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Abstract—Task scheduling poses a major challenge for cloud 

computing environments. Task scheduling ensures cost-effective 

task execution and improved resource utilization. It is classified 

as a NP-hard problem due to its nondeterministic polynomial 

time nature. This characteristic motivates researchers to employ 

meta-heuristic algorithms. The number of cloud users and 

computing capabilities is leading to increased concerns about 

energy consumption in cloud data centers. In order to leverage 

cloud resources in the most energy-efficient manner while 

delivering real-time services to users, a viable cloud task 

scheduling solution is necessary. This study proposes a new 

deadline-aware task scheduling algorithm for cloud 

environments based on the Firefly Optimization Algorithm 

(FOA). The suggested scheduling algorithm achieves a higher 

level of efficiency in multiple parameters, including execution 

time, waiting time, resource utilization, the percentage of missed 

tasks, power consumption, and makespan. According to 

simulation results, the proposed algorithm is more effective and 

superior to the CSO algorithm under HP2CN and NASA 

workload archives. 

Keywords—Cloud computing; energy efficiency; task 
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I. INTRODUCTION 

In recent years, wireless and emerging technologies have 
undergone significant progress, particularly the Internet of 
Things (IoT) [1, 2], artificial intelligence [3], machine learning 
[4-6], smart grids [7], Blockchain [8], 5G connectivity [9], and 
cloud computing [10], resulting in a number of positive effects 
on society. Cloud computing offers convenient, flexible, and 
ubiquitous access to a set of configurable computing resources, 
such as servers, storage, applications, and services, which are 
delivered via the web and released instantly [11, 12]. It allows 
users to access computer resources without having to manage 
them actively [13]. In this regard, three types of services can be 
provided by a cloud: infrastructure, software, and platform 
[14]. The first service is infrastructure as a service (IaaS), 
which offers storage and computational resources [15]. In the 
second service, users can access the software remotely without 
installing it locally, which is called software as a service (SaaS) 
[16, 17]. The third service is the platform as a service (PaaS), 
which provides a platform on which clients can build 
applications [18]. Virtual Machines (VMs) are provided by 
cloud providers as computing resources. To improve the 
efficiency of cloud computing, optimal task scheduling is 
critical when numerous users demand services from the cloud 
[19]. 

To achieve the desired quality of service (QoS), efficient 
task scheduling allocates resources optimally across the desired 
tasks in a timely manner. Optimizing a given objective 
involves building a schedule of tasks to be allocated to VMs 
with consideration of some constraints [20]. Each cloud 
infrastructure relies on a task scheduling algorithm as a key 
component. The performance metrics used in scheduling 
procedures involve computation-based indicators, including 
response time, energy consumption, and makespan, and 
network-based indicators, including round trips, 
communication cost, and traffic volume [21]. There are three 
types of optimal task scheduling approaches in cloud 
computing: heuristic, meta-heuristic, and hybrid. Heuristic task 
scheduling algorithms offer ease of scheduling and deliver the 
best possible solution, but they do not guarantee optimal 
outcomes. A meta-heuristic approach can find optimal 
solutions to task scheduling problems in a polynomial amount 
of time. The hybrid task scheduling algorithm combines both 
the heuristic and meta-heuristic approaches [22, 23]. 

Although there are promising approaches to efficient task 
scheduling in the cloud, the problem of task scheduling 
remains NP-complete [24, 25]. This paper proposes and uses 
the Firefly Optimization Algorithm (FOA) in order to schedule 
a bag of tasks in a cloud environment, avoiding network 
communication and data transfer costs. In the experimental 
setup, the proposed algorithm is compared to the Highest 
Response Ratio Next (HRRN), Shortest Process Next (SPN), 
First Come First Served (FCFS), and PSO algorithms. The 
proposed method was tested using various distributions to gain 
insight into its performance trend. By optimizing both the time 
overhead and the energy consumption of the mobile device, the 
QoS for mobile users is enhanced by maximizing the overall 
system benefits. The main contributions of this paper are as 
follows: 

 Defining the task scheduling problem and formulating 
mathematical models and the objective functions used 
to optimize the allocation of tasks to virtual machines. 

 Analyzing the performance of the proposed algorithm 
in terms of execution time, makespan, and energy 
consumption. 

