
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

498 | P a g e

www.ijacsa.thesai.org

Deadline-aware Task Scheduling for Cloud

Computing using Firefly Optimization Algorithm

BAI Ya-meng*, WANG Yang, WU Shen-shen

School of Information Engineering, Jiaozuo University, Jiaozuo 412000, China

Abstract—Task scheduling poses a major challenge for cloud

computing environments. Task scheduling ensures cost-effective

task execution and improved resource utilization. It is classified

as a NP-hard problem due to its nondeterministic polynomial

time nature. This characteristic motivates researchers to employ

meta-heuristic algorithms. The number of cloud users and

computing capabilities is leading to increased concerns about

energy consumption in cloud data centers. In order to leverage

cloud resources in the most energy-efficient manner while

delivering real-time services to users, a viable cloud task

scheduling solution is necessary. This study proposes a new

deadline-aware task scheduling algorithm for cloud

environments based on the Firefly Optimization Algorithm

(FOA). The suggested scheduling algorithm achieves a higher

level of efficiency in multiple parameters, including execution

time, waiting time, resource utilization, the percentage of missed

tasks, power consumption, and makespan. According to

simulation results, the proposed algorithm is more effective and

superior to the CSO algorithm under HP2CN and NASA

workload archives.

Keywords—Cloud computing; energy efficiency; task

scheduling; firefly algorithm

I. INTRODUCTION

In recent years, wireless and emerging technologies have
undergone significant progress, particularly the Internet of
Things (IoT) [1, 2], artificial intelligence [3], machine learning
[4-6], smart grids [7], Blockchain [8], 5G connectivity [9], and
cloud computing [10], resulting in a number of positive effects
on society. Cloud computing offers convenient, flexible, and
ubiquitous access to a set of configurable computing resources,
such as servers, storage, applications, and services, which are
delivered via the web and released instantly [11, 12]. It allows
users to access computer resources without having to manage
them actively [13]. In this regard, three types of services can be
provided by a cloud: infrastructure, software, and platform
[14]. The first service is infrastructure as a service (IaaS),
which offers storage and computational resources [15]. In the
second service, users can access the software remotely without
installing it locally, which is called software as a service (SaaS)
[16, 17]. The third service is the platform as a service (PaaS),
which provides a platform on which clients can build
applications [18]. Virtual Machines (VMs) are provided by
cloud providers as computing resources. To improve the
efficiency of cloud computing, optimal task scheduling is
critical when numerous users demand services from the cloud
[19].

To achieve the desired quality of service (QoS), efficient
task scheduling allocates resources optimally across the desired
tasks in a timely manner. Optimizing a given objective
involves building a schedule of tasks to be allocated to VMs
with consideration of some constraints [20]. Each cloud
infrastructure relies on a task scheduling algorithm as a key
component. The performance metrics used in scheduling
procedures involve computation-based indicators, including
response time, energy consumption, and makespan, and
network-based indicators, including round trips,
communication cost, and traffic volume [21]. There are three
types of optimal task scheduling approaches in cloud
computing: heuristic, meta-heuristic, and hybrid. Heuristic task
scheduling algorithms offer ease of scheduling and deliver the
best possible solution, but they do not guarantee optimal
outcomes. A meta-heuristic approach can find optimal
solutions to task scheduling problems in a polynomial amount
of time. The hybrid task scheduling algorithm combines both
the heuristic and meta-heuristic approaches [22, 23].

Although there are promising approaches to efficient task
scheduling in the cloud, the problem of task scheduling
remains NP-complete [24, 25]. This paper proposes and uses
the Firefly Optimization Algorithm (FOA) in order to schedule
a bag of tasks in a cloud environment, avoiding network
communication and data transfer costs. In the experimental
setup, the proposed algorithm is compared to the Highest
Response Ratio Next (HRRN), Shortest Process Next (SPN),
First Come First Served (FCFS), and PSO algorithms. The
proposed method was tested using various distributions to gain
insight into its performance trend. By optimizing both the time
overhead and the energy consumption of the mobile device, the
QoS for mobile users is enhanced by maximizing the overall
system benefits. The main contributions of this paper are as
follows:

 Defining the task scheduling problem and formulating
mathematical models and the objective functions used
to optimize the allocation of tasks to virtual machines.

