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Abstract—The problem of collaborative pattern tracking in 

multi-agent systems (MAS) like unmanned aerial vehicles (UAV) 

is investigated in this article. First, a new method for distributed 

consensus is constructed inside the framework of the leader-

following approach for second-order nonlinear MAS. The 

technique canceled the chattering effect observed in the 

conventional sliding mode-based control protocols by 

transmitting smooth input signals to agents' control channels. 

Second, a novel formation framework is proposed to accomplish 

three-dimensional formation tracking by including consensus 

procedures in the formation dynamics model. This will allow for 

formation tracking in all three dimensions. The Lyapunov theory 

provides evidence demonstrating the proposed protocols' 

stability and convergence. Numerical simulations have been 

carried out to prove the proposed algorithms' effectiveness. 

Keywords—Formation control; distributed consensus; multi-

agent systems; multiple-UAV 

I. INTRODUCTION 

The increased complexity of the missions of engineering 
systems has led to the development of distributed and 
cooperative control for networked systems under the paradigm 
of multi-agent systems (MAS). The benefits of using MAS 
include increased efficiency, precision, flexibility, robustness, 
and affordability. Real-life applications of MAS include 
ground systems [1], [2]. , unmanned aerial vehicles (UAV) 
[3]–[12], transport aircraft [13], [14], helicopters [15], 
spacecraft [16]–[19], satellites [20], [21], and missiles [22], 
[23]. 

One of the most fascinating and challenging applications of 
networked aerial systems is the cooperative control of multi-
UAV systems. Research on multi-UAV cooperative control has 
recently increased, employing various methods and theories. 
Using the net contract protocol, Liu & Zhang [3] developed a 
model for assigning tasks to manned and unmanned aerial 
vehicles in real environments. The formation control problem 
of multi-UAV systems was treated as a differential game 
problem in [4], with the open-loop Nash strategy for each agent 
being to construct fully distributed formation control. The 
creation of autonomous quadrotor aircraft was addressed in [5] 
by developing a non-smooth distributed cohesive motion 
control using the virtual structure approach. The non-smooth 
backstepping design technique was used to create a distributed 
formation flying control algorithms [6]. Using a differential 
evolution method, Zhang et al. [7] designed an adaptive 
formation control to find the optimum formation for a swarm 
of UAVs. An algorithm based on the Riccati equation was used 
in [8] to solve the problem of formation-containment control 
for a fleet of multirotor UAVs. Ziyang et al. [9] proposed a 

decentralized, self-organized mission planning algorithm. 
According to [10], a distributed formation control free of 
collisions can be created using a Voronoi diagram or partition. 
Path planning for a formation control approach with constraints 
and without collisions was examined in [11] utilizing rapid 
particle swarm optimization, considering chaos-based 
initialization, parameter optimization, and topology updating. 
For linear MAS, Almalki & Kada [24] offered a sliding-PID 
control that can be applied directly for multi-UAV consensus 
tracking. 

Although the methodologies and approaches discussed 
above have been shown to be effective, there are still several 
critical obstacles to be solved in the cooperative control of 
MAS, particularly in multi-UAV systems. Formation keeping, 
communication failures inside MAS, altering communication 
topologies, and the smoothness of control inputs are some 
practical issues that must be addressed. Within the framework 
of a smoothly distributed consensus and formation control 
paradigm, we address these challenges and provide potential 
solutions in the study that we have presented here. As a result, 
the first thing we have contributed is the invention of 
distributed consensus procedures that are smooth for multi-
agent systems with nonlinear dynamics integrated into them. In 
place of the signum-based control used in classic MAS control, 
which results in controller chattering, a continuous PI-like 
(proportional-integral) control is used to design the control 
inputs to the agent closed-loop dynamics. This allows for more 
precise and accurate control over the system. The second 
significant contribution made by this study is a model for 
maintaining airborne formation. We create the formation 
model by combining distributed protocols into a six-degree-of-
freedom dynamical framework. This allows us to simulate the 
formation of complex structures. For a fair comparison, one 
can see, for example, the work presented in [25] and [26]. 

II. PRELIMINARIES 

Graph theory can be used to model the topology of 
information exchange in a networked system with 𝑛  agents. 

The interaction among an agent set ℳ = {1,2, … , 𝑛}  is 
represented by a weighted graph 𝓖 = (𝒱, ℰ,𝒜)  where 𝒱 =
(𝓋1, 𝓋2, … , 𝓋𝑛) denotes the vertex set,ℰ ⊆ 𝒱 × 𝒱  denotes an 

edge set, and 𝒜 = (𝑎𝑖𝑗 ≥ 0) ∈ ℝ𝑛×𝑛  describe a nonnegative 

adjacency matrix. The elements𝑎𝑖𝑗  are defined such that 𝑎𝑖𝑗 >

0 if(𝓋𝑖 , 𝓋𝑗) ∈ ℰ, 𝑎𝑖𝑗 = 0 if (𝓋𝑖 , 𝓋𝑗) ∉ ℰ , and 𝑎𝑖𝑗 = 0 (no self-

loop). 
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Definition 1: Each agent 𝑖  in the set ℳ  has a set of 
neighbors denoted by its connectivity set, 𝒩i =
{ 𝓋𝑖|(𝓋𝑗 , 𝓋𝑖) ∈ ℰ}. 

