SVM with Anova traditional 88.54% 79% 92.84%
Proposed SVM with Bessel traditional 89.81% 80.89% 93.42%
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VI. CONCLUSION

In this work, we suggest a method to enhance SVM algo-
rithm to address Implicit Aspect Identification. We provide an
improvement for SVM kernel computation to support the IAI
task through the use of WordNet semantic relations. For em-
pirical evaluation, experiments are conducted on three datasets
of laptop reviews, electronic product reviews, and restaurant
reviews, and the effects of our approach on SVM performance
are examined and analyzed according to three criteria: (i)
kernel function used, (ii) different experimental settings, and
(iii) SVM behavior under Overfitting and Underfitting.

The key conclusions of our research can be summarized as
follows:

a) Our technique helps SVM improve its performance
under different experimental settings and for the three
considered kernels and datasets.

b) Our method helps SVM deal with Overfitting and Un-
derfitting more effectively by minimizing their effects
on SVM and thereby enhancing its performance.

Even though our approach helps SVM classifier better deal
with some of its main issues, it has some limitations at different
levels:

• Machine learning model: it only uses one popular
eager machine learning model. It would be more
interesting to test other types of machine learning
models such as lazy or deep learning techniques.

• WordNet semantic relations: it uses only one semantic
relation which is ”definition relation”. It would be also
more interesting to explore other semantic relations of-
fered by WordNet like synonyms, antonyms, and their
combinations. These relations seem to have significant
linguistic importance that may help improve machine
learning models to address their critical issues when
applied to IAI.

• Datasets used: it uses three datasets that are medium-
sized and noise-free that better suit the SVM clas-
sification model. We plan to use other less suitable
datasets like noisy and large data which present many
challenges to the SVM model.

Future work will investigate the use of our method to
improve SVM model with non-distance-based kernels and
evaluate it under different aspects like dataset size, curse of
dimensionality, and noise tolerance. It will also look into
considering our approach to address the above-mentioned
limitations of our work.
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