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Abstract—Melanoma is accounted as a rare skin cancer 

responsible for a huge mortality rate. However, various imaging 

tests can be used to detect the metastatic spread of disease with a 

primary diagnosis or on clinical suspicion. Focus on melanoma 

detection, irrespective of its unusual occurrence, is that it is often 

misdiagnosed for other skin malignancies leading to medical 

negligence. Sometimes melanoma is detected only when the 

metastasis has entered the bloodstream or lymph nodes. So, 

effective computational strategies for early detection of melanoma 

are essential. There are four principal types of skin melanoma 

with two sub types: Superficial spreading, nodular, lentigo, 

lentigo maligna, Acral lentiginous, and Subungual melanoma. 

Amelanotic melanoma, one particular type of melanoma, exists in 

all kinds of skin tones. Classifications of melanoma with its 

classes are focused on in this research. The ensemble classifier 

models, namely Adaboost, random forest, voted ensemble, voted 

CNN, Boosted SVM, and Boosted GMM, have been used in 

melanoma classification to address misclassification errors, 

overfitting issues, and improve accuracy. The results of the 

ensemble classifier achieve high classification accuracy. However, 

imbalanced classification is found in all six classes of melanoma. 

Transfer learning and ensembled transfer learning approaches 

are implemented to reduce the imbalanced classification issues, 

and performances are analyzed. Four ML/DL models, six 

ensembled models, four transfer learning models, and five 

ensembled transfer learning models are used in this investigation. 

Implementation of all the 19 classifiers is analyzed using standard 

performance metrics such as Accuracy, Precision, recall, 

Mathew’s correlation coefficient, Jaccard Index, F1 measure, 

and Cohen’s Kappa. 

Keywords—Medical images; skin cancer; machine learning; 

deep learning; ensemble learning; accuracy 

I. INTRODUCTION 

Humans are largely perceived through their skin. The der- 
mis, epidermis, and subcutaneous layer make up the skin. The 
skin has the ability to sense its environment and to protect the 
body’s internal organs and tissues from environmental hazards 
like bacteria, toxins, and UV radiation. [1]. A variety of 
internal and external factors can have an impact on the skin. 
Experimental skin damage, embryogenic infections, chemical 
exposure, a person’s immunological function, and genetic 
abnormalities are all factors that influence the emergence of 
skin diseases. Skin problems have a huge impact on a person’s 
life and health. People will eventually try home treatments to 
address their skin conditions. These procedures may have 
harmful implications if they are not suitable for that skin 
disease. As skin problems are easily spread from person to per- 
son, they must be treated first. Presumptions about a patient’s 
health are typically based on the doctor’s experience and in- 

tuition. It could be dangerous to one’s health if the decision is 
made incorrectly or delayed [2]. 

As a consequence, developing efficient strategies for 
diagnosing and treating skin problems becomes vital and 
critical. Technological advancement has enabled the design 
and implementation of a skin monitoring formative days 
foundational identification of skin issues. There are numerous 
advancements accessible for pattern-and image- based 
identification of several skin conditions. 

Deep learning is among the disciplines which can help 
with the practical and exact identification of a variety of skin 
problems. Image categorization and deep learning can be used 
to diagnose diseases [3]. Image classification is a basic 
problem that requires the creation of multiple objective 
classifications and the development of a training model to 
acknowledge each subtype. Deep learning-based technologies 
could be useful for swiftly recognizing clinical information 
and providing results. Information treatment is essential due to 
the complexity of skin diseases, the scarcity and misuse of 
qualified medical professionals, and the urgency associated 
with an accurate diagnosis. Improvements in photonics and 
laser-based health care system technology have allowed for 
much quicker and more accurate diagnosis of skin problems. 
Even with advances, the price of diagnostic procedures is still 
prohibitive. Deep learning systems efficiently classify images 
and data [4,5]. The reliable recognition of anomalies and 
classification of diseases utilising magnetic MRI, X-ray, PET, 
CT, and signalling data including EEG, EMG, and ECG has 
been requested in health diagnostics. Better health care could 
be provided to patients if diseases were classified more 
precisely. By automatically identifying data input features, DL 
approaches can address critical challenges and are adaptable to 
shifts in the computational complexity [5]. It is expected that 
learning techniques would be able to discover and start 
exploring the features in the discovered data patterns with even 
basic computer modelling, resulting in substantial efficiency 
gains. As the categorization of skin diseases relies on an image 
of the affected region, this prompted the researchers to 
investigate the possibility of using a DL model for 
classifications. Invasive illness evaluations would be easier 
and less expensive for doctors and patients to perform with 
this tool. 