 Analyzing the performance of the proposed algorithm
in terms of execution time, makespan, and energy
consumption.

 Verifying the experimental results by comparing them
to CSO, FCFS, and PSO findings.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

499 | P a g e

www.ijacsa.thesai.org

The remainder of the paper follows in the following order.
A discussion of recent cloud task scheduling methods is
presented in Section II. Section III describes and models the
problem of task scheduling in a cloud computing environment,
followed by an explanation of the proposed algorithm. Section
IV discusses the simulation results. The paper concludes with
Section V.

II. RELATED WORK

Yu and Su [26] proposed a system called Three Queues
(TQ) that uses dynamic priorities and three queues in order to
cope with the increasing heterogeneity of cloud computing
clusters. Based on the priority of tasks, the algorithm places
tasks in a waiting queue and then categorizes them based on
the input amount, output amount, number of current tasks
running on a node, completion time, and disk I/O rate of the
Map phase. Hardware utilization is improved by placing jobs
in corresponding queues. It has been demonstrated that this
algorithm improves task scheduling performance in the
presence of both CPU-intensive and I/O-intensive tasks and
shortens task execution times. The genetic algorithm proposed
by Sun, et al. [27] uses phagocytosis as a crossover operation,
generates a sub-chromosomal individual by phagocytosing two
mother chromosomes, produces a random third individual, and
determines a new individual resulting from phagocytosis based
on the load-balancing standard deviation and fitness factor,
which results in a high percentage of high-quality individuals.
An evolutionary genetic algorithm for multiple populations is
then used that creates initial subpopulations using the Min-Min
algorithm, and these subpopulations are evolved using an
improved genetic algorithm. According to simulations, the
proposed algorithm schedules cloud tasks efficiently.

Al-Maytami, et al. [28] developed a new scheduling
algorithm using Directed Acyclic Graphs (DAG) and
Prediction of Tasks Computation Time (PTCT). Furthermore,
by reducing the Expected Time to Compute (ETC) matrix
using Principle Components Analysis (PCA), the proposed
algorithm significantly improves makespan and minimizes
complexity and computation. According to simulation results,
the algorithm outperforms other algorithms for heterogeneous
systems regarding schedule length rate, response time, and
efficiency. Prasanna Kumar and Kousalya [29] used the Crow
Search Algorithm (CSA) to schedule cloud tasks. The CSA
draws inspiration from the food-collecting behavior of crows.
The crow keeps on searching for a better food source than its
current food source as it keeps watching its mates. This paper
uses the CSA to find suitable VMs and minimize the
makespan. CloudSim is used to measure CSA’s performance
over ACO algorithms. Simulation results indicate that the CSA
algorithm is superior to the ACO algorithms.

Panda and Jana [16] developed an energy-efficient task
scheduling algorithm (ETSA) to resolve task scheduling
problems. The algorithm considers and normalizes both the
completion time and the total resource utilization of a task.
ETSA was evaluated for its ability to measure energy
efficiency and makespan in heterogeneous environments.
ETSA was tested in a wide variety of heterogeneous
environments, and the test results showed that it was able to
achieve better energy efficiency and makespan than existing

algorithms. The algorithm also accounts for both completion
time and resource utilization, which gives it an advantage over
other scheduling algorithms. Na, et al. [30] propose a Squid
operator and Nonlinear Inertia Weight PSO (SNW-PSO)
algorithm to better meet the users’ QoS requirements in cloud
computing. Execution cost and execution time are optimized
by the algorithm. As part of its optimization process, nonlinear
inertia weights are introduced to prevent the algorithm from
jumping from its local optimum. Furthermore, the squid
operator allows for greater particle diversity and faster
convergence to optimal positions within particle swarms. This
algorithm compensates for the weaknesses of the traditional
PSO algorithm, namely its ease of over-convergence and
tendency towards the local optimum. The SNW-PSO algorithm
converges more quickly than an LDIC-PSO algorithm and
reduces both task completion time and cost when compared to
a PSO algorithm with linearly decreasing inertia weight.