Definition 2 Laplacian matrix 𝑳(𝑙𝑖𝑗) ∈ ℝ
𝑛×𝑛  is associated 

with the graph 𝒢 , where 𝑙𝑖𝑗 = −𝑎𝑖𝑗  for 𝑖 ≠ 𝑗  and 𝑙𝑖𝑗 =
∑ 𝑎𝑖𝑗
𝑛
𝑗=1,𝑗≠𝑖   

Assumption 1: As the graph 𝓖 is not fully connected, the 
topology is directed communication that allows only the leader 
to communicate with the followers. 

Unlike undirected communication, where a symmetric 
matrix comes from the exchange of information in both 
directions, directed communication involves a one-way flow of 
data (due to the symmetry of the coupling weights). 

Assumption 2: When defining the Laplacian matrix  , the 
eigenvalues 𝜆𝑖(𝓛) are specified as 0 ≤ 𝜆1(𝓛) < 𝜆2(𝓛) < ⋯ <
𝜆𝑛(𝓛). 

III. SYSTEM MODEL 

A. Distributed Consensus Problem for Nonlinear Second-

Order MAS 

MAS can be considered a team consisting of a single 
virtual leader 0 and a diverse set n of identically-behaving, 
second-order dynamics followers. 

{
�̇�𝑖 = 𝓿𝑖

�̇�𝑖 = 𝒇𝑖(𝑡, 𝒙𝑖 , 𝓿𝑖) + 𝒖𝑖
  (1) 

where the agent's position, velocity, and control input 
vectors are represent respectively by 𝒙𝑖 , 𝓿𝑖 , 𝒖𝑖 ∈ ℝ

𝑚  , It is 
detailed how the dynamics of the virtual leader work by 

{
�̇�0 = 𝓿0

�̇�0 = 𝒇0(𝑡, 𝒙0)
   (2) 

where 𝒙0, 𝓿0 ∈ ℝ
𝑚  are the position and velocity of the 

leader. The dynamics of the leader and the followers are 
modeled by the functions 𝒇0, 𝒇𝑖 ∈ ℝ

𝑚 , respectively. 

Assumption 3: System (1) is stabilizable if and only if the 
functions 𝒇𝑖  are uniformly bounded with respect to t and 
locally uniformly bounded with respect to 𝒙𝑖  and 𝓿𝑖 . As a 
consequence of that,  

‖𝒇𝑖(𝑡, 𝒙𝑖 , 𝓿𝑖)‖2 ≤ 𝛿𝒇𝑖  (3) 

Where 𝛿𝒇𝑖 ∈ ℝ
+ 

B. Distributed Consensus Control Algorithm 

Here, we examine the issue of smooth distributed 
consensus control for a second-order nonlinear MAS under the 
assumption of time-varying velocities. The aim of controlling 
is to design distributed individual protocols 𝒖𝑖 that will lead to 
the following sort of consensus agreement: 

{
lim
𝑡→∞

‖𝒙𝑖(𝑡) − 𝒙0(𝑡)‖2 = 0

lim
𝑡→∞

‖𝓿𝑖(𝑡) − 𝓿0(𝑡)‖2 = 0
 ∀𝑖 ∈ 𝓋 (4) 

In order to find a solution to this consensus problem, we 
have come up with certain smooth distributed control 
protocols, which are as follows: 

𝒖𝑖 = −𝛼 𝒆𝑖 − 𝛽 |𝒆𝑖|
𝛾  (5) 

𝒆𝑖 = ∑ 𝑎𝑖𝑗(𝒙𝑖 − 𝒙𝑗)
𝑛
𝑗=0 + 𝑐∑ 𝑎𝑖𝑗(𝓿𝑖 −𝓿𝑗)

𝑛
𝑗=0  (6) 

while  𝛼 and 𝛽  represent control gains and 𝑐 ∈ ℝ+ is 
constant, and the exponent 𝛾 is a positive constant chosen by 
the designer. 

Assumption 4 There exists a constant 𝛿𝑳 ∈ ℝ
+ for which 

‖𝑳⨂𝑰𝑝‖∞ ≤ 𝛿𝑳𝜆𝑚𝑎𝑥(𝑳)  (7) 

Where 𝑰𝑝 denotes the 𝑝-identity matrix, 𝑝 = 𝑛 × 𝑚 

Theorem 1 Let's suppose that assumptions 1–4 are valid, 
and that the communication graph 𝓖 is connected. It is possible 
that the parameters of the distributed protocols (5)-(7) can be 
satisfied if: 

{
 
 

 
 𝛼 <

𝛽𝛿𝑓𝑖
(1+𝑐)𝜆𝑚𝑎𝑥(𝑳⊗𝑰𝑝)

𝛽 > (𝛾
0
)
−1 1

𝜆2
𝛾+1(𝑳)

(
2𝑉𝑥(0)

𝜆𝑚𝑎𝑥(𝑳)
)
1−𝛾

𝛿 > 0

  (8) 

Therefore, the consensus argument (4) is reached by a 
nonlinear leader-follower MAS (1)-(2). A Lyapunov function 
associated with the positions of the agents is indicated by 
𝑉𝑥(0) = 𝑉𝑥(𝑡 = 0), where 𝜆 is an eigenvalue. 

