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Abstract—Bearings play a crucial role in the functioning of 

rotating machinery, making it essential to monitor their 

condition for maintaining system stability and dependability. In 

recent years, intelligent diagnostic techniques for bearing issues 

have made significant progress due to advancements in artificial 

intelligence. These methods rely heavily on data, requiring data 

collection and labeling to develop the learning model, which is 

often highly challenging and nearly infeasible in industrial 

settings. As a result, a domain adaptation-based transfer learning 

approach has been suggested. This approach aims to minimize 

the difference between the distribution of accessible data and the 

unlabeled real-world data, enabling the model trained on public 

data to function effectively with actual data. In this paper, we 

introduce a sophisticated subdomain adaptation technique for 

cross-machine bearing fault diagnosis using vibration, termed 

multi-layer subdomain adaptation. Verification experiments 

were conducted, and the findings indicate that the proposed 

approach offers relatively high accuracy up to 97.47% and 

excellent transferability. Comparative experiments revealed that 

the proposed method is a superior technique for bearing fault 

diagnosis and slightly outperforms other methods (3-5%) in both 

predictive and noise-ignore capabilities. Comprehensive 

validation experiments were conducted using the HUST dataset. 

Keywords—Bearing fault; fault diagnosis; domain adaptation; 

transfer learning 

I. INTRODUCTION 

Bearings are an essential component in rotating machinery. 
Bearing-related failures account for up to 50% of total machine 
failures [1]. Precise detection of rolling element bearing faults 
is crucial for ensuring the reliable operation of rotating 
machinery. This is because any failure in the bearing could 
directly impact the functioning of the entire machine. Luckily, 
modern machine learning techniques have helped make 
significant progress in data-driven approaches to bearing fault 
diagnosis [1]. As a result, traditional methods that rely heavily 
on expert knowledge are no longer required. This has attracted 
considerable attention and is an area of extensive research [2]. 

The traditional data-driven approaches for fault diagnosis 
have been successful in achieving accurate results. However, 
this is only possible when sufficiently labeled samples or data 
are available (vibration, acoustic emission, current, etc.). To 
guarantee high accuracy in fault diagnosis, the testing data 
must match or is similar in probability distribution to the 
dataset used for training [3]. This is important because the fault 
diagnosis models need to be carefully trained and may be 
difficult to apply directly to different machines or operating 
conditions. 

Transfer learning is a promising tool to overcome the 
limitations of traditional data-driven approaches for fault 
diagnosis. It involves transferring knowledge from one task to 
another, and one commonly utilized technique is domain 
adaptation [3]. To extract good feature representation across 
domains, various methods have been proposed, such as the 
deep adaptive network (DAN) introduced by Long et al. [4] 
and the hybrid distance-guided adversarial network (HDAN) 
proposed by Han et al. [5]. However, current domain 
adaptation methods are limited to diagnosing faults within the 
same equipment under varying conditions, making it difficult 
to obtain specific data to train the expected fault diagnosis 
model. Therefore, transfer fault diagnosis across different 
machines has become increasingly important. Song et al. [6] 
introduced a retraining strategy-based domain adaptation 
network, while Guo et al. [7] utilized a one-dimensional 
generation adversarial network (ML1-D-GAN) to jointly train 
generated and real damage data, enabling sufficient labeled 
data to overcome the limitation of existing models. Recently, 
Feng et al. [8] presented a domain adversarial similarity-based 
meta-learning network (DASMN) and Li et al. [9] developed 
an optimal ensemble deep transfer network (OEDTN) that 
utilized maximum mean discrepancy (MMD) with different 
kernels to construct multiple diverse DTNs. 

Although transfer fault diagnosis across machines has been 
achieved with existing methods, there are still weaknesses in 
terms of fault diagnosis accuracy. The reason is that most of 
the mentioned methods are based on reducing the discrepancy 
in feature distribution. They may only adjust the overall 
distribution since the criteria function only accounts for the 
statistical parameters of the entire domain and not for each 
individual class/subdomain. Thus, to overcome this limitation 
and enhance the transfer fault diagnosis performance across 
different machines, we introduce a novel multi-layer adaptation 
network based on LMMD [10] criteria over layers in this 
article. The methodology is in Section II and experiments are 
in Section III. The main contributions of this paper are: 

 We propose a novel multi-layer subdomain adaptation 
method that adjusts the domain distribution in each 
layer of the shared feature extraction module. 

