
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

857 | P a g e

www.ijacsa.thesai.org

From Monolith to Microservice: Measuring

Architecture Maintainability

Muhammad Hafiz Hasan1, Mohd. Hafeez Osman2, Novia Indriaty Admodisastro3, Muhamad Sufri Muhammad4

Dept. of Soft. Engineering and Information System-FSKTM, UPM, Serdang, Selangor, Malaysia1, 2, 3, 4

Abstract—The migration of monolithic applications to the

cloud is a popular trend, with microservice architecture being a

commonly targeted architectural pattern. The motivation behind

this migration is often rooted in the challenges associated with

maintaining legacy applications and the need to adapt to rapidly

changing business requirements. To ensure that the migration to

microservices is a sound decision for enhancing maintainability,

designers must carefully consider the underlying factors driving

this software architecture migration. This study proposes a set of

software architecture metrics for evaluating the maintainability

of microservice architectural designs for monolith to

microservice architecture migration. These metrics consider

various factors, such as coupling, complexity, cohesion, and size,

which are crucial for ensuring that the software architecture

remains maintainable in the long term. Drawing upon previous

product quality models that share similar design properties with

microservice, we have derived maintainability metrics that can

help measure the quality of microservice architecture. In this

work, we introduced our first version of structural metrics for

measuring the maintainability quality of microservice

architecture concerning its cloud-native characteristics. This

work allows us to get early feedback on proposed metrics before

a detailed evaluation. With these metrics, designers can measure

their microservice architecture quality to fully leverage the

benefits of the cloud environment, thus ensuring that the

migration to microservice is a beneficial decision for enhancing

the maintainability of their software architecture applications.

Keywords—Monolith; cloud migration; software architecture;

design quality; maintainability; quality metric

I. INTRODUCTION

In recent years, the demand for online applications and
services has increased. Organizations and businesses with
online applications perceive cloud platforms as a promising
future for business strategy to remain competitive. For an
organization with an existing legacy application that involves
the organization’s core business process, migrating the
application to the cloud is more imminent to utilize cloud
benefits and ensure business continuity. These applications
often have monolithic software architecture, which does not
consider modularity in its design principle [1], and the systems
work in a silo [2]. In monolith architecture, developers develop
the entire application as a single unit with a large codebase and
tightly integrated components, increasing complexity and
making it difficult to manage and scale [3]. These
characteristics also affect its deployment approach when any
minor changes to the application require a complete rebuild,
leading to increased risk [4].

The motivation of the legacy application to cloud migration
is to overcome the roadblocks and limitations of monolith
applications [5] and to achieve cloud-native benefits such as
improving application modifiability, maintainability,
scalability, and deployability [6]. The cloud platform provides
scalability for computing resources without worrying about the
underlying infrastructure quickly and efficiently [7]. The
organization also gains more flexibility and agility in
responding to changing business ideas, thus increasing service
innovation. However, not all migration strategies to the cloud
provide mentioned benefits [8]. The Lift-and-Shift approach
involves taking existing as-is on-premise applications and
moving them to the cloud as a single service without
architecture and design changes limiting its cloud scalability
features [9].

In contrast, the microservice is a cloud architecture design
pattern designed to provide better scalability and
maintainability. In a microservice architecture, designers create
sets of independent services that use API as their
communication medium. Each microservice is responsible for
specific business capabilities, strong component separation,
and independent deployability execution [1], [5], [10]. Other
fundamental properties of microservice architectural design are
low coupling, high cohesion, and modularity [10] must be
carefully considered by developers and designers [11], [12]
during the design phase.

In the cloud migration context, migrated application quality
should be equivalent to, or better than, legacy monolith
applications. Software errors can stem devastating effects to
financial loss, time delays, or even risks to life [13], [14].
Numerous frameworks for migrating from monolith to cloud
have been introduced [1], [15]-[18], yet they still do not
adequately address quality considerations after the migration
[19]. Therefore, the migration did not accomplish its objective
[5], thus introducing new product quality challenges such as
application maintainability, security, reliability, and
compatibility [8], [20].

From a technical standpoint, migrating monolith
applications to the cloud allows for quick and effective
implementation of essential software changes to meet current
business needs. The relevant quality attribute is known as
maintainability, which expresses the degree of effectiveness
and efficiency with which an application can be changed,
modified, or corrected to meet requirements [21]. Therefore, it
is essential to ensure that migrated applications must be
maintainable by developers to avoid accumulated waste and
technical debt after the migration [22]-[24]. Thus,
maintainability has become an essential quality feature [25].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

858 | P a g e

www.ijacsa.thesai.org

However, empirical research on maintainability quality
assurance remains a missing research area for microservice
architecture [26]. To address this concern, the following
research questions have been formulated to guide this study:

 RQ1: What are the existing structural quality metrics
that relate to service-based architecture?

 RQ2: How do the existing structural metrics relate to
cloud-native characteristics?

 RQ3: What are the feasible metrics for the
maintainability quality model for microservice
architecture?

This paper proposes the structural metrics for measuring
microservice maintainability quality, focusing on microservice
architecture migration. A multi-structural design metrics
consisting of coupling, cohesion, complexity, and size form the
basis of the maintainability measurement. These metrics help
practitioners evaluate the architecture maintainability quality at
the earlier migration phase to minimize post-migration
technical debt, thus ensuring the achievable migration
objective [6].

The remainder of this paper is organized as follows.
Section II discusses related works with some comments on
their limitations. Section III describes the research
methodology for identifying existing service-based structural
metrics. Section IV discusses how the existing structural
metrics can be associated with cloud-native characteristics.
Section V further discusses structural metrics from
maintainability quality. Section VI briefly introduces our
proposed maintainability quality model, followed by a
discussion in Section VII. Finally, Section VIII concludes with
a summary and outlook on potential follow-up research.

II. RELATED WORK

The software quality model’s development reflects the
software architecture’s progression. A robust quality model
approach is necessary for measuring product architecture
quality, regardless of the adopted software architecture. Thus,
this work explores previous works on software quality models
and monolith-to-microservice migration approaches to identify
reliable and valid metrics to evaluate software design quality.

A. Software Quality Model Evolution

One of the first software product quality models introduced
by [27] describes as a generic model that separates high-level
quality attributes into tangible product quality properties. Due
to rapidly changing and dynamic business requirements,
different metrics have been proposed to meet software
architecture evolutions.