Proof: The time dependence is left out of the notation for 
simplicity. Each piece of evidence is described in detail below. 

First, let's define the vectors 𝒙𝑖 = 𝒙𝑖 − 𝒙0 ∈ ℝ
𝑚 , �̃�𝑖 =

𝓿𝑖 − 𝓿0 ∈ ℝ
𝑚 , 𝝃𝑥 = [𝒙1

𝑇 , … , 𝒙𝑛
𝑇]𝑇 ∈ ℝ𝑝 , 𝝃𝑣 = [�̃�1

𝑇 , … , �̃�𝑛
𝑇]𝑇 ∈

ℝ𝑝 , 𝑢 = [𝒖1
𝑇 , … , 𝒖𝑛

𝑇]𝑇 ∈ ℝ𝑝 ,where 𝑝 = 𝑛 × 𝑚 , the system of 
(3-1)−(3-2) is modified by applying those notation to be 

{
�̇�𝑥 = 𝝃𝑣

�̇�𝑣 = 𝒇(𝝃𝑣) + 𝒖
   (9) 

Second, employing (5) and (6) to (9), it gives 

{
�̇�𝑥 = 𝝃𝑣

�̇�𝑣 = 𝒇(𝝃𝑣) − α(𝑳⊗ 𝑰𝑝)�̃� − β|(𝑳 ⊗ 𝑰𝑝)�̃�|
𝛾     (10) 

Third, determine the following Lyapunov function for the 
system (3-10): 

𝑉 = 𝑉𝑥 + 𝑉𝑣 + 𝝃𝑥
𝑇𝑰𝑝𝝃𝒗

𝑇 = 1

2
𝝃𝑇 [

𝜎(𝑳 ⊗ 𝑰𝑝) 𝑰𝑝
𝑰𝑝 𝑰𝑝

] 𝝃   (11) 

{

𝑉𝑥 =
1

2
𝜎(𝑳⊗ 𝑰𝑝)𝝃𝑥

𝑇𝝃𝑥

𝑉𝑣 =
1

2
𝑰𝑝𝝃𝒗

𝑇𝝃𝑣

𝝃 = [𝝃𝑥
𝑇 𝝃𝒗

𝑇]𝑇 ∈ ℝ2𝑝
  (12) 

As a result, the following condition must be true for 𝜎 ∈
ℝ+ 

𝑉 ≥ 1

2
𝝃𝑇 [

𝜎𝜆2(𝑳) 1
1 1

]⊗ 𝑰𝑛×𝑝𝝃  (13) 
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Substituting the following form for (13): 

𝑉 ≥ 1

2
𝝃𝑇 [

𝑨 𝑩
𝑩𝑇 𝑪

]⊗ 𝑰𝑛×𝑝𝝃 (14) 

Furthermore, 𝑉 is positive using Schur ’s complement, if 𝜎 

is chosen such that 𝜎 >
1

𝜆2
(𝑳): 

𝑨 − 𝑩𝑪−1𝑩𝑇 = 𝜎𝜆2(𝑳) − 1 > 0  (15) 

Forth, utilize trajectories (10) to get the time derivative of 
the function 𝑉: 

�̇� = 𝝃𝑇 [
𝜎(𝑳 ⊗ 𝑰𝑝) 𝑰𝑝

𝑰𝑝 𝑰𝑝
] �̇�  

= 𝜎𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 + 𝝃𝑣

𝑇𝑰𝑝𝝃𝑣 + 𝝃𝑥
𝑇𝑰𝑝�̇�𝑣 + 𝝃𝑣

𝑇𝑰𝑝�̇�𝑣 

= 𝜎𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 + 𝝃𝑣

𝑇𝑰𝑝𝝃𝑣 + (𝝃𝑥
𝑇 + 𝝃𝑣

𝑇)�̇�𝑣     (16) 

This is the consequence of applying system dynamics (3-
10) to the situation. 

�̇� = 𝜎𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 + 𝝃𝑣

𝑇𝑰𝑝𝝃𝑣 + (𝝃𝑥
𝑇 + 𝝃𝑣

𝑇)𝒇

−𝛼(𝝃𝑥
𝑇 + 𝝃𝑣

𝑇)(𝑳 ⊗ 𝑰𝑝)𝝃𝑥 + 𝑐(𝑳⊗ 𝑰𝑝)𝝃𝑣
 

−𝛽(𝝃𝑥
𝑇 + 𝝃𝑣

𝑇)|(𝑳 ⊗ 𝑰𝑝)𝝃𝑥 + 𝑐(𝑳⊗ 𝑰𝑝)𝝃𝑣|
𝛾
     (17) 

By adopting Newton's generalized binomial theorem to the 
setting of the fixed-time graph topology, we demonstrate that 

�̇� = 𝜎𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 + 𝝃𝑣

𝑇𝑰𝑝𝝃𝑣 + (𝝃𝑥
𝑇 + 𝝃𝑣

𝑇)𝒇

−𝛼(𝝃𝑥
𝑇 + 𝝃𝑣

𝑇)(𝑳 ⊗ 𝑰𝑝)𝝃𝑥 + 𝑐(𝑳⊗ 𝑰𝑝)𝝃𝑣
 

−𝛽(𝝃𝑥
𝑇 + 𝝃𝑣

𝑇)∑ {(𝛾
𝑘
) [(𝑳⊗ 𝑰𝑝)𝝃𝑥]