III. PROPOSED METHOD

In cloud computing, different quality of service parameters
is optimized by scheduling tasks. The task scheduling problem
entails allocating several tasks appropriate to a certain number
of VMs. This section proposes an evolutionary task scheduling
approach using FOA. Environmental dynamics, deadlines, and
declining the entire task are the basis of the proposed method.
The task scheduling problem is modeled based on the
following assumptions:

 The VMs are heterogeneous in terms of processing
power and power consumption;

 There is no migration of tasks between VMs;

 All submitted tasks are independent.

A. FOA Formulation for Task Scheduling Issue

The firefly algorithm is a novel technique based on
fireflies’ social behaviors in nature. They flash short lights
rhythmically. Each one’s flashing pattern is unique and
different from the rest. They utilize the lights for the mate-
attracting process and attract prey. Furthermore, these lights
can function as a protective mechanism in favor of fireflies.
The rhythmic light, flashing rate, and time interval between
flashing signals cause the two sexes to get attracted to each
other. Each parcel is a firefly which is updated according to a
firefly’s awareness of its neighbors in the multidimensional
search space through attracting dynamically. The parameters of
FOA are described in the following.

 Light intensity factor (I): In the firefly algorithm, the
light intensity factor is defined by Eq. 1. In this
equation, I0 denotes the initial light, r is the distance
between two fireflies, and I is the received light
intensity.

 (1)

 Attractiveness: The amount of a firefly’s attractiveness
corresponds to the light intensity that neighboring
firefly witnesses and is defined by Eq. 2 and Eq. 3. The
parameter β is used for measuring the attractiveness
(attraction) between two fireflies.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

500 | P a g e

www.ijacsa.thesai.org

 (2)

 (3)

 The distance between fireflies: Euclidean distance
determines the distance between two fireflies,
calculated as follows.

 ‖ ‖ √

 (4)

 Luciferin release: Like other algorithms, the firefly
algorithm starts with a randomly selected population.
Therefore, the optimization begins randomly with a
population of n fireflies in the search space. According
to Eq. 5, the algorithm first updates the luciferin share
of every firefly and then updates their position in every
repetition.

 (5)

In each repetition, the luciferin amount for every firefly is
determined according to the fitness of its position. It means,
based on the amount of fitness, some luciferin is added to the
previously available amount for every repetition. In the above
equation, represents the fitness function (the fitness

of the position) of the i-th firefly in t repetition of the
algorithm, is the luciferin rise constant, and is

the amount of luciferin decrease.

 The probability of firefly selection: for every firefly i,
the probability of turning toward the brighter neighbor j
is expressed as follows. In Eq. 6, t denotes the time
measure, is the distance between two fireflies,

 is the decision-making (intuitive) radius of a

firefly, and N(t) is the ensemble of neighboring fireflies
of the firefly i at time t.

∑

(6)

 Updating the firefly position (a novel solution): The
time-district moving of a firefly could be presented as
follows:

‖ ‖
 (7)

In the above equation, refers to the m-dimension
vector of the firefly i at time t, and s stands for the number of
moving steps.

B. Task Scheduling Algorithm based on Discrete FOA

The original purpose of the firefly algorithm was to solve
continuous optimization problems, so it may not be effectively
employed for discrete optimization problems. Therefore, in this
paper, the Smallest Position Value (SPV) rule proposed by
Bean [31] is implemented for the discrete firefly algorithm.
The implementation is as follows:

1) Solution representation: The search space has n

dimensions corresponding to the tasks’ number; thus, every

dimension represents one task. The vector

 denotes the fireflies’ positions in the

search space. The SPV rule assigns tasks based on their

positions. Fig. 1 illustrates an acyclic graph structure relevant

to this research, consisting of six tasks. Table I presents the

scheduling solutions. As dimension 4 in Table I has the

smallest position value, it is the first task to be assigned, and

dimension three is the second task, and so on. Initial

population: Discrete firefly algorithms generate the initial

population using a uniform distribution, similar to most meta-

heuristic algorithms that generate the initial population

randomly. The position values are also generated randomly by

applying uniform random numbers to intervals of [0, 1].

