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Abstract—The game search tree model usually does not 

consider the state information of similar nodes, which results in 

searching a huge state space, and there are problems such as the 

size of the game tree and the long solution time. In view of this, 

the article proposes a scheme using the idea of combinatorial 

optimization algorithm, which has an important application in 

solving the decision problem in the tree graph model. First, the 

special graph-theoretic structure of the point-grid game is 

analyzed, and the storage and search of states are optimized by 

designing hash functions; then, the branch delimitation 

algorithm is used to search the state space, and the evaluation 

value of repeated nodes is calculated by dynamic programming; 

finally, the state space is greatly reduced by combining the two-

way detection search strategy. The results show that the 

algorithm improves decision-making efficiency and has achieved 

37% and 42% final winning rate, respectively. The design 

provides new ideas for computational complexity problems in the 

field of game search and also proposes new solutions for the field 

of combinatorial optimization. 
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I. INTRODUCTION 

Game search algorithms have gained significant attention in 
recent years for their applications in decision-making, 
optimization, and artificial intelligence across diverse domains. 
However, traditional algorithms such as Minimax and pruning 
algorithms have some limitations that hinder their effectiveness 
in solving complex games[1]. The Minimax algorithm, 
proposed by von Neumann, aims at solving two-player games 
by constructing a game tree that minimizes the maximum 
outcome. Despite exploring all possible states, it leads to a vast 
state space. Pruning algorithms, like alpha-beta pruning by 
Yang and Feinberg, aim to reduce the search space but struggle 
with revisiting previously explored states[2]. 

Alternative approaches have been proposed, such as the 
PVS search algorithm by Kaufman and the branch-and-bound 
algorithm by Tucker[3]. However, existing algorithms often 
overlook superior decisions and yield suboptimal solutions[4]. 
This paper presents a novel combinatorial optimization 
algorithm based on branch delimitation to address large state 
spaces in point-grid chess game graph theory problems. It 
analyzes the graph structure, optimizes state storage with hash 
functions[5], employs the branch delimitation algorithm for 
efficient exploration, calculates evaluation values using 
dynamic programming, and implements a two-way detection 
search strategy to reduce the state space[6-8]. 

Experimental results demonstrate substantial 
improvements, with a 37% increase in the decision efficiency 
and a 42% higher final win rate. This paper contributes 
innovative ideas to address the computational complexity in a 
game search and provides new solutions for combinatorial 
optimization. Overall, this study advances understanding and 
application of game search algorithms, specifically for 
addressing large state spaces in point-grid chess game graph 
theory problems[9]. The proposed combinatorial optimization 
algorithm offers superior performance and has the potential to 
overcome limitations in traditional approaches[10], making it a 
valuable contribution to the field. 

II. BASICS OF DOTS AND BOXES 

A. Introduction to the Game 

Dots and boxes are popular intellectual game due to its 
simplicity, ease of learning, entertainment value, and puzzle-
solving nature. Unlike other board games such as Gomoku, 
dots and boxes has a unique set of rules. In this game, a legal 
move involves drawing a line between two dots on the board. 
Players take turns placing their pieces on the board until all 
four edges of a grid cell have been claimed[11]. Once a player 
captures a grid cell, they get an extra turn. In a 6x6 dots and 
boxes game, the mathematical formula for calculating the 
number of captured grid cells can be expressed as formula (1). 

 ( )  *    |      (   )    + (1) 

Here, C(p) represents the set of captured cells, V represents 
the set of points, E represents the set of edges, and (p, q) 
represents the edge between vertices p and q on the game 
board. Xq =0 means that there is no chess piece on point q. The 
winner is determined by the number of cells captured by the 
players when neither side can make any further moves[12]. 

B. Game Abstraction forms and Theorems 

The game of dots and boxes has a special data structure in 
machine game competitions, where some game states often 
determine the outcome of the game[13]. This is because the 
formation of some game states can lead to significant changes 
in the next game situation, and one player can capture a large 
number of boxes through these game states, thereby increasing 
their chances of winning[14]. 