 Verifying the experimental results by comparing them 
to CSO, FCFS, and PSO findings. 
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The remainder of the paper follows in the following order. 
A discussion of recent cloud task scheduling methods is 
presented in Section II. Section III describes and models the 
problem of task scheduling in a cloud computing environment, 
followed by an explanation of the proposed algorithm. Section 
IV discusses the simulation results. The paper concludes with 
Section V. 

II. RELATED WORK 

Yu and Su [26] proposed a system called Three Queues 
(TQ) that uses dynamic priorities and three queues in order to 
cope with the increasing heterogeneity of cloud computing 
clusters. Based on the priority of tasks, the algorithm places 
tasks in a waiting queue and then categorizes them based on 
the input amount, output amount, number of current tasks 
running on a node, completion time, and disk I/O rate of the 
Map phase. Hardware utilization is improved by placing jobs 
in corresponding queues. It has been demonstrated that this 
algorithm improves task scheduling performance in the 
presence of both CPU-intensive and I/O-intensive tasks and 
shortens task execution times. The genetic algorithm proposed 
by Sun, et al. [27] uses phagocytosis as a crossover operation, 
generates a sub-chromosomal individual by phagocytosing two 
mother chromosomes, produces a random third individual, and 
determines a new individual resulting from phagocytosis based 
on the load-balancing standard deviation and fitness factor, 
which results in a high percentage of high-quality individuals. 
An evolutionary genetic algorithm for multiple populations is 
then used that creates initial subpopulations using the Min-Min 
algorithm, and these subpopulations are evolved using an 
improved genetic algorithm. According to simulations, the 
proposed algorithm schedules cloud tasks efficiently. 

Al-Maytami, et al. [28] developed a new scheduling 
algorithm using Directed Acyclic Graphs (DAG) and 
Prediction of Tasks Computation Time (PTCT). Furthermore, 
by reducing the Expected Time to Compute (ETC) matrix 
using Principle Components Analysis (PCA), the proposed 
algorithm significantly improves makespan and minimizes 
complexity and computation. According to simulation results, 
the algorithm outperforms other algorithms for heterogeneous 
systems regarding schedule length rate, response time, and 
efficiency. Prasanna Kumar and Kousalya [29] used the Crow 
Search Algorithm (CSA) to schedule cloud tasks. The CSA 
draws inspiration from the food-collecting behavior of crows. 
The crow keeps on searching for a better food source than its 
current food source as it keeps watching its mates. This paper 
uses the CSA to find suitable VMs and minimize the 
makespan. CloudSim is used to measure CSA’s performance 
over ACO algorithms. Simulation results indicate that the CSA 
algorithm is superior to the ACO algorithms. 

Panda and Jana [16] developed an energy-efficient task 
scheduling algorithm (ETSA) to resolve task scheduling 
problems. The algorithm considers and normalizes both the 
completion time and the total resource utilization of a task. 
ETSA was evaluated for its ability to measure energy 
efficiency and makespan in heterogeneous environments. 
ETSA was tested in a wide variety of heterogeneous 
environments, and the test results showed that it was able to 
achieve better energy efficiency and makespan than existing 

algorithms. The algorithm also accounts for both completion 
time and resource utilization, which gives it an advantage over 
other scheduling algorithms. Na, et al. [30] propose a Squid 
operator and Nonlinear Inertia Weight PSO (SNW-PSO) 
algorithm to better meet the users’ QoS requirements in cloud 
computing. Execution cost and execution time are optimized 
by the algorithm. As part of its optimization process, nonlinear 
inertia weights are introduced to prevent the algorithm from 
jumping from its local optimum. Furthermore, the squid 
operator allows for greater particle diversity and faster 
convergence to optimal positions within particle swarms. This 
algorithm compensates for the weaknesses of the traditional 
PSO algorithm, namely its ease of over-convergence and 
tendency towards the local optimum. The SNW-PSO algorithm 
converges more quickly than an LDIC-PSO algorithm and 
reduces both task completion time and cost when compared to 
a PSO algorithm with linearly decreasing inertia weight. 

III. PROPOSED METHOD 

In cloud computing, different quality of service parameters 
is optimized by scheduling tasks. The task scheduling problem 
entails allocating several tasks appropriate to a certain number 
of VMs. This section proposes an evolutionary task scheduling 
approach using FOA. Environmental dynamics, deadlines, and 
declining the entire task are the basis of the proposed method. 
The task scheduling problem is modeled based on the 
following assumptions: 

 The VMs are heterogeneous in terms of processing 
power and power consumption; 

 There is no migration of tasks between VMs; 

 All submitted tasks are independent. 