2) Solutions update: Every firefly is evaluated using this

permutation to determine its fitness function value. Every

firefly's fitness function value is influenced by light intensity.

Dim fireflies are attracted to bright ones. The firefly's

attractiveness is determined by Eq. 2 and Eq. 3. The distance

between two fireflies is measured by Eq. 4, and tasks are

assigned using the SPV rule. Every firefly's attractiveness is

calculated and then based on this value, its movement is

determined by Eq. 7. The mentioned steps are repeated until

the completion term is met when all the fireflies are attracted.

To calculate the number of missed tasks, the beginning time

and deadline of tasks are taken into account. In task scheduling,

the main goal is to minimize the total execution time and the

number of missed tasks. Eq. 8 calculates the fitness value of

the proposed method for reducing total task execution time and

the number of missed tasks. The input parameters are also

normalized using Eq. 9.

Fitness=w_1×Makespan+w_2×Missed Task

w_1+w_2=1 (8)

Normalized(m)=(m-M_min)/(M_max-M_min) (9)

Eq. 9 normalizes the parameter m between the largest and
smallest values. Both cases were used in simulations to obtain
the total execution time and the number of missed tasks. As
shown in Eq. 10, the proposed method uses the tasks'
completion times to determine the tasks' total execution times.

Makespan=min(C_(max)).whereC_max>C_t .t=1.2.3.. n

(10)

T1 T4 T6

T3

T5

T2

Fig. 1. DAG graph for six tasks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

501 | P a g e

www.ijacsa.thesai.org

TABLE I. THE SOLUTION EXAMPLE FOR SIX TASKS

 1 2 3 4 5 6

 0.3 0.4 0.092 0.035 0.59 0.61

Tasks T3 T4 T2 T1 T5 T6

In the equation, t denotes a task, cmax is the maximum time
required to complete it, and ct is the completion time of the
task t.

C. Solving an Example

In this subsection, the proposed method procedure is
illustrated using an example of 6 VMs and 30 tasks whose
durations are 100 and 200, and their deadlines are determined
according to Table II. The completion time is 1.53 seconds,
and the number of missed tasks’ is 1. It should be noted that
the initial attraction intensity for every firefly is randomly
determined based on the Gaussian distribution and initial
position of fireflies. Every firefly is assessed to calculate the
fitness function value. The fitness function value for every
firefly is associated with light intensity. Dim fireflies are

attracted to bright ones. The firefly’s attractiveness is
determined by Eq. 3, and the distance between two fireflies is
measured by Eq. 4. Tasks are assigned using the SPV law.
Every firefly’s attractiveness is calculated, and then based on
this value, its movement is determined by Eq. 7. The
mentioned steps are repeated until the completion term is met
when all the fireflies are attracted. The proposed method’s way
of assigning and scheduling tasks is presented in Fig. 2.

T3 T10 T3 T10 T4 T7 T17

T9 T15 T28 T2 T13 T21

T0 T16 T29

T8 T20 T26

T1 T14 T15 T6 T19 T7 T17

T1 T12 T22 T23 T24 T25 T27 T5

VM5

VM4

VM3

VM2

VM1

VM0

Fig. 2. Gantt chart for 30 tasks and six VMs.