Theorem 1. Designing checkerboard storage based on 

move rules. 

 (   )  {
            ( )   
           ( )         ( )   

                      
   (2) 
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Formula (2) defines the types of moves from point p to 
point q in dots and boxes games. When the number of empty 
points around point p is less than 3, the move is called a short 
step. When the number of empty points around point p is 
greater than or equal to 3 and the number of empty points 
around point q is also greater than or equal to 3, the move is 
called a long step[15]. Other moves are considered invalid 
moves. 

Theorem 2. The long chain theorem predicts sure-win 
strategies. 

 ( )              ( )   (   )   (   ) (3) 

Such as formula (3). Let R(C) denote the maximum profit 
that can be obtained by playing chain C in the game[16], and 
let N(v) denote the set of points adjacent to the point v. 
Suppose that there are two players, A and B, in G. Let S(G) be 
the set of winning strategies for A in G, and let T(G) be the set 
of winning strategies for B in G. Then the long chain theorem 
can be stated as following formula (4). 

   ( )   ( )     (4) 

If the maximum profit R(C) of a long chain C is greater 
than 0, then A has a winning strategy, otherwise B has a 
winning strategy. 

Theorem 3. Stumping theorem predicts the likelihood of 
winning. 

 (   )    | (   )| | (   )|⁄  (5) 

Such as formula (5). Let S denote the current state of the 
board, and let p denote the next player to move (0 represents 
the first player, and 1 represents the second player). Let V(S, p) 
be the set of all possible board states in which the next player 
to move can win[17], and let P(S, p) be the set of all possible 
board states in which the next player to move can make a 
move. 

Theorem 4. Calculated returns for hybrid strategies in 
gaming. 

Let player A have a mixed strategy {x
*
1,x

*
2,…,x

*
m} XA, and 

let player B have a mixed strategy {y
*

1,y
*

2,…,y
*
n} YB, such as 

formula (6). 

 (     )      (    )      (    )   (      ) (6) 

That is formula (7) and (8). 

∑ ∑      
   
     ∑ ∑        

  
   

 
   

 
   

 
    (7) 

∑ ∑      
   
     ∑ ∑      

   
 
   

 
   

 
   

 
    (8) 

In the game, player A and player B each have their own 
space of mixed strategies, XA and XB, respectively. 
E(x

*
,y

*
)represents the payoff when using mixed strategy (x

*
,y

*
). 

C is a matrix in which ci j represents the payoff of two players 
under certain circumstances. 

Theorems 5. Hashing for board representation. 

Make the board state be represented as a vector 
S=[s1,s2,...,sn] of length n, where si represents the state of the I 
– th position, such as "black piece," "white piece," "empty," 

and so on[18]. Next, define a binary vector B=[b1,b2,...,bn] of 
length n, where the value of bi is a randomly generated 0 or 1. 
Then, the new vector X=[x1,x2,...,xn] is obtained by performing 
a bitwise XOR operation between the S vector and the B vector, 
i.e., xi=si XOR bi. Finally, each element of the X vector is 
treated as an 8-bit unsigned integer, and the hash value is 
calculated according to the following formula (9). 

 ( )  .((    
    )       

      )   
    /   (9) 

Theorem 6. Generation of moves for the second player. 

Given the current board state S, the second player generates 
a move Mop based on the position of the opponent's pieces and 
the rules, using the formula (10). 

          (   )|      (10) 

where moveop(S, p) represents all possible moves for the 
opponent's piece p in the state S, and Pop represents the set of 
opponent's pieces[19]. 

Theorem 7. Calculation of the Depth of the Game Tree. 

Assume that there are n feasible successor states at the 
current game state, and each successor state has m feasible 
successor states, and so on, until a game-ending state is 
reached[20]. Then, the depth of the game tree can be calculated 
using the following formula (11). 