II. RELATED WORK 

Chaurasia and Pal [1] demonstrated six distinct order 
frame- works and a multi-model ensemble strategy for 
predicting skin disorder. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 5, 2023 

711 | P a g e  

www.ijacsa.thesai.org 

The findings show that differential expression assessment 
is essential for reducing the dimensionality of data and 
selecting effective data, thereby increasing the accuracy of 
prediction and substantially lowering the computing effort. At 
such a point, the multi-model ensemble methodology employs 
the predictions of numerous distinct classification models as 
input. By using the principal organize predictions as highlights, 
the classification approach minimizes the generation error and 
obtains more data than if it were trained in isolation. In 
addition, by utilising classification methods, the intricate 
relationships between classifiers are discovered, thereby 
enabling the order strategy in order to make more accurate 
predictions. 

Loganathan, et al. [2] suggested a new DCNN for 
classifying malignant melanoma (skin cancer). The 
recommended method comprises pre-processing, enhanced 
fuzzy clustering for melanoma detection, and enhanced deep 
convolutional neural networks (E-DCNN) for categorization of 
dermoscopy images. Enhanced fuzzy clustering is a technique 
that incorporates modified region grow image segmentation 
and fuzzy K-means clustering to produce a more precise 
classification performance than other methodologies 
suggested by researchers. 

Allugunti [3] developed, built, and tested a Convolutional 
Neural Network (CNN) framework for melanoma detection 
using a publicly available dataset. The overall accuracy of 
88.83% demonstrates the superiority of the proposed method, 
which would be a two-stage learning platform. This is not 
unique to DT, RF, or GBT or any other classification algo- 
rithm. The proposed technique is based on CNN and can be 
seen as a powerful means of multiclass categorization. 

Kotian & Deepa [4] identify and categorize various dis- 
eases using input images. The MATLAB environment serves 
as the foundation for this project. The photos come from 
various online sources like Dermnet and DermWeb. The first 
step is to preprocess the sample images of the four skin 
diseases. As a second step, a geometric transformation is 
applied to the vertically-oriented portion of the image. Relying 
upon it, three types of skin diseases’ features are then 
extracted, and their correlated variables of feature texture and 
pixels of lesion regions are accumulated via image 
segmentation. 

Verma, et al. [5] proposed a novel method that employs 
five distinct data mining methods and then develops an 
ensemble method that integrates all five methods into a single 
unit. Using descriptive Dermatology data, the researcher 
examined various data mining techniques to categorize the 
skin infection, and then apply an ensemble ML technique. 

Rea [7] a survey of people with skin diseases was done in 
Lambeth, London. A stratified specimen of 2180 adults was 
sent a mail-in questionnaire asking about skin diseases. A 
subsample of 614 people was questioned at home and their 
exposed skin was looked at. There were 92 conditions that 
were found. These were put into 13 groups based on how 
severe they were for the patient. 22–5% of people were thought 
to have skin diseases that needed medical care. With a 
prevalence of 6–1%, eczema was the most widely accepted 
essential factor. Certain types of skin diseases had different 

rates of occurrence based on age, gender, and social class. 
Only 21% of people with a skin disease that should have been 
treated by a doctor said they had gone to their healthcare 
professional in the previous six months for a skin problem. 
Medical treatment and self-medication are considered in 
relation to the existence of skin infection and certain other 
factors. 

Dildar [11] provides a thorough comprehensive study of 
DL techniques for skin cancer detection. Research papers from 
reputable journals on the topic of skin cancer diagnosis were 
reviewed. To aid comprehension, study results are presented in 
the form of tools, tables, graphs, methodologies, and frame- 
works. 