TABLE II. DETAILS OF 30 TASKS

#
T

a
sk

A
r
r
iv

a
l

T
im

e

se
rv

ic
e
 t

im
e

D
e
a

d
li

n
e

D
e
p

e
n

d
e
n

cy

#
T

a
sk

A
r
r
iv

a
l

T
im

e

se
rv

ic
e
 t

im
e

D
e
a

d
li

n
e

D
e
p

e
n

d
e
n

cy

#
T

a
sk

A
r
r
iv

a
l

T
im

e

se
rv

ic
e
 t

im
e

D
e
a

d
li

n
e

D
e
p

e
n

d
e
n

cy

1 14 4 8 - 11 15 9 18 5,3 21 17 9 18 8

2 15 2 4 - 12 9 9 18 10 22 11 6 12 21

3 19 5 10 1 13 3 7 14 - 23 20 6 12 19,29

4 14 8 16 1 14 4 3 6 11 24 6 6 12 16,19,27

5 9 9 18 - 15 5 5 10 16 25 11 4 8 16

6 9 2 4 2 16 7 4 8 15,2 26 10 7 14 23

7 6 1 2 5 17 8 3 6 15,11 27 9 9 18 17

8 18 8 16 - 18 2 1 2 - 28 18 4 8 16

9 20 3 6 1,7 19 13 7 14 8,9,13 29 4 1 2 -

10 2 5 10 2,5,7 20 5 8 16 5 30 13 4 8 31

IV. EXPERIMENTAL RESULTS

Cloudsim is used to implement the proposed algorithm for
task scheduling. The proposed method was simulated and
compared to the available algorithms using the data in Table II
[32]. In the proposed method, the entrance times of all tasks are
equal, but the serving times, deadlines, and the tasks’
interdependencies are considered according to Table II. For
example, task 9 requires three units of time to get served, and
its deadline to complete execution is 6. Also, tasks 1 and 7
should be completed prior to task 9. Table III presents the
tasks’ characteristics, Table IV contains the features of VMs,
Table V outlines the features of data centers, and Table VI
shows the parameters of the firefly algorithm.

A. First Experiment: Evaluation of the Proposed Method

Compared to [32]

The experiment simulates eight cloud resources and creates
and executes thirty tasks, as shown in Table II. The tasks are

designed to emulate real-world workloads and evaluate the
performance of cloud resources. The experiment results are
then used to analyze the performance of various cloud resource
configurations. In order to examine the efficiency of the
proposed algorithm, we compared it with HRRN, SPN, FCFS,
and PSO algorithms. Fig. 3 to 6 illustrate that our method
outperforms others in terms of overall execution time, average
service time + waiting time, percentage of missed tasks, and
resource utilization. The results show that our proposed
algorithm can effectively optimize resource utilization and
reduce the overall execution time of the cloud system. This is
beneficial for cloud computing users, as it can reduce their
costs and improve their performance. Furthermore, our
proposed algorithm also provides more efficient scheduling
and task assignment, resulting in better task scheduling, faster
task completion, and higher resource utilization. This improved
performance leads to better user experience and satisfaction.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

502 | P a g e

www.ijacsa.thesai.org

TABLE III. TASKS’ CHARACTERISTICS

Values Parameters

1 – 100 Task length

300 Input size

300 Output size

1 Number of processors

TABLE IV. FEATURES OF VMS

Values Parameters

80-500-750-100 MIPS

1 Number of processors

128 RAM

2500 Bandwidth

TABLE V. DATA CENTERS’ FEATURE

Values Parameters

500000 Speed

10000 Physical machine capacity

1000000 Storage capacity

100000 MIPS Bandwidth

TABLE VI. FIREFLY ALGORITHM PARAMETERS

Values Parameters

Min: 0, Max: 1, Mean: 0.5 β

Min: 0.5, Max: 1, Mean: 0.75 γ

Min: 0, Max: 1, Mean: 0.5 Α

Fig. 3. Execution time comparison.

48.61
52.374 50.937

43.129

36.1937

0

10

20

30

40

50

60

FCFS SPN HRRN PSO Proposed

Method

E
x
ec

u
ti

o
n
 t

im
e

Methods

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

503 | P a g e

www.ijacsa.thesai.org

Fig. 4. Service and waiting time comparison.

Fig. 5. Number of missed tasks comparison.

Fig. 6. Makespan comparison based on HP2CN workload.