𝛾−𝑘
[𝑐(𝑳⊗ 𝑰𝑝)𝝃𝑣]

−𝑘
}

𝑝
𝑘=0 (18) 

Therefore, if we want to show that �̇� < 0 holds when ∀𝑡 >
𝑡0, As a starting point, let's consider about the term: 

𝜎𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 − 𝛽(𝝃𝑥

𝑇

+ 𝝃𝑣
𝑇)∑ {(

𝛾

𝑘
) [(𝑳 ⊗ 𝑰𝑝)𝝃𝑥]

𝛾−𝑘
[𝑐(𝑳

𝑝

𝑘=0

⊗ 𝑰𝑝)𝝃𝑣]
−𝑘
} 

We put a limit on this term by rewriting it as follows: 

𝜎𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 − 𝛽(𝝃𝑥

𝑇

+ 𝝃𝑣
𝑇)∑ {(

𝛾

𝑘
) [(𝑳⊗ 𝑰𝑝)𝝃𝑥]

𝛾−𝑘
[𝑐(𝑳

𝑝

𝑘=0

⊗ 𝑰𝑝)𝝃𝑣]
−𝑘
} = 

𝜎𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 − 𝛽 (

𝛾

0
) (𝝃𝑥

𝛾
)
𝑇
(𝑳 ⊗ 𝑰𝑝)

𝛾
𝝃𝑣

− 𝛽∑ {𝑐𝑘 (
𝛾

𝑘
) (𝝃𝑥

𝛾−𝑘
) (𝑳 ⊗ 𝑰𝑝)

𝛾
𝝃𝑣
𝑘} =

𝑝

𝑘=1
 

𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 [𝜎 − 𝛽 (

𝛾

0
) (𝝃𝑥

𝛾−1
)
𝑇
(𝑳 ⊗ 𝑰𝑝)

𝛾−1
]  

−𝛽∑ {𝑐𝑘(𝛾
𝑘
)(𝝃𝑥

𝛾−𝑘
) (𝑳 ⊗ 𝑰𝑝)

𝛾
𝝃𝑣
𝑘}

𝑝
𝑘=1  (19) 

According to the characteristics of the matrix 𝑳, (19) is 
limited as follows: 

𝜎𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 − 𝛽(𝝃𝑥

𝑇

+ 𝝃𝑣
𝑇)∑ {(

𝛾

𝑘
) [(𝑳⊗ 𝑰𝑝)𝝃𝑥]

𝛾−𝑘
[𝑐(𝑳

𝑝

𝑘=0

⊗ 𝑰𝑝)𝝃𝑣]
−𝑘
} ≤ 

𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 [𝜎 − 𝛽 (

𝛾

0
) 𝜆𝟐

𝛾−1(𝑳)‖𝝃𝑥
𝛾−1

‖
2
]  

−𝛽∑ {𝑐𝑘(𝛾
𝑘
)(𝝃𝑥

𝛾−𝑘
) (𝑳 ⊗ 𝑰𝑝)

𝛾
𝝃𝑣
𝑘}

𝑝
𝑘=1  (20) 

We get that since 𝑉𝑥 , is a quadratic function of ‖𝝃𝑥‖ 

𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 [𝜎 − 𝛽 (

𝛾

0
) 𝜆𝟐

𝛾−1(𝑳)‖𝝃𝑥
𝛾−1

‖
2
]

− 𝛽∑ {𝑐𝑘 (
𝛾

𝑘
) (𝝃𝑥

𝛾−𝑘
) (𝑳 ⊗ 𝑰𝑝)

𝛾
𝝃𝑣
𝑘} ≤

𝑝

𝑘=1
 

𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣 [𝜎 − 𝛽 (

𝛾

0
) 𝜆2

𝛾−1(𝑳) (
2𝑉𝑥(0)

𝜆𝑚𝑎𝑥(𝑳)
)

𝛾−1

]  

−𝛽∑ {𝑐𝑘(𝛾
𝑘
)(𝝃𝑥

𝛾−𝑘
) (𝑳 ⊗ 𝑰𝑝)

𝛾
𝝃𝑣
𝑘}

𝑝
𝑘=1  (21) 

By selecting on 𝜎, you will be taken to a 

𝜎 = 𝛽(𝛾
0
)𝜆2
𝛾(𝑳) (

2𝑉𝑥(0)

𝜆𝑚𝑎𝑥(𝑳)
)
𝛾−1

>
1

𝜆2(𝑳)
 (22) 

The gain of control 𝛽 can be adjusted as 

𝛽 > (𝛾
0
)
−1 1

𝜆2
𝛾+1(𝑳)

(
2𝑉𝑥(0)

𝜆𝑚𝑎𝑥(𝑳)
)
1−𝛾

 (23) 

When applying (23) to (21), we get 

𝜎𝝃𝑥
𝑇(𝑳 ⊗ 𝑰𝑝)𝝃𝑣

−𝛽∑ {(
𝛾

𝑘
) [(𝑳 ⊗ 𝑰𝑝)𝝃𝑥]