              (11) 

Theorem 8. Updating the branch delimitation benefit 
interval. 

For a given position S, the best move obtained from the 
search starting from it is M, and the corresponding next 
position is S

*
. According to the definition of branch 

delimitation algorithm, such as formula (12) (13). 

          *   (  )+  (12) 

     *   (  )+  (13) 

Theorem 9. Hash function clusters handle hash conflicts. 

Select a sufficiently large prime number p so that each 
possible keyword falls within the range of 0 to p-1. Such as 
formula (14). 

   *           +   
  *           + (14) 

Now, for a Z
*
p and b Zp, define the hash function hab, 

which performs a linear transformation to reduce modulo m 
and modulo p, as follows formula (15). 

   ( )  ((    )      )       (15) 

Thus, we obtain a hash function family, such as formula 
(16): 

   ( )  ((    )      )       (16) 

Zp and Z
*
p represent the sets of integers from 0 to p-1 and 

from 1 to p-1, respectively, and represent the range of possible 
keywords. hab is a hash function that maps the keyword k to the 
set of integers from 0 to m-1. Hpm is a hash function 
family[21], where each hash function is composed of the 
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defined hash function hab by linear transformation with modulo 
m and modulo p. 

C. Branch Delimitation Algorithm Core Decision 

This article focuses on strategic decision-making in the 
game theory and its relationship to winning odds. The article 
first proposes Theorem 2, using formulas (3) and (4) to 
calculate the maximum gain of each chain to analyze the gains 
of different chains in the game. Secondly[22], Theorem 3 can 
calculate the winning player through formula (5) and thus 
predict the final winner in a certain game state. Finally, the 
unique board of the dot game needs to judge the captured 
squares, which will cause one party to capture the squares in a 
row[23]. Theorem 4 is usually applied in the later stage of the 
game to decide whether to make a concession grid, and the 
player's payoff is calculated using equations (6), (7)and (8) 
through a mixed strategy[24]. For the lattice game, the 
algorithm recursively studies the game tree, quantizes the 
features into feature vectors, and uses dynamic programming to 
find the optimal weight until the final state of the game. The 
evaluation function of the branch and bound algorithm 
calculates the score for each state of the game[24]. 

The calculation is done as follows: 

For edges of length less than 3 (i.e. short moves), such as 
formula (17). 

 (   )  {
     
       
       

  (17) 

For edges of length equal to 3 or greater (i.e. chain, rings, 
or long moves), such as formula (18). 

 (   )  {

                
                  
                       

 (18) 

In formulas (17) and (18), f(x, y) represents the evaluation 
function, where x represents the number of edges in the current 
state, and y=1 denotes a chain formed by the edges while y=0 
denotes a loop formed by the edges. The length represents the 
length of the chain or loop. This evaluation function uses a 
recursive approach and performs a depth-first search, 
attempting various possible movements in each state[25]. 

III. DESIGN OF THE GAME TREE MODEL 

A. Algorithmic Chessboard Design 

The traditional matrix representation and the bit operation 
representation for chessboard state in artificial intelligence are 
analyzed[26]. The time complexity of matrix representation is 
O(n2), and the memory usage is high. The bitwise operation 
representation method requires a large amount of memory 
space[27], and due to the low efficiency of bitwise operation, it 
will lead to low searching efficiency. Both methods have 
disadvantages and limitations. 

In this paper, we propose a hash function design based on 
Theorem 5 to map a chessboard state S to an unsigned 64-bit 
integer for representing the current game state. The hash 
function design employs a vector S of length n to represent the 
chessboard state and defines a binary vector B of length n to 

shuffle the arrangement order of the status of each position in 
S, increasing the randomness and collision resistance of the 
hash function[28]. Meanwhile, XOR operation is used to 
enable the hash function to process each chessboard state 
quickly while maintaining low computational complexity. 