A. FOA Formulation for Task Scheduling Issue 

The firefly algorithm is a novel technique based on 
fireflies’ social behaviors in nature. They flash short lights 
rhythmically. Each one’s flashing pattern is unique and 
different from the rest. They utilize the lights for the mate-
attracting process and attract prey. Furthermore, these lights 
can function as a protective mechanism in favor of fireflies. 
The rhythmic light, flashing rate, and time interval between 
flashing signals cause the two sexes to get attracted to each 
other. Each parcel is a firefly which is updated according to a 
firefly’s awareness of its neighbors in the multidimensional 
search space through attracting dynamically. The parameters of 
FOA are described in the following. 

 Light intensity factor (I):  In the firefly algorithm, the 
light intensity factor is defined by Eq. 1. In this 
equation, I0 denotes the initial light, r is the distance 
between two fireflies, and I is the received light 
intensity. 

  
  
  

 (1) 

 Attractiveness: The amount of a firefly’s attractiveness 
corresponds to the light intensity that neighboring 
firefly witnesses and is defined by Eq. 2 and Eq. 3. The 
parameter β is used for measuring the attractiveness 
(attraction) between two fireflies. 
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          (2) 

  
  

     
 (3) 

 The distance between fireflies: Euclidean distance 
determines the distance between two fireflies, 
calculated as follows. 

    ‖     ‖  √       
         

  (4) 

 Luciferin release: Like other algorithms, the firefly 
algorithm starts with a randomly selected population. 
Therefore, the optimization begins randomly with a 
population of n fireflies in the search space. According 
to Eq. 5, the algorithm first updates the luciferin share 
of every firefly and then updates their position in every 
repetition. 

                            (5) 

In each repetition, the luciferin amount for every firefly is 
determined according to the fitness of its position. It means, 
based on the amount of fitness, some luciferin is added to the 
previously available amount for every repetition. In the above 
equation,         represents the fitness function (the fitness 

of the position) of the i-th firefly in t repetition of the 
algorithm,   is the luciferin rise constant, and            is 

the amount of luciferin decrease. 

 The probability of firefly selection: for every firefly i, 
the probability of turning toward the brighter neighbor j 
is expressed as follows. In Eq. 6, t denotes the time 
measure,         is the distance between two fireflies, 

  
     is the decision-making (intuitive) radius of a 

firefly, and N(t) is the ensemble of neighboring fireflies 
of the firefly i at time t. 

       
           

∑                  

              

              
            

        

(6) 

 Updating the firefly position (a novel solution): The 
time-district moving of a firefly could be presented as 
follows: 

                
           

‖           ‖
  (7) 

In the above equation,       refers to the m-dimension 
vector of the firefly i at time t, and s stands for the number of 
moving steps. 

B. Task Scheduling Algorithm based on Discrete FOA 

The original purpose of the firefly algorithm was to solve 
continuous optimization problems, so it may not be effectively 
employed for discrete optimization problems. Therefore, in this 
paper, the Smallest Position Value (SPV) rule proposed by 
Bean [31] is implemented for the discrete firefly algorithm. 
The implementation is as follows: 

1) Solution representation:  The search space has n 

dimensions corresponding to the tasks’ number; thus, every 

dimension represents one task.  The vector 

  
      

     
      

   denotes the fireflies’ positions in the 

search space. The SPV rule assigns tasks based on their 

positions. Fig. 1 illustrates an acyclic graph structure relevant 

to this research, consisting of six tasks. Table I presents the 

scheduling solutions. As dimension 4 in Table I has the 

smallest position value, it is the first task to be assigned, and 

dimension three is the second task, and so on. Initial 

population: Discrete firefly algorithms generate the initial 

population using a uniform distribution, similar to most meta-

heuristic algorithms that generate the initial population 

randomly. The position values are also generated randomly by 

applying uniform random numbers to intervals of [0, 1]. 

2) Solutions update: Every firefly is evaluated using this 

permutation to determine its fitness function value. Every 

firefly's fitness function value is influenced by light intensity. 

Dim fireflies are attracted to bright ones. The firefly's 

attractiveness is determined by Eq. 2 and Eq. 3. The distance 

between two fireflies is measured by Eq. 4, and tasks are 

assigned using the SPV rule. Every firefly's attractiveness is 

calculated and then based on this value, its movement is 

determined by Eq. 7. The mentioned steps are repeated until 

the completion term is met when all the fireflies are attracted. 