 We evaluate the performance of the proposed method 
on HUST bearing dataset and do comparative 
experiments to verify its ability to improve fault 
diagnosis accuracy across different bearings/machines. 

*Corresponding Author. 
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II. METHODOLOGY 

A. Problem Description 

In this section, we start by discussing the issue of bearing 
fault diagnosis across machines. We begin by assuming that 
there is a rolling bearing monitoring dataset labeled from one 

(source) machine    *(  
    

 )+   
  , which we call the source 

domain data. The dataset contains    samples with labels   
  

which belong to the labeled space   . The samples   
  belong to 

the sample space    and are governed by the marginal 
probability distribution   ( 

 ). We also have another rolling 
bearing monitoring dataset without labels from another (target) 

machine, called the target domain data    *(  
 )+   

  , which 

contains    samples and all samples are governed by the 
marginal probability distribution   ( 

 ). Since the two datasets 
come from different machines, their marginal probability 
distributions are different, and we have      . 

The main focus of this paper is on the transfer fault 
diagnosis of rolling bearings across different machines i.e., 
from the source to the target domain. Traditional data-driven 
methods rely solely on the source domain data with labels to 
train a classification neural network, which is a nonlinear 
mapping between the sample space    and the labeled space 
   [11]. However, directly using the established nonlinear 
mapping/network to recognize the health status of unlabeled 
samples from the target domain will yield low fault diagnosis 
accuracy, as the two domains have different data distributions 
[12]. Thus, to improve the fault diagnosis accuracy, it is crucial 
to train the fault diagnosis model using not just labeled data 
from the source domain but also unlabeled data from the target 
domain. This presents the challenge of learning domain-
invariant features by minimizing the data distribution 
discrepancy between the source and target domain data. As a 

result, knowledge obtained from one machine can be used for 
fault diagnosis in another machine. 

B. Proposed Method 

In this study, a multi-layer subdomain adaptation model is 
developed to transfer fault diagnosis between different 
bearings. As shown in Fig. 1, our goal is to train a feature 
extractor that can accurately diagnose bearing faults for data in 
the target domain. The training process involves iteratively 
calculating the objective functions and updating the model 
parameters using the backpropagation algorithm. Afterwards, 
we obtain a trained model that can predict the label of new data 
in the target domain. 

The training process is described as follows: the training 
data consists of labeled source data (     )  and unlabeled 
target data (  ) . Different domains use the same feature 
extractor, consisting of three one-dimensional convolutional 
layers and two fully connected layers (see Table I). The output 
of the feature extractor is the predicted label for the input data, 
used to calculate the objective functions based on the training 
objective. The training objective is to classify faults and 
minimize the distance of probability distribution between the 
outputs of different domains. Therefore, there are two objective 
functions: the objective function for classification (    ) and 
the objective function for adaptation (    ). The classification 
objective function is calculated based on the true label and 
predicted one of the data in the source domain. The adaptation 
objective function is calculated by sum of the distribution 
discrepancies (LMMD) between hidden features from different 
domains. This is a new and important aspect of this method, 
instead of relying solely on the distribution distance of features 
in the last layer. The important concept of computing the 
distribution discrepancy will be clarified in Section II C. 

 
Fig. 1. Overview of the proposed method. 
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TABLE I.  SPECIFICATION OF THE FEATURE EXTRACTOR 

No. Layer Filter size Output size Activation function BN/Pooling 

0 Input - (4096, 1) - - 

1 Conv1 (15, 1, 16) (4096, 4) ReLU BN+Pooling 

2 Conv2 (5, 16, 16) (1024, 8) ReLU BN+Pooling 

3 Conv3 (3, 32, 16) (256, 16) ReLU - 

- Flatten - (4096, 1) - - 

4 FC1 (4096, 512) (512, 1) ReLU - 

5 FC2 (512, 64) (64, 1) ReLU - 

6 Output (64, 4) (4, 1) Softmax - 

BN: Batch Normalization 

C. Loss Function 

The objective of the model is fault classification and 
domain adaptation based on minimizing the distribution 
distance. For the classification objective function, it relies on 
the well-known cross-entropy function: 