A. Gap Analysis 

Gap analysis for skin cancer classification using deep 
learning can be conducted by comparing the current state of 
research in this field with the desired future state. Some 
potential gaps that could be identified include: 

Lack of standardized datasets: There is a need for 
standardized datasets that are representative of diverse 
populations and cover different types and stages of skin cancer 
[1]. 

Limited generalizability: Many deep learning models 
developed for skin cancer classification have been evaluated 
on small datasets or datasets from a single institution. There is 
a need for models that can be trained on larger and more 
diverse datasets and can generalize well to different 
populations [4, 5, 6]. 

Limited availability of models in clinical practice: 
Although deep learning models have shown excellent 
performance in skin cancer classification, they are not yet 
widely used in clinical practice. There is a need to develop 
models that are easy to use, reliable, and can be integrated into 
clinical workflows [7, 8]. 

Limited attention to ethical considerations: There is a need 
for greater attention to ethical considerations in the 
development and deployment of deep learning models for skin 
cancer classification, including issues related to bias, privacy, 
and informed consent [9, 10]. 

III. PROPOSED APPROACH 

A. Melanoma Detection using Boosted SVM 

Ensembles with an infinite hypothesis are constructed 
using an infinite ensemble framework. This framework learns 
all the possible weight combinations for all the possible 
hypotheses. All the hypotheses are embedded in the kernel of 
the SVM model. The base classifier is trained by fixing the 
initial weights, and the error due to misclassification is 
calculated using the weighted method. Now similar to the 
boosting algorithm weight of each classifier is adjusted, and 
the ensemble classifier is computed using the weighted 
component sum classifier as, where is the weight and is the 
base classifier. Ensemble majority voting model is shown in 
Fig. 1. 
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Fig. 1. Ensemble majority voting model. 

SVM was developed from the theory of Structural Risk 
Minimization. In SVM, two essential parameters are to focus 
on, namely Gaussian width and the regularization parameters 
[2]. Boosted SVM is applied over the training dataset, and the 
weights are updated until convergence if the error rate exceeds 
0.5. The weighted normal strategy determines the error 
component (em). Only the limited weights of misclassified 
perceptions are taken as the numerator, separated by the total 
limited weights [3]. Each SVM is prepared to depend upon the 
dataset because testing and validation errors decrease as data 
quantity increases. In both the sections mentioned above, the 
weight update procedure is addressed by taking into account 
the distance from each group centroid to each misclassified 
observation. The modified weights for each misclassified 
observation are assigned concerning the distance from the 
centroid of the clusters. 

   ∑    
 
        (1) 

B. Melanoma Detection using Boosted GMM 

Using GMM for Ensemble comes under the standard cate- 
gory of clustering ensemble. It is a model-based Ensemble. A 
model-based Ensemble assumes that the model’s clusters will 
help optimize the relevance between the data and the underly- 
ing model. GMM is a probabilistic model [11] frequently used 
for density estimation, regression, and classification problems. 
GMM as a classifier is constructed as discussed in Section III. 
Then the Gaussian mixture components of each object class 
are compared with the corresponding class object probability. 
A threshold is fixed to recognize the object with maximum 
similarity for the specific object class. To generalize different 
object components and increase the similarity of objects in 
each class Adaboost algorithm is applied to create a model- 
based ensemble GMM framework. Here each component in 
GMM is considered a weak classifier with low accuracy and 
high redundancy. Adaboost algorithm combines all the weak 
classifiers into a robust classifier with effective multiclass 
object recognition. 

C. Melanoma Detection using Ensemble CNN 

A sequential voting ensemble could be created using 
convolution neural networks. Theory and implementation of 
voted ensembles are similar to Section III.C, with one 
significant difference. Here instead of using different classifier 
models, we use three models of CNN, and the highest voted 
prediction is taken as output. Here for each model, three 
convolution layers, three batch normalization layers are used. 
Finally, the dense layer with 256 units and softmax layer are 

used as the output layer. The Ensemble CNN model is shown 
in Fig. 2. 

 

Fig. 2. Proposed CNN model. 