To calculate the number of missed tasks, the beginning time 

and deadline of tasks are taken into account. In task scheduling, 

the main goal is to minimize the total execution time and the 

number of missed tasks. Eq. 8 calculates the fitness value of 

the proposed method for reducing total task execution time and 

the number of missed tasks. The input parameters are also 

normalized using Eq. 9. 

Fitness=w_1×Makespan+w_2×Missed Task  

w_1+w_2=1   (8) 

Normalized(m)=(m-M_min)/(M_max-M_min ) (9) 

Eq. 9 normalizes the parameter m between the largest and 
smallest values. Both cases were used in simulations to obtain 
the total execution time and the number of missed tasks. As 
shown in Eq.  10, the proposed method uses the tasks' 
completion times to determine the tasks' total execution times. 

Makespan=min(C_(max)).whereC_max>C_t .t=1.2.3.. n 

(10) 

T1 T4 T6

T3

T5

T2

 
Fig. 1. DAG graph for six tasks. 
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TABLE I.  THE SOLUTION EXAMPLE FOR SIX TASKS 

 1 2 3 4 5 6 

   
  0.3 0.4 0.092 0.035 0.59 0.61 

Tasks T3 T4 T2 T1 T5 T6 

In the equation, t denotes a task, cmax is the maximum time 
required to complete it, and ct is the completion time of the 
task t. 

C. Solving an Example 

In this subsection, the proposed method procedure is 
illustrated using an example of 6 VMs and 30 tasks whose 
durations are 100 and 200, and their deadlines are determined 
according to Table II. The completion time is 1.53 seconds, 
and the number of missed tasks’ is 1. It should be noted that 
the initial attraction intensity for every firefly is randomly 
determined based on the Gaussian distribution and initial 
position of fireflies. Every firefly is assessed to calculate the 
fitness function value. The fitness function value for every 
firefly is associated with light intensity. Dim fireflies are 

attracted to bright ones. The firefly’s attractiveness is 
determined by Eq. 3, and the distance between two fireflies is 
measured by Eq. 4. Tasks are assigned using the SPV law. 
Every firefly’s attractiveness is calculated, and then based on 
this value, its movement is determined by Eq. 7. The 
mentioned steps are repeated until the completion term is met 
when all the fireflies are attracted. The proposed method’s way 
of assigning and scheduling tasks is presented in Fig. 2. 

T3 T10 T3 T10 T4 T7 T17

T9 T15 T28 T2 T13 T21

T0 T16 T29

T8 T20 T26

T1 T14 T15 T6 T19 T7 T17

T1 T12 T22 T23 T24 T25 T27 T5

VM5

VM4

VM3

VM2

VM1

VM0

 
Fig. 2. Gantt chart for 30 tasks and six VMs. 

TABLE II.  DETAILS OF 30 TASKS 
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1 14 4 8 - 11 15 9 18 5,3 21 17 9 18 8 

2 15 2 4 - 12 9 9 18 10 22 11 6 12 21 

3 19 5 10 1 13 3 7 14 - 23 20 6 12 19,29 

4 14 8 16 1 14 4 3 6 11 24 6 6 12 16,19,27 

5 9 9 18 - 15 5 5 10 16 25 11 4 8 16 

6 9 2 4 2 16 7 4 8 15,2 26 10 7 14 23 

7 6 1 2 5 17 8 3 6 15,11 27 9 9 18 17 

8 18 8 16 - 18 2 1 2 - 28 18 4 8 16 

9 20 3 6 1,7 19 13 7 14 8,9,13 29 4 1 2 - 

10 2 5 10 2,5,7 20 5 8 16 5 30 13 4 8 31 

IV. EXPERIMENTAL RESULTS 

Cloudsim is used to implement the proposed algorithm for 
task scheduling. The proposed method was simulated and 
compared to the available algorithms using the data in Table II 
[32]. In the proposed method, the entrance times of all tasks are 
equal, but the serving times, deadlines, and the tasks’ 
interdependencies are considered according to Table II. For 
example, task 9 requires three units of time to get served, and 
its deadline to complete execution is 6. Also, tasks 1 and 7 
should be completed prior to task 9. Table III presents the 
tasks’ characteristics, Table IV contains the features of VMs, 
Table V outlines the features of data centers, and Table VI 
shows the parameters of the firefly algorithm. 