𝛾−𝑘
[𝑐(𝑳 ⊗ 𝑰𝑝)𝝃𝑣]

−𝑘
}

𝑝

𝑘=0
≤

 

−𝛽∑ {𝑐𝑘(𝛾
𝑘
)(𝝃𝑥

𝛾−𝑘
) (𝑳 ⊗ 𝑰𝑝)

𝛾
𝝃𝑣
𝑘}

𝑝
𝑘=1  (24) 

Lemma 2: [27] For a vector 𝒗 ∈ ℝ𝑛  with 1𝑛
𝑇𝒗 = 0  with 

1𝑛 = [1,⋯ ,1]𝑛
𝑇 , inequalities involving the following hold 

𝜆𝑚𝑖𝑛(𝑴) > 0. 

{
𝒗𝑇𝑴𝒗 ≥ 𝜆𝑚𝑖𝑛(𝑴)𝒗

𝑇𝒗
(𝑺 ⊗ 𝑰𝑁)𝒗 ≤ 𝜆𝑚𝑎𝑥(𝑺)‖𝒗‖2

  (25) 

It follows from (23) and (24) that 

�̇� ≤ 𝝃𝑣
𝑇𝑰𝑝𝝃𝑣 − 𝛼𝜆𝑚𝑎𝑥(𝑳 ⊗ 𝑰𝑝)(‖𝝃𝑥

𝑇‖2‖𝝃𝑥‖2 + ‖𝝃𝑣
𝑇‖2‖𝝃𝑥‖2)

+𝑐 𝜆𝑚𝑎𝑥(𝑳)‖𝝃𝑣‖2 
 

−𝛽∑ {𝑐𝑘(𝛾
𝑘
)(𝝃𝑥

𝛾−𝑘
) (𝑳 ⊗ 𝑰𝑝)

𝛾
𝝃𝑣
𝑘}

𝑝
𝑘=1  (26) 

Next, we rewrite (3-17) so that the term  𝝃𝑣
𝑇𝑰𝑝𝝃𝑣 −

𝛼(𝝃𝑥
𝑇 + 𝝃𝑣

𝑇)(𝑳 ⊗ 𝑰𝑝)𝝃𝑥 + 𝑐(𝑳⊗ 𝑰𝑝)𝝃𝑣 

�̇� ≤ 𝝃𝑣
𝑇𝑰𝑝𝝃𝑣 −  𝛼𝜆𝑚𝑎𝑥(𝑳 ⊗ 𝑰𝑝)(‖𝝃𝑥

𝑇‖2‖𝝃𝑥‖2 + ‖𝝃𝑣
𝑇‖2‖𝝃𝑥‖2)

+𝑐 𝜆𝑚𝑎𝑥(𝑳)‖𝝃𝑣‖2 
 

−𝛽∑ {𝑐𝑘(𝛾
𝑘
)(𝝃𝑥

𝛾−𝑘
) (𝑳 ⊗ 𝑰𝑝)

𝛾
𝝃𝑣
𝑘}

𝑝
𝑘=1  (27) 

Condition �̇� < 0  holds when ∀𝑡 > 𝑡0 ,  (27) is found by 
rearranging as follows: 
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�̇� ≤ 𝝃𝑻𝚼𝝃 − 𝛽 ∑ {𝑐𝑘(𝛾
𝑘
)(𝝃𝑥

𝛾−𝑘
) (𝑳 ⊗ 𝑰𝑝)

𝛾
𝝃𝑣
𝑘}

𝑝
𝑘=1  (28) 

where  

{

Υ11 = 𝛽𝛿𝑓𝑖
+ 1

Υ12 = Υ21 =
1

2
𝛼(1 + 𝑐)𝜆𝑚𝑎𝑥(𝑳 ⊗ 𝑰𝑝)

Υ22 =
1

2
𝛼(1 + 𝑐)𝜆𝑚𝑎𝑥(𝑳 ⊗ 𝑰𝑝)

  (29) 

It follows from (28) that �̇� is negatively definite if and only 
if 

𝛼(1 + 𝑐)𝜆𝑚𝑎𝑥(𝑳 ⊗ 𝑰𝑝) − 𝛽𝛿𝑓𝑖
< 0 (30) 

Which results in 

𝛼 <
𝛽𝛿𝑓𝑖

(1+𝑐)𝜆𝑚𝑎𝑥(𝑳⊗𝑰𝑝)
  (31) 

IV. DISTRIBUTED COOPERATIVE CONTROL FOR UAV MAS 

A. UAV MAS Dynamics 

Consider a network of 𝑛  UAVs are operating 
autonomously, and that the three-dimensional trajectory of 
each vehicle 𝑖 ∈ 𝑁 is defined by a vector 𝒒𝑖 where 

𝒒𝑖[𝒙𝑖  , 𝝑𝑖]
𝑇 = [〈𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖〉

𝑇 , 〈𝛾𝑖 , 𝜃𝑖 , 𝜓𝑖〉
𝑇]𝑇 ∈ 𝑹𝟔 (32) 