In their work, Bansiya et al. [13] proposed an improved
hierarchical design quality assessment model for object-
oriented software architecture. This model, known as the
Quality Model for Object-Oriented Design (QMOOD), builds
upon Dromeys’s generic quality model methodology. The
QMOOD comprises four hierarchical levels: object-oriented
design components, design metrics, design properties, and
design quality attributes. Notably, the authors adopted most of
the design quality attributes in QMOOD from the ISO/IEC

9126 standard. However, this model failed to serve simple,
practical applicability as it assesses high-level design quality
attributes. Hence the metrics are limited for object-oriented
applications.

SOA Quality Model (SOAQM) is an extension of QMOOD
to enhance architecture scalability through hierarchical
abstraction and clear bottom-up relationship [28]. Bogner et al.
[29] suggest that most metrics explicitly designed for SOA also
apply to microservice architecture. The author then introduces
the Maintainability Model for Microservices (MM4S) with five
service properties: coupling, cohesion, granularity, complexity,
and code maturation. Although this work is similar to ours, the
authors did not consider migration scenarios, hence providing
the mathematical formalization for proposed metrics.

Vera-Rivera et al. [30] conducted a systematic literature
review on microservice architecture, explicitly focusing on the
impact of microservice granularity on application quality. The
authors employed a genetic algorithm to determine the optimal
microservice granularity based on key factors such as coupling,
cohesion, complexity, and resource usage. They integrated
various metrics and quality attributes into their analysis with
the development team's involvement for effort estimation based
on user story artefacts.

Pulnil et al. [31] and Taibi et al. [32] proposed a
microservice quality model that relies on microservice anti-
patterns. The authors incorporated eleven microservice anti-
patterns with the ISO/IEC 25010 standard as a benchmark for
microservice quality attributes, while this work builds on top of
microservice design principles [33]. Furthermore, the proposed
quality assessment model is formulated depending on the
weightage of the harmfulness level of the design properties
exposing it to the biased decision by the designer.

B. Microservice

Microservice is an architecture design pattern that promises
high maintainability, making it an exciting option for
modernizing software during the cloud computing era [23].
Generally, microservices have been designed based on domain-
driven functionality with limited business capabilities, strong
component separation, and enabling automated deployment
execution [1], [5], [10].

The developer and designer must carefully consider the
fundamental properties of microservices, which include low
coupling, high cohesion, scalability, independence,
maintainability, modularity, and deployability [10]. These
properties are closely related to architectural design [11], [12].

Chen et al. [34] proposed a monolith decomposition
approach from a dataflow diagram viewpoint, while Fan et al.
[24] suggested microservice candidate identification through
domain-driven design analysis. Runtime behaviour information
[35] strategy and Functionality-oriented Service Candidate
Identification (FoSCI) framework introduced by [36] to
identify service candidates using a search-based functional
atom grouping algorithm based on recorded monolith’s
execution trace log. Combining the data usage with the
dynamic analysis provides a better understanding of feature
prioritization during the migration. The static approach based
on source code [37], [38] and system structure [23] exhibits

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

859 | P a g e

www.ijacsa.thesai.org

structural information as decomposition reasoning. Meanwhile,
the metric-based method, as demonstrated by previous works,
uses structural properties such as coupling [37], [39], [40],
service granularity [41], size [42], and cohesion [43].

Li et al. [44] introduced a method for identifying
microservices based on the UML model from the source code
as an input consisting of class and sequence diagrams for static
and dynamic analysis. The authors then used a clustering
approach to identify microservice candidates. The
determination of clustering output quality relied on the
utilization of functional requirements and deployment
constraints. However, the authors did not consider
microservice distributions to verify the architecture quality. At
the same time, the ambiguity of language and contextual
understanding prevents semantic-based analysis of the system
requirements from guaranteeing the attainment of optimal
solutions [45].

Our work extends and complements [28], [29] in the
context of a structural quality model for the service-based
application. Bingu et al. [28] did not consider maintainability
quality in their model besides re-implementing weighted value
by [13] in their quality attribute equation without necessary
empirical justification. While Bogner et al. In [29] approach
are beneficial for microservice maintainability design
properties, the authors did not consider the migration scenario,
thus limiting its applicability to the greenfield implementation.
So, while the general approach from Bogner et al. is a sound
foundation, this work established it to fit monolith to
microservice migration scenario and enhanced it with
practically collectable quality metrics for the architecture
design consideration.

III. METHODOLOGY

In order to formulate the architectural maintainability
quality model for monolith to microservice migration, this
study followed a series of steps, as illustrated in Fig. 1. As this
work highlights the monolith to microservice migration
scenario, it started with a literature review process using
trustable electronic journal databases for this research domain
[46] consists of Scopus, SpringerLink, IEEE Xplore, and
ScienceDirect to collect existing structural quality metrics.

Our initial investigation shows that the software quality
model evolves laterally with software architecture
advancement [29]. For this reason, pre-migration monolith
object-oriented structural quality metrics [13], [47]-[49] and
post-migration microservice architecture quality metrics [50]-
[54] are included. Next, the object-oriented structural metrics
are being mapped with microservice structural metrics based
on their shared characteristics, as suggested by [47], [55]-[57].
These structural metrics help understand its relationships
further, clarifying the evolution of the software quality model.
Section IV explains this step's detailed approach and findings,
thus answering RQ1.

The selection of structural maintainability quality metrics is
guided by ISO/IEC 25010 – Software Product Quality. This
product quality model comprises of hierarchical structure with
maintainability quality attributes consisting of its sub-
characteristics such as modularity, reusability, analyzability,

modifiability, and testability [21]. Detailed methodology for
this step is described in Section V, hence answering RQ2.

Fig. 1. The methodology of the monolith to microservice architectural

maintainability quality model development.

Furthermore, software quality is still a vague and
multifaced perception, which means different things to a
diverse audience [13]. Therefore, referring to the procedure in
Section VI, an empirical microservice maintainability quality
model (RQ3) was devised based on selected quality metrics for
monolith to microservice migration regulated by defined
selection criteria in Table I. These selection criteria ensure that
the selection process is within the research scope and objective.