We define the data structure of the hash table as 
T[h(S)]=PHashNode, where each PHashNode stores key 
information about the current state, such as the evaluation 
value of the game position and the search depth[29]. We utilize 
the hash function to quickly identify duplicate nodes. When a 
new node is discovered, its hash value is stored in the hash 
table, and if it is a duplicate, it is skipped, reducing the number 
of searches. 

 

Fig. 1. Hash table dots and boxes board position mapping. 

As the hash function design process shown in Fig. 1, 
position is the information of current board position; value 
indicates the evaluation value of the current board position. 

B. Specific Design of the Generation Strategy 

The paper explores traditional moving generation methods 
in dots and boxes, including enumeration, first-player, and 
second-player methods. The enumeration method generates all 
possible moves for each point on the board, resulting in a move 
set of size O(nm). The first-player method moves pieces 
without considering whether the moves are legal, potentially 
generating many invalid moves[30]. The second-player method 
considers only the opponent's piece movements, leading to a 
move set that does not include invalid moves from one's own 
piece movements, but may increase program complexity[31]. 

To ensure that all feasible moves in the game tree can be 
expanded at the same level, the article uses a breadth-first 
strategy based on hash storage. This strategy uses a queue to 
store all successor states of the current game state, enumerates 
all successor states, adds unvisited states to the queue, and 
expands them. The depth of the game tree is calculated using 
formula (11) in Theorem 7, and the breadth-first strategy 
ensures that all feasible states are traversed, and all possible 
moves are generated. 

A schematic diagram of the landing process generated by 
players A and B in the same situation is shown in Fig. 2. 
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Fig. 2. Generated landings diagram. 

Using equation (12) and (13) in Theorem 8 to calculate the 
dynamic gain interval of the branch-and-bound algorithm 
during the search. When β ≤ α, pruning can be performed. It is 
necessary to update β ≤ α as soon as possible. When all moves 
and states of a board are generated and the available edges are 
sorted in ascending order, moves with larger evaluation values 
are searched first, which increases the number of updates to α 
and reduces the number of updates to β. 

IV. ALGORITHM EVALUATION AND OPTIMIZATION OF 

SEARCH STRATEGIES 

A. Transpose Table Storage Optimization 

The search algorithm is the core part of decision-making 
systems, and the evaluation function is the "lighthouse" of the 
search algorithm. It determines the search direction of the 
search algorithm on the game tree. The number of nodes for 
the traditional Minimax search is formula (19). 

        
         

  
 

    

  
 

 

  (  ) (19) 

The number of nodes for the branch delimitation search is 
formula (20). 

    
(   )    (   )     (20) 

Where Nd represents the number of nodes in a tree with a 
branching factor of b and a depth of d. When the number of 
child nodes at each node is same and the depth is large enough, 
the number of nodes for the branch delimitation search doubles 
with the search depth, such as formula (21). 

      
.  
 

 
/
   (21) 

Therefore, when the depth of the branch delimitation 
algorithm search tree doubles, the increase in the number of 
nodes is relatively small, indicating that the branch delimitation 
algorithm is more suitable for searching in cases where the 
depth is large. 

Transposition table is a data structure used to optimize 
search algorithms by storing the evaluation value and move of 
previously searched positions for direct use when encountering 
the same position in the future. First, a hash table is used to 
optimize the storage of states, and the chess board position is 
represented as a 32-bit integer using XOR operation, such as 
formula (22). 

                     , -             , - (22) 

The processing result is stored in i and used as an index in 
the hash table, such as formula (23). 

          , - (        , -    ) (23) 

The paper presents an optimization to reduce the number of 
computations required to evaluate chess board positions. The 
proposed algorithm checks for the existence of a Hash Node 
object in the hash table for each access position, and returns the 
previously computed evaluation value to avoid redundant 
calculations. If there is no Hash Node object, a new one is 
created and stored in the hash table index, which contains 
information about the current position, alpha and beta values, 
and the computed evaluation value. This stored information 
can be reused in the next traversal. Fig. 3 illustrates the process 
of storing and reusing node information in the transposition 
table. 