11.264

9.871

11.901

9.364

7.297

0

2

4

6

8

10

12

14

FCFS SPN HRRN PSO Proposed Method

S
e
r
v
ic

e
 &

 w
a

it
in

g

ti

m
e

Method

26%

17%

23%

16%

11%

0%

5%

10%

15%

20%

25%

30%

FCFS SPN HRRN PSO Proposed Method

P
e
r
c
e
n

ta
g

e
 o

f
m

is
se

d
 t

a
sk

s

Method

1
2

1
1

.1
2

1
3

5
2

.1
2

9

1
5

4
0

.1
2

9

1
7

5
6

.8
3

1

1
9

7
5

.1
2

8

1
2

0
4

.1
2

9

1
3

4
5

.1
2

8

1
5

3
2

.5
2

9

1
7

4
1

.2
3

7

1
9

0
1

.2
9

7

0

200

400

600

800

1000

1200

1400

1600

1800

2000

200 400 600 800 1000

M
a

k
e
sp

a
n

Cloudlets

CSO Method Proposed Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

504 | P a g e

www.ijacsa.thesai.org

B. First Experiment: Evaluation of the Proposed Method

Compared to [33]

This experiment compares the proposed method with the
method presented in [33] regarding makespan and power
consumption. HPC2N and NASA workloads were evaluated
using 500 physical machines, 200 virtual machines, and 100 to
1000 tasks. As shown in Fig. 6 to 9, our method provides better
performance. The proposed scheduler outperforms the existing
CSO algorithm by approximately 10% in terms of makespan
under HPC2N workloads. When compared to the CSO
algorithm, our algorithm improved the makespan by 8% under
NASA workloads. Energy consumption is an important

parameter that impacts both the cloud provider and the cloud
user. In the cloud computing paradigm, the goal is to minimize
energy consumption by which cloud providers can effectively
run tasks on virtual resources in the cloud by consuming a
minimal amount of energy. The cloud user is also benefited
from the availability of resources at a lower cost since
resources are readily available. HPC2N and NASA workload
archives were used to evaluate energy consumption. We
compared our algorithm with the CSO algorithm under HPC2N
workloads, and the results indicated a significant reduction in
energy consumption, up to 10%. Compared to the CSO
algorithm, our algorithm consumes up to 12% less energy
under NASA workload archives.

Fig. 7. Makespan comparison based on NASA workload.

Fig. 8. Power consumption comparison based on HP2CN workload.

4
4

.5
2

5
3

.2
1

6
4

.5
2

8
8

.1
2

1
1

4
.2

9

4
0

.2
1

4
8

.5
2

5
7

.9
2

8
1

.2
9

1
0

5
.2

7

0

100

200

300

400

500

600

700

800

900

1000

200 400 600 800 1000

M
ak

es
p

an

Cloudlets

CSO Method Proposed Method

4
4

.5
2

5
3

.2
1

6
4

.5
2

8
8

.1
2

1
1

4
.2

9

4
0

.2
1

4
8

.5
2

5
7

.9
2

8
1

.2
9

1
0

5
.2

7

0

20

40

60

80

100

120

200 400 600 800 1000

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

w
)

Cloudlets

CSO Method Proposed Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

505 | P a g e

www.ijacsa.thesai.org

Fig. 9. Power consumption comparison based on NASA workload.

V. CONCLUSION

Cloud computing allows users to access shared computing
resources. Requests and demands are the basis of cloud
computing, where users request resources from service
providers and access them. Due to the dynamic nature of cloud
environments and user requests changing over time, we need a
scheduling method that can handle more tasks in less time.
This paper proposed a new deadline-aware task-scheduling
technique based on the firefly optimization algorithm. The
experiments were conducted on different workloads. The
experimental results proved that the proposed algorithm
performed better than previous works concerning waiting time,
execution time, missed tasks percentage, and resource
utilization. Future work may examine the use of different
heuristics to determine optimal initial conditions for FOA or
other meta-heuristic algorithms. Our future plans include
further exploring the time and space complexity of the
proposed algorithm, examining the effective combination of
artificial intelligence technology and task scheduling
algorithm, and analyzing the energy consumption optimization
of green cloud computing data centers.