TABLE I. CRITERIA FOR METRIC SELECTION

Selection criteria

- Applicable to microservice architecture
- Must be related to cloud-native design properties

- Automatically collectable from the structural property and

practically applicable in object-oriented to microservice migration scenario
- Influence on ISO/IEC 25010 maintainability characteristic or sub-

characteristics

IV. SERVICE-BASED STRUCTURAL QUALITY METRICS

(RQ1)

Migrating monolith applications to the cloud involves
transforming software architecture to exploit the distributed
environment. Due to this factor, the designer must measure
software structural quality during the early migration stage. It
is cheaper and less time-consuming than evaluating it during
operation time [43]. Developers can predict software quality by
measuring structural attributes influencing software’s external
quality, such as maintainability. Besides, measuring structural
metrics is more extensive than component-level metrics [43].

Based on the literature review, the most collective existing
structural design property metrics for service-based
architecture are summarised (as described in Table II) as the
following:

A. Coupling

This design property is the most considered metric for
measuring software architecture quality. The graph theory of
design properties enables the direct analysis of coupling
properties. Thirteen metrics have been proposed for measuring
microservice coupling [35], [43], [44], [54], [59], [60], while
fourteen metrics for service-oriented architecture (SOA) [28],
[51], [58], [61]. Expressively, four of the proposed
microservice metrics by Bogner et al. [29] were derived from
SOA metrics [53] in the context of microservice architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

860 | P a g e

www.ijacsa.thesai.org

TABLE II. PUBLICATIONS ON QUALITY METRICS FOR A SERVICE-BASED

ARCHITECTURE

Source Authors Architecture Focus

[28] Bingu et al.
Service-
Oriented

Effectiveness,
understandability,

flexibility, reusability, and

discoverability based on
QMOOD metrics: coupling

(1), cohesion (1),

complexity (1), size (1),
and service granularity (1)

[42] Taibi et al. Microservice Coupling (2) and size (2)

[43]
Panichella et

al.
Microservice

Maintainability based on

coupling (1), size (1)

[44] Li et al. Microservice
Coupling (1) and cohesion

(1)

[51]
Mohammed et

al.

Service-

Oriented

Coupling (3), cohesion (2),

and complexity (3) metrics

[53] Rud et al.
Service-

Oriented

Applicability from OOP,

CBSE, and Web Domains

- complexity (3), reliability

(4), and performance (4)

metrics

[54] Bogner et al. Microservice

Maintainability – coupling

(4), cohesion (4),
complexity (3), size (1)

[58]
Hofmeister et

al.

Service-

Oriented

Complexity using coupling

(2) metrics

[59] Santos et al. Microservice
Complexity consists of
cohesion (2) and coupling

(2) metrics

[60]
Vera-Rivera et
al.

Microservice
Complexity based on
cohesion (1), coupling (3)

[61]
Perepletchikov
et al.

Service-
Oriented

Maintainability by

extending OO coupling (8)

metrics

B. Size

Four metrics were proposed for microservice [35], [43],
[54], and one for service-oriented [28] architecture. The reason
for considering fewer size metrics for SOA than for
microservice is that the two architectural styles operate at a
different level of service granularity. This design property is
essential to microservice architecture that promotes smaller
atomic functionality than SOA in its design principle.

C. Cohesion

Highly cohesive architecture refers to the strength between
operations of services. Cohesion in microservice is more
meaningful than for SOA and object-oriented architecture to
minimize external dependencies [62] that negatively influence
product quality. Eight metrics for microservice cohesion [44],
[54], [59], and three metrics for service-oriented [28], [51]
were proposed in previous works.

D. Complexity

From the literature review, three metrics for microservices
[54] and seven metrics for service-oriented architecture [28],
[51], [53] were identified pertaining to this design property.
Due to the common structural complexity characteristics for
SOA and microservice, Bogner et al. applied three complexity
metrics originally proposed for SOA to the microservice
architecture.

V. QUALITY METRICS FOR CLOUD-NATIVE ARCHITECTURE

(RQ2)

This work defines cloud-native architecture as a distributed,
elastic, and horizontally scalable application composed of
microservices [63], [64]. Thus, casting the existing legacy
application to the cloud as a virtualized environment cannot be
demanded as a valid cloud-native application [65]. Moreover, a
microservice is a self-contained deployment unit designed
according to cloud-focused design principles such as IDEALS
[33] to gain full cloud benefits.

Regarding architecture quality, previous design property
quality metrics from RQ1 are mapped with IDEALS design
principles as in Table III to justify the selection of quality
metrics for cloud-native architecture based on defined criteria
in Table I.

Instead of designing microservice for a new greenfield
scenario, this work focuses explicitly on migrating monolith
applications to microservices. This process involves three main
phases: pre-migration, migration, and post-migration [67].
Therefore, to answer the following research question RQ3, this
work considers monolith quality metrics in the maintainability
model, thus devising related metrics based on its common
structural characteristics. Identifying related quality metrics
during the early migration phase helps the designer to make an
informed decision to propose quality microservice architecture
design before moving to the cloud environment.

VI. MAINTAINABILITY QUALITY MODEL FOR

MICROSERVICE (RQ3)

This paper distinguished existing service-based architecture
quality metrics in RQ1. Collected metrics are then aligned with
cloud-native characteristics (RQ2) to funnel the microservice
architecture-related quality metrics findings.

From the application architectural perspective, a service-
based design pattern can be perceived as a higher abstraction
layer for object-oriented architecture [68], [69]. One could
consider the interaction of methods in object-oriented
programming as a form of class interaction in microservices at
an abstract level. In contrast, object-oriented class interactions
can be understandable at a higher abstraction level as
interactions of clusters of classes known as microservice. With
this insight, we propose a set of quality metrics to measure
microservice structural maintainability described in Fig. 2.