 

Fig. 3. Hash hit process diagram. 

When the node p is visited for the first time and cannot be 
found in the hash table, a complete search will be performed, 
and the search result will be stored in column T of the 
transposition table. Then, the column will be stored in the hash 
table. When the node p is visited again and its hash value is 
found in the hash table, the stored result in the hash table can 
be directly returned. The branch delimitation algorithm 
incorporating the transpose table hashing can be represented by 
the algorithmic flow as follows: 

Algorithm 1. pruning strategy algorithm 

  Input: board, depth, alpha, beta 

  Output: optimal evaluate value 

1:  value=SearchTT(HashKey, alpha, beta, depth); 

2:  If(value is valid)  

3:   return value; 

4:  if(GameOver(board)||depth==0) 

5:   value=Evaluate(board); 

6:   if(depth==0) 

7:    InsertHashTable(value, HashKey, depth, EXACT); 

8:   return value; 

9:  best=-∞; ValueIsExact = 0;w = CreateSuccessors(board, p); 

10:  for(i=0; i<w; i++) 

11:   HashKey=MakeMoveWithTT(board, pi); 

12:   value=-AlphaBeta_TT(board, depth-1, -beta, -alpha); 

13:   HashKey=RestoreMoveWithTT(board, pi); 
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14:   if(value>=beta) 

15:    InsertHashTable(value, HashKey, depth, LOWERBOUND); 

16:    return value; 

17:   if(value>best) 

18:    best=value; 

19:    if(value>alpha) 

20:     alpha = value; ValueIsExact = 1; 

21:     InsertHashTable(value, HashKey, depth, EXACT); 

22:  if(ValueIsExact) 

23:   InsertHashTable(value, HashKey, depth, EXACT); 

24:  InsertHashTable(value, HashKey, depth, LOWERBOUND); 

25:  return best; 

This algorithm utilizes the SearchTT to avoid redundant 
evaluations of game states in the transposition table prior to 
AlphaBeta_TT pruning. If the game has ended or the search 
depth has reached 0, then the current game state is evaluated 
using the evaluation function and the game state information is 
inserted into the transposition table through Insert HashTable. 
Otherwise, all possible moves for the current game state are 
generated, and AlphaBeta_TT is recursively called for each 
move to perform pruning. The value returned from each 
recursive call is used to update the values of alpha, beta, and 
best. If a move is found that causes beta<=alpha, the function 
immediately returns and records the move in the transposition 
table. 

B. Optimized Bidirectional Detection Search Method 

Search algorithms commonly used in game systems are 
usually single-directional, searching from the initial state to the 
target in one direction in the game tree. The paper proposes a 
bidirectional search algorithm that divides a hash table into two 
parts: the front and the back. The search algorithm compares 
the node to be searched with the middle value of the hash table. 
If the item found during the search is smaller than the middle 
value, the search continues in the front part of the hash table. If 
it is larger, the search continues in the back part of the hash 
table. By using this approach, the algorithm can find the 
shortest path more quickly. The search process of this 
algorithm is illustrated in Fig. 4. 

 

Fig. 4. Schematic diagram of the bidirectional search algorithm. 

The paper proposes a two-way detection search algorithm 
that starts with two queues, one for forward search and the 
other for reverse search. The algorithm removes the first node 
from the queue, generates its children, and adds them to the 
corresponding queue. It continues until a common node is 

found in both queues, and then returns the shortest path. With a 
branching factor of b and a distance of d between the initial and 
target nodes, each queue will have bk nodes after k steps. If d 
is even, the two queues meet at a middle node, and the worst 
case requires expanding all nodes to the middle node in both 
queues. 

Thus, the total number of nodes expanded by the algorithm 
can be represented as formula (24). 

 (         .
 

 
/)   ( .