REFERENCES

[1] A. Mehbodniya, J. L. Webber, R. Neware, F. Arslan, R. V. Pamba, and
M. Shabaz, "Modified Lamport Merkle Digital Signature blockchain
framework for authentication of internet of things healthcare data,"
Expert Systems, vol. 39, no. 10, p. e12978, 2022.

[2] F. Kamalov, B. Pourghebleh, M. Gheisari, Y. Liu, and S. Moussa,
"Internet of Medical Things Privacy and Security: Challenges, Solutions,
and Future Trends from a New Perspective," Sustainability, vol. 15, no.
4, p. 3317, 2023.

[3] S. P. Rajput et al., "Using machine learning architecture to optimize and
model the treatment process for saline water level analysis," Journal of
Water Reuse and Desalination, 2022.

[4] J. Akhavan, J. Lyu, and S. Manoochehri, "A deep learning solution for
real-time quality assessment and control in additive manufacturing using
point cloud data," Journal of Intelligent Manufacturing, pp. 1-18, 2023.

[5] R. N. Jacob, "Non-performing Asset Analysis Using Machine Learning,"
in ICT Systems and Sustainability: Proceedings of ICT4SD 2020,
Volume 1, 2021: Springer, pp. 11-18.

[6] C. Han and X. Fu, "Challenge and Opportunity: Deep Learning-Based
Stock Price Prediction by Using Bi-Directional LSTM Model," Frontiers
in Business, Economics and Management, vol. 8, no. 2, pp. 51-54, 2023.

[7] S. H. Haghshenas, M. A. Hasnat, and M. Naeini, "A Temporal Graph
Neural Network for Cyber Attack Detection and Localization in Smart
Grids," arXiv preprint arXiv:2212.03390, 2022.

[8] S. Meisami, M. Beheshti-Atashgah, and M. R. Aref, "Using Blockchain
to Achieve Decentralized Privacy In IoT Healthcare," arXiv preprint
arXiv:2109.14812, 2021.

[9] S. Vairachilai, A. Bostani, A. Mehbodniya, J. L. Webber, O.
Hemakesavulu, and P. Vijayakumar, "Body Sensor 5 G Networks
Utilising Deep Learning Architectures for Emotion Detection Based On
EEG Signal Processing," Optik, p. 170469, 2022.

[10] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, "The
importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, pp. 1-24, 2021.

[11] M. Mohseni, F. Amirghafouri, and B. Pourghebleh, "CEDAR: A cluster-
based energy-aware data aggregation routing protocol in the internet of
things using capuchin search algorithm and fuzzy logic," Peer-to-Peer
Networking and Applications, pp. 1-21, 2022.

[12] F. Nzanywayingoma and Y. Yang, "Efficient resource management
techniques in cloud computing environment: a review and discussion,"
International Journal of Computers and Applications, vol. 41, no. 3, pp.
165-182, 2019.

[13] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol.
34, no. 5, p. e6698, 2022.

[14] P. Loubière and L. Tomassetti, "Towards cloud computing," TORUS 1–
Toward an Open Resource Using Services: Cloud Computing for
Environmental Data, pp. 179-189, 2020.

[15] D. Gabi, A. S. Ismail, A. Zainal, Z. Zakaria, A. Abraham, and N. M.
Dankolo, "Cloud customers service selection scheme based on improved
conventional cat swarm optimization," Neural Computing and
Applications, pp. 1-22, 2020.

[16] S. K. Panda and P. K. Jana, "An energy-efficient task scheduling
algorithm for heterogeneous cloud computing systems," Cluster
Computing, vol. 22, no. 2, pp. 509-527, 2019.

[17] V. Kunwar, N. Agarwal, A. Rana, and J. Pandey, "Load balancing in
cloud—A systematic review," Big Data Analytics, pp. 583-593, 2018.

[18] Y. Wang, J. Wen, Q. Wu, L. Guo, and B. Tao, "A dynamic cloud service
selection model based on trust and SLA in cloud computing,"

2
8

.9
8

3
9

.5
9

4
6

.5
1

7
4

.6
2

1
0

3
.4

2

2
5

.1
4

3
5

.6
2

3
8

.6
2

6
5

.2
6

9
6

.2
4

0

20

40

60

80

100

120

200 400 600 800 1000

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

w
)

Cloudlets

CSO Method Proposed Method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

506 | P a g e

www.ijacsa.thesai.org

International Journal of Grid and Utility Computing, vol. 10, no. 4, pp.
334-343, 2019.