A. Coupling

Coupling is the degree to which the elements in a design
are connected or express the strength of interdependencies and
interconnections of service with other services [70]. From the
quality perspective, these metric impacts system quality, such
as maintainability and testability. The findings indicate that
incorporating structural coupling can be highly significant for
developers who wish to monitor the decomposition quality of
their services [43]. A high level of structural coupling resulted
in more frequent bug occurrences and propagated changes
within modules of systems. Therefore, a successful
decomposition should produce minimized coupling between
microservices and maximized cohesion. A small number of
couplings positively influence product maintainability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

861 | P a g e

www.ijacsa.thesai.org

TABLE III. RELATED QUALITY METRICS FOR IDEALS DESIGN

PRINCIPLES

Design

Principle

Design

Property
Related Quality Metrics

Interface

segregation

Complexity

Total Response of Service (TRS) [29]

Service Support for Transactions (SST)

[29]

Measure of Functional Abstraction (MFA)

[13]

Size

Number of Operations [28]

Non-Extreme Distribution (NED) [55]

Component Balance [54]

Cohesion

Service Interface Data Cohesion (SIDC)
[29]

Service Interface Usage Cohesion (SIUC)

[29]

Total Service Interface Cohesion (TSIC)
[29]

Deployability

Coupling

Service Interdependence in the System

(SIY) [29]

Coupling Between Microservice (CBM)

[35]

Structural Coupling [43]

Coupling of Service (COS) [58]

Complexity

Number of Versions per Service (NVS)

[29]

Number of Hierarchies (NOH) [13]

Density of Aggregation (DOA) [58]

Event-driven Coupling
Absolute Dependence of the Service (ADS)

[29]

Availability

Coupling

Coupling Between Microservice (CBM)
[35]

Absolute Criticality of the Service (ACS)

[29]

Absolute Dependence of the Service (ADS)

[29]

Service Interdependence in the System

(SIY) [29]

Size Numer of Operations [28]

Cohesion

Service Interface Data Cohesion (SIDC)

[29]

Service Interface Usage Cohesion (SIUC)

[29]

Loose

coupling
Coupling

Service Interdependence in the System

(SIY) [29]

Absolute Importance of the Service (AIS)
[29]

Absolute Dependence of the Service (ADS)

[29]

Absolute Criticality of the Service (ACS)
[29]

Direct Class Coupling (DCC) [13]

Coupling of Service (COS) [58]

Structural Coupling [43]

Coupling Between Microservice (CBM)

[35]

Single

responsibility
Cohesion

Activity Cohesion (AC) [66]

Service Cohesion (SC) [66]

Service Design Cohesion (SDC) [66]

Fig. 2. The structural metric for microservice maintainability.

1) Coupling Between Microservice (CBM): CBM is the

number of other microservices that the microservice coupled

with [35], [37]. The inspiration for this coupling derives from

the widely recognized Coupling Between Objects (CBO)

metric proposed by [71]. CBO counts several types of

interactions, including method calls, parameter types,

references, and return types. However, CBM only counted for

each unique class interaction, excluding its frequencies and bi-

directional relationship. To calculate the relative CBM for

each microservice as follows:

M={mi…mn} is a set of microservice (1)

R={ri… rn} is a set of microservice interaction (2)

TotalofInteraction(r,m)=Number of occurrence r in m (3)

CBM(r,m)= {1

0

TotalofInteraction>0

Otherwise
 (4)

2) Weighted Coupling between Microservice (WCBM):

WCBM is the frequency of other microservice that the

microservice m is coupled with, i.e., the number of

microservices where m has to interact once [29], [58]. As

microservice holds clusters of classes, interactions with other

microservices are more expensive than intra-microservice.

Thus, frequencies for external microservice coupling need to

be considered as interaction weightage. To formulate WCBM

for each microservice as follows:

WCBM(r,m)=TotalofInteraction(r,m) (5)

Absolute Coupling between Microservice (ACBM): The
total number of bi-directional coupling frequencies between
microservices where microservice m1 interacts with
microservice m2 and m2 also interacts with m1 [29]. This
metric helps represent inter-microservice dependencies and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

862 | P a g e

www.ijacsa.thesai.org

how strongly they interact. ACBM for a microservice is
represented as:

B={bi…bn} is a set of bi-directional interactions (6)

TotalofBidirectional(b,m)=Number of occurrence b in m (7)

B. Cohesion

The degree to which the elements in a microservice design
unit are logically related or connected. A high degree of
cohesion is a sign of “togetherness” where classes within the
microservice provide similar behavior to produce specific
services or responsibilities. This characteristic matches the
ideal cloud-native design pattern, where each microservice
should contain a single responsibility for better maintainability.

1) Normalize Cohesion among Classes of Microservice

(NCAM): The NCAM for Microservice is an adaptation of the

object-oriented metric Cohesion Among Methods of Class

(CAM) [13]. A CAM cluster directly influences the

microservice m cohesion in migration to microservice

architecture. Thus, m cohesion can be served with an average

CAM for a particular m. To represent NCAM for a

microservice as follows:

NCAM(mi)= 1-Avg(CAM(mi)) (8)

2) Intra Microservice Coupling (IMC): IMC is the

frequency of internal microservice coupling. In compliance

with [13], microservice architecture obtains higher object-

oriented design abstraction. Therefore, strong relatedness and

interactions between classes within the microservice m

indicate strong m cohesion. This strong relatedness

demonstrates that each class in a microservice is working

together to serve specific functions. IMC for a microservice is

represented as follows:

C={ci…cn} is a set of classes in m (9)

P={p
i
… p

n
} is a set of class interaction (10)

TotalClassInteraction(p,m)=Number of occurrence p in m

 (11)

IMC(mi)=TotalClassInteraction(p,m) (12)

C. Complexity

Complexity is the degree of connectivity between elements
of a microservice. This metric is also concerned with the
dependencies, microservice operations, and the number of
requests with other microservices. Santos et al. [59] derived
that complexity architecture has a negative impact on the
system’s maintainability as it is difficult to make changes and
decreases software understanding.

1) Number of Microservice Operations (NMO): NMO is

the number of total operations for the microservices [28]. In

migrating from monolith to microservice architecture, the total

number of microservice operations encompasses all operations

across all classes of the microservice. A high number of

internal microservice operations may result in a complex

design that requires maintenance. With an increase in the

number of clusters, the structural complexity of the

microservice also grows. NMO for a microservice is

represented as follows:

O={oi…on} is a set of operation in c (13)

TotalOperation(o,c}=Sum of o in c (14)

NMO(mi)=TotalOperation(o,c) in m (15)

2) Total Response for Microservice (TRM): TRM is the

total requests for operation O values of microservice [29].