Here for the CNN ensemble, three individual models are 
developed with many ReLu filters. Three models have 32, 64, 
and 128 filters consecutively. Here the optimizer used is 
Adam, and the output activation function is softmax. The 
batch size is 20, and the number of epochs is 30, with 1000 
steps for each epoch. An adaptive learning rate is used for 
each iteration. Dropout for the three models is 0.1, 0.15, and 
0.2. Ensemble CNN model is trained using 24000 images, 
tested using 12000 images, and validated using 12000 images 
with equally distributed images among each class. During the 
training of the CNN models, subsamples of the dataset are 
used. Errors for each subsampled data point are calculated 
such that if the error is more significant than a threshold, those 
points are discarded, and training is continued. Also, all three 
models’ features are aligned with highest to lowest priority 
features. Based on which zero variance features are removed, 
and features are sent to the next layer. 

IV. RESULTS 

Improving the accuracy of the classification process and 
decreasing the misclassification error are two main concerns 
in ensemble models. This chapter implements six ensemble 
models for melanoma classification based on the general 
category aspects. Bagging, boosting, majority voting, infinite 
ensemble framework, and cluster ensembles are implemented 
using Random Forest, Adaboost, Majority voting, Boosted 
SVM, and Boosted GMM classifiers. The Ensemble CNN 
model is a sequential model developed based on a majority 
voting ensemble. The ML models used in Section III are SVM, 
GMM, decision tree, and deepconvnet. These are taken as base 
models in ensemble models. The basic parameter attributes are 
tested in Section III, and hyper parameter tuning of the 
ensemble models is investigated in Section IV. The hyper- 
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parameters which could be fine-tuned for ensemble models are 
n estimators, learning rate, and m-features. Since deep learning 
models are analyzed, m features are not fine-tuned for our 
investigation. And since n- estimators and learning rates are 
related, these two parameters are considered for hyper- 
parameter tuning and optimization of the ensemble models. 
The performance of the classifiers in melanoma prediction is 
assessed using metrics like accuracy, precision, recall, F1 
score, MCC, Jaccard Index, and Kappa. Also, six classes of 
Melanoma are classified here. In this Stratified 10- fold, cross- 
validation is used for calculating the performance estimates. 
Stratification ensures that each class is represented with the 
same proportions roughly as in the entire data set. Ensemble 
diversity is used in the datasets to achieve better accuracy and 
avoid overlapping features in the dataset during clustering. 
The investigation has carried over 10000 melanoma images 
generated by GAN. Training of the classifier model has been 
done with 1000 superficial spreading Melanoma, 1000 Nodular 
Melanoma, 1000 lentigo melanoma, 1000 acral lentiginous 
Melanoma, 1000 subungual Melanoma, and 1000 amelanotic 
Melanoma images. For testing 2000 and validation, 2000 
images are used. The entire process has been carried over the 
python platform. Since CNN models require more datasets to 
avoid overfitting, it is trained using 24000 images, tested using 
12000 images, and validated using 12000 images with images 
equally distributed among each class. 

A. Performance Analysis of Random Forest Classifier 

In this investigation, a random forest classifier is 
implemented for melanoma prediction. Ensemble pruning is 
done here to reduce the complexity of the network, and the 
maximum number of features is set to auto. Due to pruning, 
the random state is fixed to zero. Even though hyperparameter 
tuning is not necessary for random forest classifiers, the 
number of estimators varies between 50,100 and 150. The 
number of estimators (n-estimators) indicates the number of 
trees or samples required to find the optimum solution. 
However, it doesn’t indicate that the higher the number of trees 
higher the accuracy. Increasing the number of trees leads to 
higher computational time. Also, the classifier model’s 
performance will drop for a higher number of estimators. So, 
choosing the optimum number of estimators is done using the 
trial-and- error method for our investigation. The minimum 
sample leaf is restricted to 10, 25, and 50. For each of the six 

classes of Melanoma, namely superficial spreading Melanoma, 
Nodular Melanoma, lentigo melanoma, acral lentiginous 
Melanoma, subungual Melanoma, and amelanotic Melanoma 
combinations of n estimators and minimum sample leaves 
were fixed. The performance of the classifier is tested. The 
random forest classifier’s performance is best for melanoma 
classification with an accuracy of 90.23 for the n estimator 
minimum leaf combination of 100:50. It is found that for a 
smaller number of estimators, Random forests suffer from 
underfitting problems. Performance analysis of random forest 
classifier is shown in Table I. 