[19] P. Kumar and A. Verma, "Scheduling using improved genetic algorithm
in cloud computing for independent tasks," in Proceedings of the
international conference on advances in computing, communications and
informatics, 2012, pp. 137-142.

[20] I. Attiya, M. Abd Elaziz, L. Abualigah, T. N. Nguyen, and A. A. Abd
El-Latif, "An improved hybrid swarm intelligence for scheduling iot
application tasks in the cloud," IEEE Transactions on Industrial
Informatics, 2022.

[21] H. Yan, X. Zhu, H. Chen, H. Guo, W. Zhou, and W. Bao, "DEFT:
Dynamic fault-tolerant elastic scheduling for tasks with uncertain
runtime in cloud," Information Sciences, vol. 477, pp. 30-46, 2019.

[22] A. Amini Motlagh, A. Movaghar, and A. M. Rahmani, "Task scheduling
mechanisms in cloud computing: A systematic review," International
Journal of Communication Systems, vol. 33, no. 6, p. e4302, 2020.

[23] M. Soualhia, F. Khomh, and S. Tahar, "Task scheduling in big data
platforms: a systematic literature review," Journal of Systems and
Software, vol. 134, pp. 170-189, 2017.

[24] M. R. Alizadeh, V. Khajehvand, A. M. Rahmani, and E. Akbari, "Task
scheduling approaches in fog computing: A systematic review,"
International Journal of Communication Systems, vol. 33, no. 16, p.
e4583, 2020.

[25] A. Keivani, F. Ghayoor, and J.-R. Tapamo, "A review of recent methods
of task scheduling in cloud computing," in 2018 19th IEEE
Mediterranean Electrotechnical Conference (MELECON), 2018: IEEE,
pp. 104-109.

[26] Y. Yu and Y. Su, "Cloud task scheduling algorithm based on three
queues and dynamic priority," in 2019 IEEE International Conference on
Power, Intelligent Computing and Systems (ICPICS), 2019: IEEE, pp.
278-282.

[27] Y. Sun, J. Li, X. Fu, H. Wang, and H. Li, "Application research based on
improved genetic algorithm in cloud task scheduling," Journal of
Intelligent & Fuzzy Systems, vol. 38, no. 1, pp. 239-246, 2020.

[28] B. A. Al-Maytami, P. Fan, A. Hussain, T. Baker, and P. Liatsis, "A task
scheduling algorithm with improved makespan based on prediction of
tasks computation time algorithm for cloud computing," IEEE Access,
vol. 7, pp. 160916-160926, 2019.

[29] K. Prasanna Kumar and K. Kousalya, "Amelioration of task scheduling
in cloud computing using crow search algorithm," Neural Computing
and Applications, vol. 32, no. 10, pp. 5901-5907, 2020.

[30] L. Na, L. Fei, and D. W. Chao, "Cloud Task Scheduling Algorithm
Based on Squid Operator and Nonlinear Inertia Weight," in 2019 IEEE
Symposium Series on Computational Intelligence (SSCI), 2019: IEEE,
pp. 3104-3109.

[31] J. C. Bean, "Genetic algorithms and random keys for sequencing and
optimization," ORSA journal on computing, vol. 6, no. 2, pp. 154-160,
1994.

[32] F. S. Milani and A. H. Navin, "Multi-objective task scheduling in the
cloud computing based on the patrice swarm optimization," Int J Inf
Technol Comput Sci, vol. 7, no. 5, pp. 61-66, 2015.

[33] S. Mangalampalli, S. K. Swain, and V. K. Mangalampalli, "Multi
Objective Task Scheduling in Cloud Computing Using Cat Swarm
Optimization Algorithm," Arabian Journal for Science and Engineering,
vol. 47, no. 2, pp. 1821-1830, 2022.