This work employed an adapted version of the Response for

Class (RFC) metric [71] from object-oriented design to the

context of microservice design. Each microservice exposes its

interface mi for other microservices, increasing its

dependencies and negatively impacting its complexity. TRM

for a microservice can be expressed as:

TRM(mi)= ∑ RFC(mi) (16)

D. Size

This metric measures the size of structural design elements
consisting of the number of classes and microservice lines of
code. The more extensive and granular the microservice, the
more challenging it is to maintain due to the possibilities of
multiple responsibilities to the microservice. Size metrics are
crucial design attributes in software estimation before
executing migration [72].

3) Microservice Line of Code (MLOC): The number of all

non-empty, non-commented lines of the microservice body.

This classic Line of Code (LOC) metric helps understand and

overview microservice size. For a too-big microservice, there

might be a sign that a technical debt problem exists. MLOC

for a microservice is expressed as follows:

MLOC(mi)= ∑ (NE && NC)mi (17)

where (NE & NC) are non-empty NE and non-commented
NC lines of codes within a microservice mi.

4) Microservice Number of Classes (MNOC): The number

of classes within a microservice [35] can measure how big the

microservice is and identify if there are microservices that are

too big. The number of classes should be minimized to keep

microservice more independent of changes. MNOC for a

microservice represents as:

MNOC(mi)= ∑ C(mi) (18)

where C(mi) are sets of classes within a microservice mi.

5) Microservice Class Distribution (MCD): MCD is the

number of class sizes in microservice candidates distribution,

with a desire that microservice may not contain too many or

too few classes. This structural metric is an adaptation of the

Non-extreme Distribution (NED) metric by [55]. Therefore,

we measure how evenly distributed the sizes for each

generated microservice candidate are. Our work improvised

this approach by using standard deviation to understand the

average of scattered microservice clusters instead of the mean

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

863 | P a g e

www.ijacsa.thesai.org

value that is heavily influenced by outliers value in

determining the bound of non-extreme value for the number of

classes within microservices. For better interpretability,

measuring 1-MCD, with a lower value demonstrates a better

microservice distribution. To express MCD for a microservice

as follows:

MCD(mi)=
∑ cn

N
n=1, n not extreme

|Ci|
 (19)

where cn is the number of classes in microservice 𝑚𝑖, and
𝐶𝑖 is the set of classes of microservice 𝑚𝑖. n is not extreme if
its size is within the bounds of
{mean of classes for all microservices ±std deviation} . This

work measures its normalized value with 1-MCD(mi) for better
interpretability, and lower values are recommended.

VII. DISCUSSION

Measuring architecture quality for migrated monolith
applications to microservice is crucial to ensure migration to
the cloud achieves the migration objective. Despite various
migrations approaches, less attention was given to the post-
migration architecture quality. This work starts by identifying
existing structural metrics for measuring service-based
architecture quality. Our first contribution in this work is
reporting the most applicable design property metrics for
service-based architecture, including its influence on
architecture quality (Section IV). This design property
catalogue is a reference for other researchers in understanding
how software architecture evolution influences the
characteristics of its design properties.

Another state-of-the-art contribution of this paper is that it
maps service-based quality metrics with the cloud-native
design principles [33]. In contrast, previous quality metrics
[13], [28] focus on the structural characteristics without
considering architecture quality. From the structural quality
perspective, this mapping is essential to ensure the designated
cloud architecture pattern benefits from the cloud environment.

The proposed maintainability quality model for
microservice architecture is the main contribution to this work.
Ten structural quality metrics for measuring microservice
architecture maintainability quality enable software designers
and developers to assess the designed microservice candidate's
quality before executing the migration, thus minimizing post-
migration quality concerns and ensuring achievable migration
objectives [6], [77], [78]. Despite relying on single design
property in measuring structural maintainability quality, this
approach promotes multiple design properties to give better
accuracy and consistent result [79].

While this work pointed out several quality metrics related
to microservice design properties, this work is still exposed to
construct validity as we may not be able to cover all design
properties [47] that influence monolith-to-microservice
migration architecture quality [73]. However, this work covers
various design properties than previous work [61], [74], [75]
on architectural maintainability quality. Our approach is based
on ISO/IEC 25010 [21] and additional structural design
properties that influence maintainability quality measurement.

Regarding external validity, some of the metrics devised
from existing work [13], [28], [29], [35], [55], [58], [71] are
based on shared structural characteristics. This work ensured
the soundness of the selected metrics by exclusively
considering reliable peer-reviewed sources and established
authors. Hence, our selection is adequate to initiate an
exploration for microservice maintainability quality when
migrating from monolith architecture.

This method relies on the monolith application as the
source before the migration execution. This work focuses on
migration instead of greenfield implementation. Thus, the
selection of the quality metrics is heavily influenced and
devised by the existing application architecture characteristics.
Even though other works proposed various quality metrics for
measuring product quality, the complexity of the metrics
hindered the applicability of the approach by the industries
[76]. As a result, our proposed quality metrics are more
practical for industrial practice.

The limitation of this paper is that we did not adopt a more
rigorous methodology for this paper, such as conducting a
systematic or multivocal literature review. These procedures
could have offered a more solid empirical basis for selecting
publications. Moreover, a more rigorous process could have
been employed to identify the metric candidates presented in
this study to minimize any potential subjective bias.
Additionally, certain digital libraries were excluded from the
search process due to time limitations.

VIII. SUMMARY AND CONCLUSION

To measure architecture maintainability quality when
migrating monolith applications to microservice architecture,
this paper proposed a set of metrics related to coupling,
cohesion, complexity, and size design property. These metrics
were derived from cloud-native architectural design principles
to utilize cloud benefits. The proposed metrics allow migration
designers and developers to measure software architecture
maintainability quality for microservice during design time.
Additionally, this work included the mathematical
formalization of the proposed metrics. Moreover, applying
multiple design properties for measuring microservice
architecture maintainability quality is an adaptation of state-of-
the-art in this research domain.

As part of this work evaluation process, we intend to assess
the metrics through case studies and extend their application to
real-world industrial projects to evaluate their efficacy. These
forthcoming efforts encompass the development of a tooling
approach aimed at promoting a structured and rational
migration process and providing practical illustrations of
metric implementation throughout the migration process to
evaluate the architecture quality of microservice candidates.