       ∑      ( ̂ )

 

   

 (1) 

where   is the number of classes,    is the ground-truth 
label, and  ̂  is the softmax probability for the i-th class. As for 
the adaptation objective function, LMMD is an MMD-based 
criterion for measuring distribution discrepancy [10]. The 
MMD formula for calculating the distribution distance is 
described as follows: 

    (     )  ‖   , ( 
 )-     , ( 

 )-‖
 

 
 (2) 

where       denote the distribution of source and target 
domain;   denotes the expectation;   denotes the reproducing 

kernel Hilbert space;               . In practice, an estimate 
of the MMD compares the square distance between the 
empirical kernel mean embeddings as: 
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where       stand for the number of samples in source and 

target domain; the kernel   means  (     )  〈 (  )  (  )〉. 
The MMD-based techniques primarily emphasized the 
alignment of overall distributions while disregarding the 
connections between subdomains within the same category. It 
is crucial to consider the relationships between these relevant 
subdomains and align their distributions between the source 
and target domains. To achieve this, we considered the Local 
Maximum Mean Discrepancy (LMMD) method in (4). In (4), 
the letter   denotes the class label. Eq. (4) is then estimated as 

(5). In (5),   
     

   stand for the weight of   
    

  belonging to 

class  , are computed as (6). In (6),     is the c-th entry of the 
output vector    with input   . 
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Afterward, the adaptation loss      is computed as (7). It 
must be noted that for the convolution layer, the feature maps 
are flatted before calculating the LMMD. It means that layer 
number 3 and the next flatten layer utilize the same LMMD. 

      ∑    

 

   

             (7) 

Finally, the overall objective function in (8) is the sum of 
the two aforementioned objective functions. With this, the 
model can maintain its classification ability while also 
adjusting the embedding features to a common distribution. 

             (8) 

III. EXPERIMENTS 

A. HUST bearing Dataset 

The verification experiments were conducted exclusively 
on the HUST bearing dataset as in our previous work [1]. What 
makes this dataset especially advantageous is that it contains 
fault signals from five bearings across different types of defects 
and working conditions. The data acquisition system is shown 
in Fig. 2. The data acquisition system includes a 1-HP 
induction motor, an accelerometer of PCB352C33 and a 
measurement module with torque and velocity sensors. 

Because of this, we can assess the performance of our 
proposed method for various domain adaptation tasks across 
different bearings or machines. For the purpose of test analysis, 
we selected bearings of types 6205, 6206, and 6207 with a no-
load shaft speed. Each type of bearing includes four health 
conditions: normal (N), inner race fault (I), outer race fault (O), 
and ball fault (B). The faults were generated using the wire-
cutting method, which creates cracks with a size of 0.2 mm. 
The accelerometer captured the vibration signals at a sampling 
rate of 51,200 samples per second for 10 seconds. To augment 
training/test data, the raw vibration signal was truncated into 
segments with a length of 4096 with 75% overlap. Then we 
obtain 496 segments/class/bearing with each segment as an 
input of the model. 
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Fig. 2. HUST bearing data acquisition system [1]. 

The adaptation tasks are defined as S5-6, S5-7, S6-5, S6-7, 
S7-5, S7-6, M5, M6, and M7. Each task name includes 2 parts: 
the prefix (S: single-source | M: multiple-source), and the 
suffix to supplement information for the prefix (5: 6205 | 6: 
6206 | 7: 6207). In detail, for single-source tasks, the suffix 
denotes the source bearing and the target one e.g., 5-6 means 
that the source bearing is 6205 and the target one is 6206. As 
for multiple-source tasks, the suffix number denotes the target 
bearing, while the source is the remaining two bearings. For 
each task, 80% source data and 80% target data are used to 
train the network, while the remaining 20% source data is used 
to validate and 20% target data is used to test/evaluate. 