Where the position vector is denoted by 𝒙𝑖 , whereas the 
angular rotation vector is denoted by 𝝑𝑖 , which includes roll, 
pitch, and yaw. Within the boundaries of the body airframe, the 
angular velocity vector 𝝎𝑖  is defined as 

𝝎𝑖 = [
1 0 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝛾 𝑐𝑜𝑛𝜃𝑠𝑖𝑛𝛾
0 𝑠𝑖𝑛𝛾 𝑐𝑜𝑛𝜃𝑐𝑜𝑠𝛾

] �̇�𝑖  (33) 

All of the following agent and leader dynamic models are 
considered as following 

Agents: 

{
�̇�𝑖 = 𝒗𝑖  , �̇�𝑖 = 𝒇𝑖𝑡 + 𝒖𝑖𝑡
�̇�𝑖 = 𝜔𝑖 , �̇�𝑖 = 𝒇𝑖𝑟 + 𝒖𝑖𝑟

  (34) 

Leader: 

{
�̇�0 = 𝒗0 , �̇�0 = 𝒇𝑡0

�̇�0 = 𝑻
−1𝜔0, �̇�0 = 𝒇𝑟0

  (35) 

where 𝑡 and 𝑟 denote translational and rotational motions, 
respectively; 𝑓𝑖𝑡 = 𝑇

−1𝑓𝑡0 , 𝑓𝑖𝑡 = 𝑓𝑟0 ; 𝑇  is the matrix that 
connects the body frame to the inertial frame; it is obtained, 
from Euler rotations, as 

𝑻 = [

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

]  (36) 

where 

 

{
 
 
 
 

 
 
 
 
𝑇11 = 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜓 − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝜓
𝑇12 = −𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝛾 − 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓

𝑇13 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓
𝑇21 = 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝛾 − 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓
𝑇22 = 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 − 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝜓

𝑇23 = −𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃
𝑇31 = 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝜃
𝑇32 = 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜃
𝑇33 = 𝑐𝑜𝑠𝜃

 

B. UAV MAS Consensus Control 

Lemma 3: Theorem 1 is used to construct the 𝒖𝑖𝑡 and 𝒖𝑖𝑟 
control inputs for translation and rotation, respectively. 

{
𝒖𝑖𝑡(𝑡) = −𝛼𝑡  𝒆𝑖𝑡 − 𝛽𝑡  |𝒆𝑖𝑡|

𝛾

𝒖𝑖𝑟(𝑡) = −𝛼𝑟 𝒆𝑖𝑟 − 𝛽𝑟  |𝒆𝑖𝑟|
𝛾  (37) 

where 𝛼𝑡 , 𝛽𝑡 , 𝛼𝑟 , and 𝛽𝑟 are computed by using (23) and 
(30), and 

{
  
 

  
 Α𝑖𝑡(𝑡) = ∑ 𝑎𝑖𝑗 (𝒙𝑖(𝑡) − 𝒙𝑗(𝑡))

𝑛
𝑗=0

+𝑐 ∑ 𝑎𝑖𝑗 (𝒗𝑖(𝑡) − 𝒗𝑗(𝑡))
𝑛
𝑗=0

Α𝑖𝑟(𝑡) = ∑ 𝑎𝑖𝑗 (𝝑𝑖(𝑡) − 𝝑𝑗(𝑡))
𝑛
𝑗=0

+𝑐 ∑ 𝑎𝑖𝑗 (𝝎𝑖(𝑡) − 𝝎𝑗(𝑡))
𝑛
𝑗=0

 (38) 

C. UAV MAS Formation Control 

The goal of formation control is to develop translational 
and rotational controls that allow multi-UAVs to precisely 
track a predetermined geometric pattern 𝒫(𝑥, 𝑦, 𝑧)  in three-
dimensional space with 

∑ 𝑝𝑖𝑥
𝑛
𝑖=1 = 𝑝0𝑥 , ∑ 𝑝𝑖𝑦

𝑛
𝑖=1 = 𝑝0𝑦 , ∑ 𝑝𝑖𝑧

𝑛
𝑖=1 = 𝑝0𝑧 (39) 

Where (𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧) is the center of the geometric pattern 

𝒫(𝑥, 𝑦, 𝑧). 

In this scenario, we assume that the formation states are 
denoted by that 𝜂1𝑖, 𝜂2𝑖 and, 𝜂3𝑖, and that the formation control 
protocols are denoted by 𝑢1𝑖  and, 𝑢2𝑖, and that the formation 
evolves according to the following dynamics system [28]: 

{

�̇�1𝑖 = 𝑢1𝑖
�̇�2𝑖 = 𝑢2𝑖

�̇�3𝑖 = 𝑢1𝑖𝜂2𝑖 − 𝑘0|𝑢1𝑖|𝜂3𝑖

  (40) 

where 𝑘0 ∈ ℝ
+ . The following illustrates how the 

trajectories of the agents relate to the pattern's trajectory: 

{
𝑥𝑖 = cos(𝜂1𝑖) [𝜂2𝑖 − 𝑘0sign(𝑢1𝑖)𝜂3𝑖] + sin(𝜂1𝑖) 𝜂3𝑖 + 𝑝𝑥𝑖
𝑦𝑖 = sin(𝜂1𝑖) [𝜂2𝑖 − 𝑘0sign(𝑢1𝑖)𝜂3𝑖] + cos(𝜂1𝑖) 𝜂3𝑖 + 𝑝𝑦𝑖