REFERENCES

[1] A. Megargel, V. Shankararaman, and D. K. Walker, “Migrating from
Monoliths to Cloud-Based Microservices: A Banking Industry
Example,” no. August, pp. 85–108, 2020, doi: 10.1007/978-3-030-
33624-0_4.

[2] A. S. Ganesan and T. Chithralekha, “A Survey on Survey of Migration
of Legacy Systems,” ACM Int. Conf. Proceeding Ser., vol. 25-26-Augu,
2016, doi: 10.1145/2980258.2980409.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

864 | P a g e

www.ijacsa.thesai.org

[3] F. De Angelis and A. Polini, “Evaluation of cloud portability of legacy
applications,” Proc. - 11th IEEE/ACM Int. Conf. Util. Cloud Comput.
Companion, UCC Companion 2018, pp. 232–237, 2019, doi:
10.1109/UCC-Companion.2018.00061.

[4] S. A. Maisto, B. Di Martino, and S. Nacchia, “From Monolith to Cloud
Architecture Using Semi-automated Microservices Modernization,”
Lect. Notes Networks Syst., vol. 96, pp. 638–647, 2020, doi:
10.1007/978-3-030-33509-0_60.

[5] H. Knoche and W. Hasselbring, “Using Microservices for Legacy
Software Modernization,” IEEE Softw., vol. 35, no. 3, pp. 44–49, 2018.

[6] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns. Vienna: Springer Vienna, 2014.

[7] M. Armbrust et al., “A view of cloud computing,” Communications of
the ACM, vol. 53, no. 4. pp. 50–58, Apr. 2010, doi:
10.1145/1721654.1721672.

[8] M. Shuaib, A. Samad, S. Alam, and S. T. Siddiqui, “Why Adopting
Cloud Is Still a Challenge?—A Review on Issues and Challenges for
Cloud Migration in Organizations,” Adv. Intell. Syst. Comput., vol. 904,
pp. 387–399, 2019, doi: 10.1007/978-981-13-5934-7_35.

[9] A. K. Kalia et al., “Mono2Micro: An AI-based toolchain for evolving
monolithic enterprise applications to a microservice architecture,”
ESEC/FSE 2020 - Proc. 28th ACM Jt. Meet. Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., no. December, pp. 1606–1610, 2020, doi:
10.1145/3368089.3417933.

[10] J. Lewis and M. Fowler, “Microservices,” 2014.
https://www.martinfowler.com/articles/microservices.html (accessed
Mar. 30, 2022).

[11] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for
microservices: A systematic mapping study,” CLOSER 2018 - Proc. 8th
Int. Conf. Cloud Comput. Serv. Sci., vol. 2018-Janua, pp. 221–232,
2018, doi: 10.5220/0006798302210232.

[12] M. Grieger, M. Fazal-Baqaie, G. Engels, and M. Klenke, “Concept-
based engineering of situation-specific migration methods,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, vol.
9679, pp. 199–214, doi: 10.1007/978-3-319-35122-3_14.

[13] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Trans. Softw. Eng., vol. 28, no. 1, pp.
4–17, 2002, doi: 10.1109/32.979986.

[14] M. Zhivich and R. K. Cunningham, “The real cost of software errors,”
IEEE Secur. Priv., vol. 7, no. 2, pp. 87–90, 2009, doi:
10.1109/MSP.2009.56.

[15] A. Selmadji, A. D. Seriai, H. L. Bouziane, R. Oumarou Mahamane, P.
Zaragoza, and C. Dony, “From monolithic architecture style to
microservice one based on a semi-automatic approach,” Proc. - IEEE
17th Int. Conf. Softw. Archit. ICSA 2020, no. Section III, pp. 157–168,
2020, doi: 10.1109/ICSA47634.2020.00023.

[16] B. Althani, S. Khaddaj, and B. Makoond, “A Quality Assured
Framework for Cloud Adaptation and Modernization of Enterprise
Applications,” Proc. - 19th IEEE Int. Conf. Comput. Sci. Eng. 14th
IEEE Int. Conf. Embed. Ubiquitous Comput. 15th Int. Symp. Distrib.
Comput. Appl. to Business, Engi, pp. 634–637, 2017, doi: 10.1109/CSE-
EUC-DCABES.2016.251.

[17] K. Sabiri, F. Benabbou, and A. Khammal, “Model driven modernization
and cloud migration framework with smart use case,” Lect. Notes
Networks Syst., vol. 37, pp. 17–27, 2018, doi: 10.1007/978-3-319-
74500-8_2.

[18] I. Pigazzini, F. Arcelli Fontana, and A. Maggioni, “Tool support for the
migration to microservice architecture: An industrial case study,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 11681 LNCS, pp. 247–263, 2019, doi:
10.1007/978-3-030-29983-5_17.

[19] M. H. Hasan, M. H. Osman, N. I. Admodisastro, and M. S. Muhammad,
“Legacy systems to cloud migration: A review from the architectural
perspective,” J. Syst. Softw., p. 111702, Apr. 2023, doi:
10.1016/j.jss.2023.111702.

[20] A. Patel, N. Shah, D. Ramoliya, and A. Nayak, “A detailed review of
Cloud Security: Issues, Threats Attacks,” in Proceedings of the 4th
International Conference on Electronics, Communication and

Aerospace Technology, ICECA 2020, Nov. 2020, pp. 758–764, doi:
10.1109/ICECA49313.2020.9297572.

[21] ISO/IEC, “ISO/IEC 25010:2010, Systems and software engineering —
Systems and software Quality Requirements and Evaluation (SQuaRE)
— System and software quality models,” vol. 1991. 2010.

[22] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, “Does migrating a
monolithic system to microservices decrease the technical debt?,” J.
Syst. Softw., vol. 169, p. 110710, 2020, doi: 10.1016/j.jss.2020.110710.

[23] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and
Issues for Migrating to Microservices Architectures: An Empirical
Investigation,” IEEE Cloud Comput., vol. 4, no. 5, pp. 22–32, 2017, doi:
10.1109/MCC.2017.4250931.