B. Performance Analysis of Adaboost Classifier 

Adaboost, one of the popular boosting algorithms, is 
known to reduce outliers and overfitting issues. It also helps in 
improving the performance and robustness of the classifier. For 
Adaboost classification, different n estimators for different 
learning rate combinations are investigated to improve accu- 
racy. N estimators used are 50,100,150 and learning rates are 
0.01, 0.001 and 0.0001. 

Adaboost classifier performs well with an accuracy of 
96.78 for a learning rate of 0.01 with 50 estimators. Since base 
estimators affect the performance of the Adaboot classifier, svc 
is used as the base estimator. Performance metrics for 
melanoma detection using the Adaboost classifier are shown in 
Table II. 

C. Performance Analysis of Ensemble Voted Classifier 

Ensemble voted classifier is implemented using the 
majority voting method. For ensemble networks, pretrained 
base learners are necessary. GMM and SVM classifiers are 
implemented using the same settings discussed Decision tree, 
AdaBoost, and Random Forest classifier’s performance vary 
over the number of estimators, and the learning efficiency 
differs for each model. So, ensemble majority voted model has 
been implemented for different estimator learning rate 
combinations with a fixed threshold of 0.5. Here the combined 
majority voting is calculated. For each class prediction, if the 
vote probability is more significant than 0.5, then the majority 
vote among the classifier output is chosen. If the probability of 
none of the classifiers is above 0.5, then the model is again 
restarted for other weights. Performance analysis of the 
Ensemble voted classifier in Table III shows that the classifier 
achieves better accuracy of 96.32 for a learning rate of 0.01. 

TABLE I. PERFORMANCE ANALYSIS OF RANDOM FOREST CLASSIFIER 

Estimators Learning rate Precision Recall Accuracy F1-score MCC Jaccard Index Kappa 

 10 68.34 69.89 70.4 69.11 48.49 65.66 0.638 

50 25 68.57 69.99 74.82 69.27 49.91 69.33 0.712 

 50 70.12 71.34 71.27 70.72 51.52 70.49 0.712 

 10 73.87 74.21 76.89 74.04 57.34 73.79 0.728 

100 25 74.56 75.11 79.45 74.83 68.34 74.99 0.731 

 50 86.54 88.31 90.23 87.42 87.31 89 0.771 

 10 86.34 88.19 89.87 87.26 86.25 88.17 0.771 

150 25 86.36 88.24 89.93 87.29 86.78 88.51 0.764 

 50 86.47 88.29 89.97 87.37 86.91 88.81 0.76 
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TABLE II. PERFORMANCE ANALYSIS OF ADABOOST CLASSIFIER 

estimators Learning rate Precision Re-call Accuracy F1 score MCC Jaccard Index Kappa 

50 

0.01 93.21 94.78 96.78 93.99 95.78 93.29 0.836 

0.001 93.2 94.27 96.41 93.73 94.21 93.02 0.827 

0.0001 92.65 93.56 96.17 93.1 92.87 92.13 0.824 

100 

0.01 93.19 93.21 94.71 93.2 88.34 91.22 0.821 

0.001 93.02 92.16 91.34 92.59 79.48 90.67 0.817 

0.0001 92.89 92.11 92.65 92.5 87.49 89.54 0.802 

150 

0.01 91.56 91.83 90.47 91.69 77.92 87.48 0.798 

0.001 90.18 91.27 90.65 90.72 72.85 88.01 0.783 

0.0001 89.91 90.42 88.73 90.16 68.79 83.17 0.779 

TABLE III. PERFORMANCE ANALYSIS OF ENSEMBLE VOTED CLASSIFIER 

Estimators Learning rate Precision Recall Accuracy F1-score MCC Jaccard Index Kappa 