B. Experiments Setup 

In this section, we describe the experimental setup. The 
first experiment is to evaluate the effectiveness of the proposed 
method in transferring knowledge to adaptive tasks defined in 
Section III A. The second experiment is an extension of the 
first experiment with added multi-level noise components in 
the training/testing data. The purpose of the second experiment 
is to assess the proposed method's performance in the presence 
of noise, which is common in real-world scenarios. Finally, the 
third experiment aims to compare the proposed method's 
performance with other methods to demonstrate its superiority 
in adaptability. All models were trained/evaluated on the same 
HUST bearing dataset to ensure fairness in comparison. The 
metrics for model evaluation are (overall) accuracy (9), 
precision (1), sensitivity (11), F1-score (12), confusion matrix, 
and t-SNE visualization to observe the feature distribution of 
source and target domains [13]. 

          
                         

                 
  (9) 

           
                               

                              
 (10) 

             
                               

                          
 (11) 

            
                     

                     
 (12) 

The verification experiments were conducted on a 
computer with the following specifications: an Intel i7 12700F 
CPU, 16 GB of RAM, and a 24GB Nvidia GeForce GTX 3090 
GPU. These experiments were implemented utilizing the 
PyTorch framework from the source 
https://github.com/ZhaoZhibin/UDTL [14]. For the training 
process, the hyperparameters were configured as follows: the 
number of epochs was set to 100, the batch size at 64, the 
learning rate to 0.001, the momentum at 0.9, the optimizer was 
Adam, and the weight decay was 0.00001. To provide a 
reliable measure of accuracy, each model was re-trained 10 
times, and the results were reported as mean and standard 
deviation values. 

IV. RESULTS AND DISCUSSIONS 

In the first experiment, we evaluated the performance of the 
proposed method across all tasks. Table II shows the overall 
accuracy, precision, sensitivity, and F1-score of the model with 
the test data in the target domain. It can be seen that the overall 
accuracy of the single-source tasks is quite good, ranging from 
86% to 96%. Specifically, task S6-5 had the lowest accuracy of 
86.62%, while task S6-7 had the highest accuracy of 96.46%. 
Furthermore, the inversely related tasks (e.g. S5-6 and S6-5) 
had similar accuracy. This reveals that the result of transfer 
learning depends on the relationship between domains and not 
on which domain is the source and which is the target. 

Regarding other metrics for single-source tasks, we can see 
that precision, sensitivity, and F1-score are relatively consistent 
for each task. The magnitude of these metrics varies by no 
more than 1%. This is achieved by the class balance in the test 
data set. 

TABLE II.  TRANSFER FAULT DIAGNOSIS RESULTS WITH THE PROPOSED METHOD 

Task Overall accuracy (%) Precision (%) Sensitivity (%) F1-score (%) 

S5-6 88.38 89.43 88.38 88.90 

S5-7 92.93 93.78 92.93 93.35 

S6-5 86.62 87.91 86.62 87.26 

S6-7 96.46 96.60 96.46 96.53 

S7-5 89.14 90.27 89.14 89.70 

S7-6 94.44 94.64 94.44 94.54 

M5 92.42 92.75 92.42 92.59 

M6 95.71 95.87 95.71 95.79 

M7 97.47 97.54 97.47 97.51 
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In Table II, for multi-source tasks, it is easy to see that their 
performance is significantly improved compared to the single-
source tasks. Task M5 achieved 92.42% accuracy, higher than 
Sx-5 tasks due to more contribution from the source domain. 
Tasks M6 and M7 both scored above 95% on all criteria. This 
superiority is achieved through an increase in source data, 
which can compensate for each other's deficiencies to help the 
model learn more effectively. From this, we can conclude that 
enhancing the source domain data will improve the model's 
diagnostic capabilities. Additionally, we can observe a trend 
where the accuracy of multi-source tasks depends on the shared 
target domain of the single-source tasks. This means that the 
Mx predictive ability will be a function of the Ma-x abilities. 