[24] C. Y. Fan and S. P. Ma, “Migrating Monolithic Mobile Application to
Microservice Architecture: An Experiment Report,” Proc. - 2017 IEEE
6th Int. Conf. AI Mob. Serv. AIMS 2017, pp. 109–112, 2017, doi:
10.1109/AIMS.2017.23.

[25] T. Coulin, M. Detante, W. Mouchère, and F. Petrillo, “Software
Architecture Metrics: a literature review,” 2019, [Online]. Available:
http://arxiv.org/abs/1901.09050.

[26] Y. Li, C. Z. Wang, Y. C. Li, J. Su, and C. H. Chen, “Granularity
Decision of Microservice Splitting in View of Maintainability and Its
Innovation Effect in Government Data Sharing,” Discret. Dyn. Nat. Soc.,
vol. 2020, no. 39, 2020, doi: 10.1155/2020/1057902.

[27] R. G. Dromey, “A model for software product quality,” IEEE Trans.
Softw. Eng., vol. 21, no. 2, pp. 146–162, 1995, doi: 10.1109/32.345830.

[28] S. Bingu, C. Siho, K. Suntae, and P. Sooyong, “A design quality model
for service-oriented architecture,” Neonatal, Paediatr. Child Heal.
Nurs., pp. 403–410, 2008, doi: 10.1109/APSEC.2008.32.

[29] J. Bogner, S. Wagner, and A. Zimmermann, “Automatically measuring
the maintainability of service- and microservice-based systems - a
literature review,” ACM Int. Conf. Proceeding Ser., vol. Part F1319, no.
October, pp. 107–115, 2017, doi: 10.1145/3143434.3143443.

[30] F. H. Vera-Rivera, C. Gaona, and H. Astudillo, “Defining and measuring
microservice granularity—a literature overview,” PeerJ Comput. Sci.,
vol. 7, p. e695, 2021, doi: 10.7717/peerj-cs.695.

[31] S. Pulnil and T. Senivongse, “A Microservices Quality Model Based on
Microservices Anti-patterns,” 2022 19th Int. Jt. Conf. Comput. Sci.
Softw. Eng. JCSSE 2022, 2022, doi:
10.1109/JCSSE54890.2022.9836297.

[32] D. Taibi, V. Lenarduzzi, and C. Pahl, “Microservices Anti-patterns: A
Taxonomy,” in Microservices, Cham: Springer International Publishing,
2020, pp. 111–128.

[33] P. Merson, “Principles for Microservice Design: Think IDEALS, Rather
than SOLID,” InfoQ, pp. 1–11, Sep. 2020, Accessed: Jun. 09, 2021.
[Online]. Available: https://www.infoq.com/articles/microservices-
design-ideals/.

[34] R. Chen, S. Li, and Z. Li, “From Monolith to Microservices: A
Dataflow-Driven Approach,” Proc. - Asia-Pacific Softw. Eng. Conf.
APSEC, vol. 2017-Decem, pp. 466–475, 2017, doi:
10.1109/APSEC.2017.53.

[35] D. Taibi and K. Systä, “From monolithic systems to microservices: A
decomposition framework based on process mining,” CLOSER 2019 -
Proc. 9th Int. Conf. Cloud Comput. Serv. Sci., no. Closer, pp. 153–164,
2019, doi: 10.5220/0007755901530164.

[36] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
Candidate Identification from Monolithic Systems based on Execution
Traces,” IEEE Trans. Softw. Eng., pp. 1–1, 2019, doi:
10.1109/tse.2019.2910531.

[37] S. Eski and F. Buzluca, “An automatic extraction approach - Transition
to microservices architecture from monolithic application,” ACM Int.
Conf. Proceeding Ser., vol. Part F1477, pp. 1–6, 2018, doi:
10.1145/3234152.3234195.

[38] J. Kazanavičius and D. Mažeika, “Analysis of legacy monolithic
software decomposition into microservices,” in CEUR Workshop
Proceedings, 2020, vol. 2620, pp. 25–32.

[39] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service
cutter: A systematic approach to service decomposition,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

865 | P a g e

www.ijacsa.thesai.org

Bioinformatics), vol. 9846 LNCS, pp. 185–200, 2016, doi: 10.1007/978-
3-319-44482-6_12.

[40] G. Mazlami, J. Cito, and P. Leitner, “Extraction of Microservices from
Monolithic Software Architectures,” Proc. - 2017 IEEE 24th Int. Conf.
Web Serv. ICWS 2017, pp. 524–531, 2017, doi: 10.1109/ICWS.2017.61.

[41] A. A. C. De Alwis, A. Barros, A. Polyvyanyy, and C. Fidge, “Function-
splitting heuristics for discovery of microservices in enterprise systems,”
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 11236 LNCS, pp. 37–53, 2018, doi:
10.1007/978-3-030-03596-9_3.

[42] D. Taibi and K. Systä, “A Decomposition and Metric-Based Evaluation
Framework for Microservices,” Commun. Comput. Inf. Sci., vol. 1218
CCIS, pp. 133–149, 2020, doi: 10.1007/978-3-030-49432-2_7.

[43] S. Panichella, M. Rahman, and D. Taibi, “Structural Coupling for
Microservices,” pp. 280–287, 2021, doi: 10.5220/0010481902800287.

[44] J. Li, H. Xu, X. Xu, and Z. Wang, “A Novel Method for Identifying
Microservices by Considering Quality Expectations and Deployment
Constraints,” Int. J. Softw. Eng. Knowl. Eng., vol. 32, no. 3, pp. 417–
437, 2022, doi: 10.1142/S021819402250019X.

[45] S. A. Salloum, R. Khan, and K. Shaalan, “A Survey of Semantic
Analysis Approaches,” in Advances in Intelligent Systems and
Computing, vol. 1153 AISC, 2020, pp. 61–70.

[46] A. Cavacini, “What is the best database for computer science journal
articles?,” Scientometrics, vol. 102, no. 3, pp. 2059–2071, 2015, doi:
10.1007/s11192-014-1506-1.

[47] L. Ardito, R. Coppola, L. Barbato, and D. Verga, “A Tool-Based
Perspective on Software Code Maintainability Metrics: A Systematic
Literature Review,” Sci. Program., vol. 2020, 2020, doi:
10.1155/2020/8840389.