50 

0.01 92.56 93.89 96.32 93.22 93.67 90.45 0.892 

0.001 91.89 92.57 95.48 92.23 91.42 89.93 0.879 

0.0001 90.43 91.27 93.71 90.85 87.17 89.92 0.879 

100 

0.01 90.12 90.17 92.87 90.64 82.39 89.74 0.872 

0.001 88.67 89.36 91.28 89.01 80.39 87.95 0.865 

0.0001 84.31 86.29 87.91 85.29 78.59 84.77 0.847 

150 

0.01 83.37 86.17 87.59 84.75 71.44 84.9 0.823 

0.001 81.29 85.99 86.71 83.57 68.53 83.01 0.796 

0.0001 76.15 75.82 82.19 75.98 52.31 79.02 0.747 

D. Performance Analysis of Boosted SVM Classifier 

From the previous investigation on SVM, it has been 
proved that the RBF kernel works well on melanoma images 
for a gamma value of 10. The same parameters are used in the 
boosted SVM classifier for different n estimators and learning 
rates. Even though the AdaBoost classifier works well only for 
50 n estimators, boosted SVM gives better accuracy of 98.37 
with a 0.01 learning rate. MCC is also significantly improved 
compared to conventional SVM and AdaBoost classifier 
models. Performance metrics of boosted SVM classifier for 
melanoma classification are shown in Table IV. 

E. Performance Analysis of Boosted GMM Classifier 

GMM model works best as a density estimator in 
clustering, and the EM algorithm is applied for Classification. 
To maximize the robustness of the GMM classifier AdaBoost 
algorithm is used here. Boosted GMM classifier is analyzed for 
different estimators and learning rates, and the best parameter 
setting for the classifier is fixed. It is found that the boosted 
GMM classifier works best at 25 estimators for a learning rate 
of 0.01 to provide an accuracy of 96.17. GMM shows a 
gradual performance improvement compared to other 
classifiers. Performance metrics of boosted SVM classifier for 
melanoma classification are shown in Table V. 

TABLE IV. PERFORMANCE ANALYSIS OF BOOSTED SVM CLASSIFIER 

Estimators Learning rate Precision Recall Accuracy F1-score MCC Jaccard Index Kappa 

10 

0.01 96.48 92.34 97.16 94.36 89.48 88.28 0.873 

0.001 95.39 92.58 96.9 93.96 89.27 88.15 0.873 

0.0001 92.56 93.26 96.15 92.91 89.1 88.01 0.873 

25 

0.01 99.78 95.76 98.37 97.73 96.93 89.96 0.886 

0.001 98.89 95.61 97.93 97.22 96.73 89.46 0.881 

0.0001 98.1 94.92 97.61 96.48 96.2 89.31 0.879 

50 

0.01 97.67 94.36 97 95.99 95.91 89.18 0.871 

0.001 97.41 94.21 96.49 95.78 95.63 89.03 0.868 

0.0001 97.18 94.2 96.12 95.67 95.42 88.97 0.861 
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TABLE V. PERFORMANCE ANALYSIS OF BOOSTED GMM CLASSIFIER 

Estimators Learning rate Precision Recall Accuracy F1-score MCC Jaccard Index Kappa 

10 

0.01 90.18 89.76 95.89 89.97 83.85 84.95 0.723 

0.001 90.04 89.69 95.64 89.86 83.48 84.89 0.798 

0.0001 89.93 89.52 95.39 89.72 89.21 84.73 0.799 

25 

0.01 90.65 92.87 96.17 91.75 92.9 86.15 0.827 

0.001 90.57 92.74 96.13 91.64 92.84 86.02 0.819 

0.0001 90.43 92.69 96.08 91.55 92.77 85.99 0.811 

50 

0.01 90.39 92.34 96.01 91.35 92.68 85.81 0.804 

0.001 90.31 92.38 95.98 91.28 92.52 85.71 0.801 

0.0001 90.28 92.1 95.91 91.18 92.41 85.62 0.798 

F. Performance Analysis of Ensemble CNN Classifier 

Ensemble CNN is a sequential voting approach 
implemented using three different CNN models for variable 
learning rates. This model provides a more stable melanoma 
prediction accuracy than other ensemble approaches. Even 
though the implementation of this Ensemble is similar to the 
majority voting ensemble, this model performs better due to 
its distinctive feature extraction. This model extracts low and 
high- frequency features irrespective of the CNN type unless 
fixed features from previous models. Also, three different 
models have different dropout rates and kernel counts, 
preserving overfitting issues in the CNN model. Model 
converges earlier without much misclassification error. 
Performance metrics of the ensemble CNN model, as shown 
in Table VI, indicate the accuracy of 98.67 for melanoma 
classification. The network performs best with a learning rate 
of 0.0001 for 25 estimators, which is relatively less than other 
ensemble models. 