𝑧𝑖 = 𝑝𝑧𝑖

(41) 

If lim𝑡→∞  (𝜂𝑘𝑖 − 𝜂𝑘0) = 0  and lim𝑡→∞  (𝑢𝑙𝑖 − 𝑢𝑙0) = 0  for 
𝑘 = 1,2,3; 𝑙 = 1,2; 1 ≤ 𝑖 ≤ 𝑛 , then for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛  the 
MAS of 𝑛 -UAV achieves 

limt→∞   [

xi − xj
yi − yj
zi − zj

] = [

pxi − pxj
pyi − pyj
pzi − pzj

] , limt→∞   (∑  
xi
n
− x0

i=1

n

) = 0, 

lim
𝑡→∞

  (∑  𝑛
𝑖=1  

𝑦𝑖

𝑛
− 𝑦0) = 0, lim

𝑡→∞
  (∑  𝑛

𝑖=1  
𝑧𝑖

𝑛
− 𝑧0) = 0 (42) 
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where the leader coordinates are denoted by 𝑥0, 𝑦0, 𝑧0 
respectively (the formation pattern centroid). The definition of 

the vector �̃�𝑖 = [(𝜂1𝑖 − 𝜂10), (𝜂2𝑖 − 𝜂20), (𝜂3𝑖 − 𝜂30)]
T  as the 

tracking error vector for each UAV𝑖  and applying control law 
(5) to both 𝑢1𝑖 and 𝑢2𝑖, we are able to establish that 

{
𝑢𝑘𝑖 = −𝛼𝑘Α𝑘𝑖 − 𝛽𝑘|Α𝑘𝑖|

𝛾

Α𝑘𝑖(𝑡) = ∑  𝑛
𝑗=0  𝑎𝑖𝑗 (𝜂𝑘𝑖(𝑡) − 𝜂𝑘𝑗(𝑡))

, 𝑘 = 1,2. (43) 

Following is the reduced dynamic system that is generated 
as a result of substituting protocols (42) into the first two 
dynamic equations of the system (39): 

{
  
 

  
 �̇̃�1𝑖 = −𝛼1∑  𝑛

𝑗=0  𝑎𝑖𝑗 (𝜂1𝑖(𝑡) − 𝜂1𝑗(𝑡))

−𝛽1 |∑  𝑛
𝑗=0  𝑎𝑖𝑗 (𝜂1𝑖(𝑡) − 𝜂1𝑗(𝑡))|

𝑖

𝛾

+ �̇�10

�̇̃�2𝑖 = −𝛼2∑  𝑛
𝑗=0  𝑎𝑖𝑗 (𝜂2𝑖(𝑡) − 𝜂2𝑗(𝑡))

−𝛽2|∑  𝑛
𝑗=0  𝑎𝑖𝑗(𝜂2𝑖(𝑡) − 𝜂2(𝑡))|𝑖

𝛾
+ �̇�20

 (44) 

In the form of a vector, equation (44) is identical to the 
auxiliary closed-loop system that is presented in the following: 

�̇̃� = −𝛼(𝑳 ⊗ 𝑰2)�̃�−𝛽|(𝑳 ⊗ 𝑰2)�̃�|
𝛾 − �̇�0 (45) 

where 

�̃� = [�̃�1
𝑇 , �̃�2

𝑇]𝑇 = [�̃�11,⋯ , �̃�1𝑛,  �̃�21,⋯ , �̃�2𝑛]
𝑇

�̃�0 = [𝟏𝑛
𝑇�̃�10,  𝟏𝑛

𝑇�̃�20]
𝑇

𝜶 = [
𝛼1𝑰𝑛 𝟎𝑛𝑛
𝟎𝑛𝑛 𝛼2𝑰𝑛

] , 𝜷 = [
𝛽1𝑰𝑛 𝟎𝑛𝑛
𝟎𝑛𝑛 𝛽2𝑰𝑛

]

 

Theorem 2: Considering Assumptions 1-3 hold true, the 
communication graph 𝓖 is connected and the control inputs to 
the closed-loop system (46) are selected according to (43), the 
agents' states 𝜂1𝑖 and 𝜂2𝑖 will converge to the formation states 
𝜂10  and 𝜂20 , respectively, if the tracking error converges to 
zero lim𝑡→∞  (�̃�𝑖) = 0. 

Proof: The following quadratic function can be considered 
of as a potential Lyapunov function 

𝑉 =
1

2
�̃�T(𝑳 ⊗ 𝑰2)�̃�  (46) 

If we assume that 𝑉  is continuously differentiable with 

regard to 𝜁, we may formulate its time derivative �̇� as 

�̇� = �̃�T(𝑳 ⊗ 𝑰2)�̇̃�  (47) 

If the auxiliary closed-loop system (45) is used, we obtain  

�̇� = −𝛼�̃�T(𝑳 ⊗ 𝑰2)�̃� − 𝛽�̃�
T(𝑳 ⊗ 𝑰2)|(𝑳 ⊗ 𝑰2)�̃�|

𝛾 − �̇�0(48) 