 

 
/) (24) 

Therefore, the time complexity of the bidirectional search 
algorithm is O(b

(d/2)
), which is significantly lower than that of 

single-directional search algorithms. 

The bidirectional hash table formula is used to store the 
game state, such as formula (25). 

 ( )   ( )     (25) 

where H(s) represents the hash value of state s, h(s) 
represents the integer value obtained by hashing state s, and M 
represents the size of the hash table. Assuming the depth of the 
search tree is d and the time complexity of searching each layer 
is O(b), the time complexity of the bidirectional search 
algorithm is O(b

(d/2)
). The pseudocode of the bidirectional 

search algorithm is as follows: 

Algorithm 2. bi-directional search algorithm 

Input: begin, end, gF(begin), turnF, turnB, U, cost(n, c) 

  Output: U or ∞ 

1:  gF(begin):=gB(end):=0, turnF:={begin}, turnB:={end}, U:=∞ 

2:  while (turnF！=null and turnB!=null) do 

3:   C:=min(prminF, prminB) 

4:  if(C=prminF) then 

5:   choose n ∈turnF for which prF(n)=prminF 

6:   move n from turnF to ClosedF 

7:  for each child c of n do 

8:   if c ∈turnF ∪ ClosedF and gF(c)≤gF(n)+cost(n, c) then  

9:    continue 

10:   if c ∈ turnF ∪ ClosedF then 

11:    remove c from turnF ∪ ClosedF 

12:   gF(c):=gF(n)+cost(n, c) 

13:   add c to TurnF 

14:   if c ∈ turnF then 

15:    U :=min(U, gF(c)+gB(c)) 

16:  else return ∞ 

The proposed algorithm employs two sets, turnF and turnB, 
to maintain unexplored nodes during the search process. 
Initially, turnF and turnB are initialized with the initial and 
target states, respectively. As the algorithm explores, it updates 
the cost of reaching each node and adds it to the appropriate 
set. Moreover, the algorithm keeps track of the minimum sum 
of costs to reach a node from the initial state and the target 
state, which is stored in variable U. The algorithm terminates 
when turnF and turnB both become empty or U is less than a 
certain threshold, ensuring the discovery of the shortest path 
between the initial and target states. 
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V. EXPERIMENTS AND RESULTS 

A. Search Depth Experiments and Analysis 

This experiment compares the performance of Algorithm 1 
and Algorithm 2 in optimizing the branch delimitation 
algorithm for the game of dots and boxes. The study uses a 
randomly generated 6*6 chess board, with 100 independent 
experiments conducted. The experiment measures the search 
depth and number of nodes for each algorithm. All experiments 
are conducted on the same computer with an Intel i7-9700 
processor and 16GB of memory. The experiment sets single-
step time limits of 10s, 30s, and 60s, respectively, and the 
results are shown in Fig. 5(a), 5 (b), and 5(c). 

 
Fig. 5. Comparison of the search depth of the three algorithms. 

Algorithms 1 and Algorithms 2 outperform the branch 
delimitation algorithm in terms of search depth, reaching the 
maximum depth consistently. All three algorithms show no 
decrease in the search depth as time limit increases. Heuristic 
search application in subsequent searches leads to a significant 
increase in search depth for Algorithms 1 and 2, with 
Algorithm 2 performing better due to its two-way search 
strategy. In rounds 9-14, chain and loop states cause an earlier 
increase in the search depth and hash table node storage for 
Algorithms 1 and 2, resulting in an overall increase in search 
depth. At search depth t=110s, Algorithm 2 achieves optimal 
search efficiency with a search depth of 15, outperforming 
Algorithms 1 and the branch delimitation algorithm. 

B. Node Tree Experiment and Analysis 

The environment setup of this experiment is the same as the 
experiment in A. The comparison experiments with the game 

process time as the independent variable and the number of 
game tree nodes as the dependent variable was conducted with 
single-step time limits of 10s, 30s, and 60s, respectively, and 
the experimental results are shown in Fig. 6(a), 6(b), and 6(c), 
respectively. 