Performance metrics for the classifiers mentioned above 
for independent classes of Melanoma are shown in Table VII. 
Based on the classifier performance, it is clear that all the 
classifiers perform better in classifying superficial spreading 
Melanoma, Nodular Melanoma. Due to colossal variation and 
differences in the structural properties in different stages of 
other types of other types of melanomas, the accuracy of the 
classifiers is less compared to superficial spreading and 
nodular Melanoma. Subungual Melanoma is present in nails 
and nail beds. Properties of this Melanoma sometimes 
resemble typical characteristics of vitamin deficiency. So, 

classifiers require extreme robustness to achieve better 
accuracy. Amelanotic Melanoma is one particular type of 
Melanoma present in all skin variants. Also, amelanotic 
Melanoma in certain stages resembles superficial spreading 
Melanoma and nodular Melanoma. 

The ensemble classifiers implemented in this work pro- 
duce better accuracy than the single classifiers. Adaboost and 
Boosted SVM classifiers perform better for all five types of 
Melanomas except amelanotic Melanoma. The other three 
classifiers, namely boosted GMM, Random Forest, and En- 
semble voted classifiers, are performing better in superficial 
spreading, nodular, and lentigo melanoma classification but is 
moderate in the other two types despite the best hyperparame- 
ter settings, as shown in Table VII. Ensemble CNN models can 
provide consistent performance for all six types of melanoma 
classification with slight variation for amelanotic Melanoma. 

The convergence plot in Fig. 3 shows the robustness of the 
ensemble models in melanoma classification. The maximum 
number of epochs used is 30 to check the training and 
validation accuracy. Out of six ensemble classifier models 
used, Ensemble CNN, Adaboost, and Boosted SVM classifiers 
resulted in better convergence. However, the Ensemble CNN 
model shows overfitting during validation even though 
accuracy is higher. Further improvements in the network 
model and data selection need to be made to avoid overfitting 
issues. Boosted GMM and Random Forest models are showing 
underfitting of data points. Ensemble voted model shows the 

best fit from the 28th epoch. 

TABLE VI. PERFORMANCE ANALYSIS OF ENSEMBLE CNN CLASSIFIER 

Estimators Learning Rate Precision Recall Accuracy F1-score MCC Jaccard Index Kappa 

 0.01 90.57 92.74 96.13 91.64 92.84 86.02 0.834 

25 0.001 90.65 92.87 96.17 91.75 92.9 86.15 0.839 

 0.0001 99.96 99.86 98.67 98.15 97.34 92.71 0.899 

 0.01 90.43 92.69 96.08 91.55 92.77 85.99 0.832 

50 0.001 90.39 92.34 96.01 91.35 92.68 85.81 0.832 

 0.0001 90.31 92.28 95.98 91.28 92.52 85.71 0.832 

 0.01 90.28 92.1 95.91 91.18 92.41 85.62 0.832 

100 0.001 89.93 89.52 95.39 89.72 83.21 84.73 0.832 

 0.0001 90.04 89.69 95.64 89.86 83.48 84.89 0.832 
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TABLE VII. PERFORMANCE ANALYSIS OF ENSEMBLE CLASSIFIERS 

Classifiers Melanoma classes Precision Recall Accuracy F1 score MCC Jaccard Index Kappa 