Fig. 3 illustrates the confusion matrices corresponding to 
the considered tasks. Unlike overall accuracy, the confusion 
matrix provides a clearer explanation of the accuracy for each 
class, with the value in each cell being the number of instances. 
At a glance, we can see that the highest accuracy is 
concentrated on classes I and O in all tasks. We believe this is 
due to the clear defect patterns in these two classes, making 

them easier to identify for the model. In the dataset, defects 
related to class B are difficult to predict accurately and are 
often confused with faults in class I. This phenomenon is seen 
from 6205-related tasks i.e., the fault characteristic of class I 
and B of bearing 6205 may be hard to distinguish (e.g., the 
fault frequency). For the case of the healthy bearing, tasks M6 
and M7 achieve almost perfect accuracy, while tasks M5, S6-5, 
S7-5, S5-6, and S5-7 show worse accuracy. It can be 
speculated that there are issues with the N data for bearing 
6205 (e.g., a small crack may exist). However, this is not as 
serious as misclassifying failures as non-failures. 

Fig. 4 visualizes the distribution of features in the final 
layer of the neural network in the Descartes coordinate system 
using a visualization method called t-distributed stochastic 
neighbor embedding (t-SNE), which is a dimensionality 
reduction algorithm. We observe that the mispredictions in the 
classes occur due to the mismatch between the source and 
target class distributions of the data. To address this issue, 
some studies have proposed labeling some of the training data 
in the target domain, which can be further explored in [15]. 

 
Fig. 3. Confusion matrices for all tasks. 
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Fig. 4. t-SNE visualization of the last features in all tasks. 

In the second experiment, we examined the performance of 
our proposed method in the presence of noise in the data. We 
added Gaussian white noise with a mean of 0 and a standard 
deviation of 1 to the training and test data. To vary the intensity 
of the noise, we scaled the amplitude by different coefficients 
ranging from 0 to 0.9 with a step of 0.3. In the third 
experiment, we compared our proposed method with other 
popular domain adaptation methods, including JMMD [16], 
MKMMD [17], CORAL [18], DANN [19], and CDAN [20], in 
the presence of noise. The effect of noise was also included to 
provide a comprehensive comparison. The results of the 
experiments demonstrated the effectiveness of our proposed 
method in the presence of noise. Our method outperformed the 
other popular domain adaptation methods, particularly as the 

intensity of the noise increased. The results are presented in 
Fig. 5. 

In Fig. 5, as the level of noise increases, all examined 
methods experience a decrease in performance. Multi-source 
tasks show a decrease from 92-97% to 89-93%, while single-
source tasks experience a decrease from 86-96% to 81-92%. 
Notably, while the other methods experience a significant 
accuracy drop of up to 10%, our proposed method only 
experiences a slight decrease of around 5% for all tasks. This 
indicates that our method is less affected by noise, promising 
stability and high reliability. Regarding the correlation between 
the methods, it is truly difficult to distinguish because they 
differ slightly in their predictive capabilities. 
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Fig. 5. The performance of different methods under different levels of noise. Noise levels are: (a) 0; (b) 0.3; (c) 0.6; (d) 0.9. 

Nonetheless, we still recognize the effectiveness of our 
proposed method because, in all cases, it slightly outperforms 
the other methods. Our success can be attributed to taking into 
account the varying distributions between classes 
(subdomains), which sets us apart from other approaches. 
Furthermore, our approach is reinforced by a thorough 
examination of all hidden layers, an aspect that has been 
overlooked by many previous studies. Going forward, we aim 
to explore algorithms that improve adaptability in scenarios 
where distributions cannot be homogenized. 

V. CONCLUSION 

This study introduces a new method based on transfer for 
fault diagnosis in bearings across various machines, named 
weighted multi-layer subdomain adaptation. Due to the 
weakness of traditional metrics as MMD for feature alignment 
between different domains, we inspired by LMMD to develop 
a new model architecture for the task of domain adaptation. 
This method is validated using HUST bearing dataset for nine 
transfer fault diagnosis tasks where labeling of target domain 
data is not required. Verification experiments were conducted, 
and the findings indicate that the proposed approach offers 

relatively high accuracy up to 97.47% and excellent 
transferability. Comparative experiments revealed that the 
proposed method is a superior technique for bearing fault 
diagnosis and slightly outperforms other methods (3-5%) in 
both predictive and noise-ignore capabilities. 
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