A. First Experiment: Evaluation of the Proposed Method 

Compared to [32] 

The experiment simulates eight cloud resources and creates 
and executes thirty tasks, as shown in Table II. The tasks are 

designed to emulate real-world workloads and evaluate the 
performance of cloud resources. The experiment results are 
then used to analyze the performance of various cloud resource 
configurations. In order to examine the efficiency of the 
proposed algorithm, we compared it with HRRN, SPN, FCFS, 
and PSO algorithms. Fig. 3 to 6 illustrate that our method 
outperforms others in terms of overall execution time, average 
service time + waiting time, percentage of missed tasks, and 
resource utilization. The results show that our proposed 
algorithm can effectively optimize resource utilization and 
reduce the overall execution time of the cloud system. This is 
beneficial for cloud computing users, as it can reduce their 
costs and improve their performance. Furthermore, our 
proposed algorithm also provides more efficient scheduling 
and task assignment, resulting in better task scheduling, faster 
task completion, and higher resource utilization. This improved 
performance leads to better user experience and satisfaction. 
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TABLE III.  TASKS’ CHARACTERISTICS 

Values Parameters 

1 – 100 Task length 

300 Input size 

300 Output size 

1 Number of processors 

TABLE IV.  FEATURES OF VMS 

Values Parameters 

80-500-750-100 MIPS 

1 Number of processors 

128 RAM 

2500 Bandwidth 

TABLE V.  DATA CENTERS’ FEATURE 

Values Parameters 

500000 Speed 

10000 Physical machine capacity 

1000000 Storage capacity 

100000 MIPS Bandwidth 

TABLE VI.  FIREFLY ALGORITHM PARAMETERS 

Values Parameters 

Min: 0, Max: 1, Mean: 0.5 β 

Min: 0.5, Max: 1, Mean: 0.75 γ 

Min: 0, Max: 1, Mean: 0.5 Α 

 
Fig. 3. Execution time comparison. 
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Fig. 4. Service and waiting time comparison. 

 
Fig. 5. Number of missed tasks comparison. 

 
Fig. 6. Makespan comparison based on HP2CN workload. 
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B. First Experiment: Evaluation of the Proposed Method 

Compared to [33] 

This experiment compares the proposed method with the 
method presented in [33] regarding makespan and power 
consumption. HPC2N and NASA workloads were evaluated 
using 500 physical machines, 200 virtual machines, and 100 to 
1000 tasks. As shown in Fig. 6 to 9, our method provides better 
performance. The proposed scheduler outperforms the existing 
CSO algorithm by approximately 10% in terms of makespan 
under HPC2N workloads. When compared to the CSO 
algorithm, our algorithm improved the makespan by 8% under 
NASA workloads. Energy consumption is an important 

parameter that impacts both the cloud provider and the cloud 
user. In the cloud computing paradigm, the goal is to minimize 
energy consumption by which cloud providers can effectively 
run tasks on virtual resources in the cloud by consuming a 
minimal amount of energy. The cloud user is also benefited 
from the availability of resources at a lower cost since 
resources are readily available. HPC2N and NASA workload 
archives were used to evaluate energy consumption. We 
compared our algorithm with the CSO algorithm under HPC2N 
workloads, and the results indicated a significant reduction in 
energy consumption, up to 10%. Compared to the CSO 
algorithm, our algorithm consumes up to 12% less energy 
under NASA workload archives. 

 
Fig. 7. Makespan comparison based on NASA workload. 

 
Fig. 8. Power consumption comparison based on HP2CN workload. 
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Fig. 9. Power consumption comparison based on NASA workload. 

V. CONCLUSION 

Cloud computing allows users to access shared computing 
resources. Requests and demands are the basis of cloud 
computing, where users request resources from service 
providers and access them. Due to the dynamic nature of cloud 
environments and user requests changing over time, we need a 
scheduling method that can handle more tasks in less time. 
This paper proposed a new deadline-aware task-scheduling 
technique based on the firefly optimization algorithm. The 
experiments were conducted on different workloads. The 
experimental results proved that the proposed algorithm 
performed better than previous works concerning waiting time, 
execution time, missed tasks percentage, and resource 
utilization. Future work may examine the use of different 
heuristics to determine optimal initial conditions for FOA or 
other meta-heuristic algorithms. Our future plans include 
further exploring the time and space complexity of the 
proposed algorithm, examining the effective combination of 
artificial intelligence technology and task scheduling 
algorithm, and analyzing the energy consumption optimization 
of green cloud computing data centers. 
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