Since 𝛾 > 0   and the gain matrices 𝜶  and 𝜷  are both 
diagonal, we have 

�̇� ⩽ −𝑑𝑒𝑡(𝜶)�̃�𝑇(𝑳 ⊗ 𝑰2) �̃�  

−det(𝜷) 𝜂T(𝑳 ⊗ 𝑰2)|(𝑳 ⊗ 𝑰2)�̃�|
𝛾  (49) 

Furthermore, the inequation (49) satisfies 

�̇� ⩽ −det(𝜶) 𝜆min
2 (𝑳 ⊗ 𝑰2) ∥ �̃� ∥2

2  (50) 

Since 𝑉 =
1

2
�̃�T(𝑳 ⊗ 𝑰2)�̃� ⩽

1

2
𝜆max(𝑳 ⊗ 𝑰2) ∥ �̃� ∥2

2  and 

𝜆𝑖(𝑳⊗ 𝑰2) = 𝜆𝑖(𝑳), it follows that 

�̇� ⩽ −det(𝜶)
√2𝜆

min 
2 (𝑳)

√𝜆max(𝑳)
√𝑉  (51) 

It is concluded from (51) that 

√𝑉 ⩽ √𝑉0 −
det(𝜶)

√2

𝜆min
2 (𝑳)

√𝜆max(𝑳)
𝑡 (52) 

Formation tracking is guaranteed to converge if and only if 

√𝑉 = 0 

𝑡 ⩾ √𝑉0
√2

det(𝜶)

√𝜆max(𝑳)

𝜆min
2 (𝑳)

 

=
√�̃�T(0)(𝑳⊗𝑰2)�̃�(0)

det(𝜶)

√𝜆max(𝑳)

𝜆min
2 (𝑳)

  (53) 

V. SIMULATION 

A. Consensus of Formation Pattern 

Here, a team of n = 4 UAVs performs out a path-following 
mission within a simulated environment. As illustrated in Fig. 
1, the path under consideration follows a half-parabolic shape. 
A swarm of UAVs forms in a specified formation is shown in 
Fig. 2 (a), following the common trajectory. Using the 
topology depicted in Fig. 2 (b), they track together a 
predetermined 3D trajectory through space. 

 

Fig. 1. Desired formation and trajectory. 

 

 

(a) Desired formation (b) Communication topology graph 

Fig. 2. Desired formation and fixed-time directed communication topology 

graph. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 5, 2023 

826 | P a g e  

www.ijacsa.thesai.org 

Fig. 3 illustrates the consensus in three dimensions among 
the four agents, as well as the timeline of how the agents' 
orientations gradually approach those of the virtual leader. 
Meanwhile, Fig. 4 illustrates the path taken for the leader and 
the followers by the centroid formation as it moves along the 
motion axes. 

 
(a) Consensus of the team of four agents. 

 
(b) Agents’ orientations. 

Fig. 3. Formation tracking with the control law. 

 

Fig. 4. Geometric pattern centroid tracking. 

B. Tracking of Formation Pattern 

Within the context of the simulated scenario, a team of four 
UAVs performs out a routing path following mission. 
Parametric trajectories take into account the considered path as 
defined by: 

{
 
 

 
 𝑥 =

𝑥0+cos
−1 𝑡−𝑏 𝑟 sin 𝑡

√𝑎2+𝑏2

𝑦 =
𝑦0+cos

−1 𝑡−𝑏 𝑟 sin 𝑡

√𝑎2+𝑏2

𝑧 = 𝑧0 + 𝑟 cos 𝑡  √𝑎
2 + 𝑏2 

   (54) 

With 𝑎 = 10, 𝑏 = 10, and 𝑟 = 50 

The formation mission can be accomplished with a 
switching communication topology like that illustrated in Fig. 
5 and a dwell duration of 15 𝑠. 

 

Fig. 5. Switching undirected topology interaction graph. 

Fig. 6 illustrates how the proposed control law was applied 
to the formation tracking. 
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Fig. 6. Formation tracking with the proposed control law. 

Fig. 3 to 6 show that the four UAVs achieved the formation 
requirements with the proposed distributed protocol despite the 
complex communication limitations and dynamic constraints. 
the tracking error of the formation is 0, as shown in Fig. 3. This 
demonstrates that the distributed formation control protocol is 
successful for UAV formation even under communication loss 
and topology switching conditions. If the formation of the 
UAVs needs to be adjusted while they are in flight, the control 
protocol can be used even when the UAVs’ configuration 
changes dynamically.  The results of the simulation 
demonstrate the effectiveness of the proposed control scheme. 

VI. CONCLUSION 

Based on leader-following consensus in MAS, a smooth 
distributed cooperative control for multi-air vehicles such as 
UAVs was designed. First, we developed smooth distributed 
consensus protocols, as opposed to the traditional sliding-mode 
based algorithms, by substituting the discontinuous signum 
function with a continuous integral function. Then, a model for 
flying formation control was developed to track and maintain 
three-dimensional geometric patterns. A Lyapunov function-
based approach was used to set the necessary and sufficient 
requirements for the convergence of both consensus and 
formation algorithms. The primary focus of the presented study 
in the near future will be on event-based formation control for 
multi-UAV systems, formation tracking in harsh environments, 
obstacle avoidance and disturbance rejections among aerial 
moving agents. 
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