 

Fig. 6. Comparison of the number of nodes of the three algorithms. 

The study compared the performance of Algorithm 1 and 
Algorithm 2 with the branch delimitation algorithm in 
optimizing the search performance of dots and boxes. The 
results showed that the branch delimitation algorithm had a 
higher node search count and searched a large number of 
invalid nodes. As the time limit increased, the number of nodes 
searched by all three algorithms increased, but Algorithms 1 
and 2 had an advantage due to their fast lookup of node hash 
tables. Algorithm 2 had a 37% improvement in the search 
efficiency compared to the branch delimitation algorithm. 

C. Game Efficiency Experiments and Analysis 

The environment setup of this experiment is the same as the 
experiment in A. The purpose of this experiment is to compare 
the scores of branch delimitation algorithm, Algorithm 1 and 
Algorithm 2 in the game to determine the optimal algorithm for 
the game. Each game was played for 100 games. The final 
results were obtained using the average score data. The total 
score of the game is 25, and a player wins absolutely when the 
score of one player is greater than 12. The experimental results 
are shown in Fig. 7, Fig. 8 and Fig. 9 for a single-step game 
with time limits of 10s, 30s and 60s for the three algorithms 
played two-by-two. 
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Fig. 7. T=10s three algorithm game score graph. 

 
Fig. 8. T=30s three algorithm game score graph. 

 
Fig. 9. T=60s three algorithm game score graph. 

It is evident from the results shown in Fig. 7, 8 and 9 that 
Algorithms 1 and Algorithms 2 consistently achieve absolute 
victory in terms of score within the specified time limits. In 
subplots (a) and (b) of Fig. 8, both algorithms secure victory 
one round early with average scores of 14 and 13, respectively. 
Furthermore, as the time limit increases, both algorithms 
perform even better in terms of scoring. During rounds 14-19, 
the game usually witnesses an exponential increase in scores 
due to the high number of squares with degrees of freedom 2 
and 3, along with the emergence of the stumping theorem state. 
Algorithm 1, as shown in Fig. 7(a), even managed to increase 
the average score in the 18th round of the game by 12. 
Algorithm 2 wins 68 times against branch delimitation 
algorithm and Algorithm 1, which is a 42% improvement 
compared to the number of times the branch delimitation 
algorithm wins. 

VI. CONCLUSION 

In this paper, we have addressed the limitations of 
conventional branch delimitation algorithms by proposing a 
novel approach that significantly enhances the search 
efficiency. Previous algorithms often suffer from searching 
through numerous invalid nodes, leading to reduced efficiency. 
While history-inspired pruning and iterative deepening 
strategies have been employed to improve efficiency, they still 
face challenges such as unassigned or inaccurately assigned 
initial nodes and repetitive searches. To overcome these 
limitations, we have introduced a hash storage search scheme 
specifically tailored for the evaluation function and game tree 
search, using dots and boxes as a case study. Our proposed 
branch delimitation algorithm combines the advantages of 
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history-inspired and iterative deepening methods, while 
incorporating a game tree bidirectional search algorithm to 
further enhance efficiency. Experimental results have 
demonstrated the effectiveness of our optimized algorithm in 
reducing the number of nodes in the game tree while 
maintaining the desired search depth. Moreover, the algorithm 
has shown remarkable improvements in the chess performance. 
Particularly, it excels in scenarios characterized by a large 
number of chains and loops, where the likelihood of position 
repetition is higher. Overall, our optimized algorithm presents a 
significant advancement in the field of game search, offering 
improved efficiency and performance. The introduced hash 
storage search scheme and the combination of branch 
delimitation and bidirectional search strategies provide 
valuable contributions to overcoming computational challenges 
in game tree exploration. Further research and experimentation 
can explore the algorithm's applicability in other domains and 
its potential for solving complex problems with repetitive 
patterns. 
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