Superficial spreading 99.82 95.83 98.41 97.78 96.94 90 0.886 

Nodular 99.8 95.76 98.41 97.74 96.93 89.96 0.886 

Boosted Lentigo maligna 99.78 95.68 98.37 97.69 96.93 89.96 0.886 

SVM Acral lentignous 99.62 95.68 98.37 97.61 96.91 89.95 0.883 

Subungual 99.58 95.62 98.37 97.56 96.87 89.91 0.881 

Amelanotic 99.58 95.62 98.31 97.56 96.81 89.91 0.88 

Superficial spreading 90.65 92.92 96.25 91.77 92.95 86.46 0.827 

Nodular 90.65 92.92 96.25 91.77 92.95 86.46 0.827 

Boosted Lentigo maligna 90.65 92.9 96.23 91.76 92.95 86.38 0.827 

GMM Acral lentignous 90.62 92.87 96.19 91.73 92.93 86.29 0.819 

Subungual 90.58 92.87 96.17 91.71 92.9 86.15 0.812 

Amelanotic 90.58 92.81 96.17 91.68 92.9 86.15 0.812 

Superficial spreading 86.54 88.31 90.23 87.42 87.31 89 0.771 

Nodular 86.54 88.31 90.23 87.42 87.31 89 0.771 

Random Lentigo maligna 86.54 88.29 90.22 87.41 87.26 89 0.771 

forest Acral lentignous 86.51 88.27 90.2 87.38 87.24 88.97 0.769 

Subungual 86.5 88.25 90.19 87.37 87.21 88.89 0.766 

Amelanotic 86.5 88.25 90.19 87.37 87.21 88.86 0.757 

Superficial spreading 93.54 94.89 96.93 94.21 95.86 93.47 0.836 

Nodular 93.51 94.81 96.84 94.16 95.81 93.41 0.836 

Adaboost Lentigo maligna 93.21 94.78 96.78 93.99 95.79 93.29 0.836 

Classifier Acral lentignous 93.21 94.77 96.78 93.98 95.78 93.31 0.836 

Subungual 93.2 94.77 96.78 93.98 95.78 93.29 0.836 

Amelanotic 93.19 94.77 96.78 93.97 95.78 93.29 0.836 

Superficial spreading 92.59 93.93 96.36 93.26 93.71 90.62 0.892 

Ensemble 
Nodular

 92.56 93.89 96.36 93.22 93.65 90.62 0.892 

voting 
Lentigo maligna 92.55 93.86 96.32 93.20 93.61 90.57 0.887 

classifier 
Acral lentignous 92.51 93.82 96.31 93.16 93.56 90.51 0.883 

Subungual 92.49 93.84 96.29 93.16 93.51 90.45 0.881 

Amelanotic 92.49 93.81 96.29 93.15 93.51 90.45 0.881 

Superficial spreading 99.96 99.86 98.67 99.91 97.34 92.71 0.899 

Ensemble 
Nodular

 99.96 95.86 98.67 97.87 97.34 92.7 0.899 

CNN 
Lentigo maligna 99.94 95.78 98.64 97.82 97.29 92.68 0.897 

classifier 
Acral lentignous 99.94 95.78 98.64 97.82 97.29 92.68 0.892 

Subungual 99.89 95.78 98.64 97.79 97.29 92.63 0.892 

Amelanotic 99.86 95.71 98.61 97.74 97.27 92.59 0.892 
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Fig. 3. Accuracy vs. epoch plot for convergence analysis. 

V. CONCLUSION 

Ensemble learning models as classifiers for melanoma 
classification. Bagging, boosting, majority voting, infinite 
ensemble framework, and cluster ensembles are implemented 
using Random Forest, Adaboost, Majority voting, Boosted 
SVM, Boosted GMM classifiers, and Ensemble CNN models. 

The performance of the classifiers in melanoma prediction 
is assessed using metrics like accuracy, precision, recall, F1 
score, MCC, Jaccard Index, and Kappa. Also, six classes of 
Melanoma are classified here. In this Stratified 10-fold, cross- 
validation is used for calculating the performance estimates. 
Stratification ensures that each class is roughly represented 
with the same proportions as in the entire data set. Ensemble 
diversity is used in the datasets to achieve better accuracy and 
avoid overlapping of features in the dataset during clustering. 
Ensemble models can perform well for five classes with 
consistent accuracy out of six classes. The boosted SVM and 
Adaboost classifiers have higher performance than boosted 

GMM, random forest, and Ensemble voted classifiers. Ensem- 
ble CNN seems to outperform other ensemble models with an 
accuracy of 98.67. Though the execution time of ensemble 
classifiers is high, such a complex network is easier to train, 
and the network converges ideally. The system’s complexity is 
one point that needs to be considered in the proposed model 
for further improvement. Also, it was observed that an increase 
in the number of images in the training dataset increased the 
size of the feature set, which led to overlapping features. 
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