[48] R. Bharathi and R. Selvarani, “A framework for the estimation of OO
software reliability using design complexity metrics,” Int. Conf. Trends
Autom. Commun. Comput. Technol. I-TACT 2015, 2016, doi:
10.1109/ITACT.2015.7492648.

[49] S. M. Yacoub, H. H. Ammar, and T. Robinson, “Dynamic metrics for
object oriented designs,” Int. Softw. Metrics Symp. Proc., pp. 50–61,
1999, doi: 10.1109/metric.1999.809725.

[50] K. Qian, J. Liu, and F. Tsui, “Decoupling metrics for services
composition,” Proc. - 5th IEEE/ACIS Int. Conf. Comput. Info. Sci., ICIS
2006. conjunction with 1st IEEE/ACIS, Int. Work. Component-Based
Softw. Eng., Softw. Arch. Reuse, COMSAR 2006, vol. 2006, pp. 44–47,
2006, doi: 10.1109/ICIS-COMSAR.2006.30.

[51] A. A. Mohammed Elhag and R. Mohamad, “Metrics for evaluating the
quality of service-oriented design,” 2014 8th Malaysian Softw. Eng.
Conf. MySEC 2014, no. September, pp. 154–159, 2014, doi:
10.1109/MySec.2014.6986006.

[52] A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee,
“Mono2Micro: a practical and effective tool for decomposing
monolithic Java applications to microservices,” no. January, pp. 1214–
1224, 2021, doi: 10.1145/3468264.3473915.

[53] D. Rud and A. Schmietendorf, “Product metrics for service-oriented
infrastructures,” IWSM/MetriKon, no. May, 2006, [Online]. Available:
http://www.cs.uni-magdeburg.de/~rud/papers/Rud-07.pdf.

[54] J. Bogner, S. Wagner, and A. Zimmermann, “Towards a practical
maintainability quality model for service and microservice-based
systems,” ACM Int. Conf. Proceeding Ser., vol. Part F1305, pp. 195–
198, 2017, doi: 10.1145/3129790.3129816.

[55] U. Desai, S. Bandyopadhyay, and S. Tamilselvam, “Graph Neural
Network to Dilute Outliers for Refactoring Monolith Application,”
2021, [Online]. Available: http://arxiv.org/abs/2102.03827.

[56] A. Prajapati, A. Parashar, and J. K. Chhabra, “Restructuring Object-
Oriented Software Systems Using Various Aspects of Class
Information,” Arab. J. Sci. Eng., vol. 45, no. 12, pp. 10433–10457,
2020, doi: 10.1007/s13369-020-04785-z.

[57] T. Engel, M. Langermeier, B. Bauer, and A. Hofmann, “Evaluation of
Microservice Architectures: A Metric and Tool-Based Approach,” vol.
2, Springer International Publishing AG, 2018, pp. 74–89.

[58] H. Hofmeister and G. Wirtz, “Supporting service-oriented design with
metrics,” Proc. - 12th IEEE Int. Enterp. Distrib. Object Comput. Conf.
EDOC 2008, pp. 191–200, 2008, doi: 10.1109/EDOC.2008.13.

[59] N. Santos and A. Rito Silva, “A complexity metric for microservices
architecture migration,” Proc. - IEEE 17th Int. Conf. Softw. Archit. ICSA
2020, pp. 169–178, 2020, doi: 10.1109/ICSA47634.2020.00024.

[60] F. H. Vera-Rivera, E. G. Puerto-Cuadros, H. Astudillo, and C. M.
Gaona-Cuevas, “Microservices Backlog - A Model of Granularity
Specification and Microservice Identification,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 12409 LNCS, pp. 85–102, 2020, doi: 10.1007/978-3-030-59592-
0_6.

[61] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-oriented designs,” Proc.
Aust. Softw. Eng. Conf. ASWEC, pp. 329–338, 2007, doi: https:
//doi.org/10.1109/ECBS.1998.10027.

[62] S. Kramer and H. Kaindl, “Coupling and cohesion metrics for
knowledge-based systems using frames and rules,” ACM Trans. Softw.
Eng. Methodol., vol. 13, no. 3, pp. 332–358, 2004, doi:
10.1145/1027092.1027094.

[63] N. Kratzke and P. C. Quint, “Understanding cloud-native applications
after 10 years of cloud computing - A systematic mapping study,” J.
Syst. Softw., vol. 126, pp. 1–16, 2017, doi: 10.1016/j.jss.2017.01.001.

[64] R. Lichtenthäler, M. Prechtl, C. Schwille, T. Schwartz, P. Cezanne, and
G. Wirtz, “Requirements for a model-driven cloud-native migration of
monolithic web-based applications,” Software-Intensive Cyber-Physical
Syst., vol. 35, no. 1–2, pp. 89–100, 2020, doi: 10.1007/s00450-019-
00414-9.

[65] D. Bajaj, U. Bharti, A. Goel, and S. C. Gupta, “Partial Migration for Re-
architecting a Cloud Native Monolithic Application into Microservices
and FaaS,” in Communications in Computer and Information Science,
2020, vol. 1170, pp. 111–124, doi: 10.1007/978-981-15-9671-1_9.

[66] M. Daghaghzadeh, A. B. Dastjerdi, and H. Daghaghzadeh, “A Metric for
Measuring Degree of Service Cohesion in Service Oriented Designs,”
Int. J. Comput. Sci. Issues, vol. 8, no. 5, pp. 83–89, 2011.

[67] B. Althani and S. Khaddaj, “The Applicability of System Migration Life
Cycle (SMLC) Framework,” Proc. - 2017 16th Int. Symp. Distrib.
Comput. Appl. to Business, Eng. Sci. DCABES 2017, vol. 2018-Septe,
pp. 141–144, 2017, doi: 10.1109/DCABES.2017.38.

[68] M. Perepletchikov, C. Ryan, and K. Frampton, “Comparing the Impact
of Service-Oriented and Object-Oriented Paradigms on the Structural
Properties of Software,” 2005, pp. 431–441.

[69] Y. I. Mansour and S. H. Mustafa, “Assessing Internal Software Quality
Attributes of the Object-Oriented and Service-Oriented Software
Development Paradigms: A Comparative Study,” J. Softw. Eng. Appl.,
vol. 04, no. 04, pp. 244–252, 2011, doi: 10.4236/jsea.2011.44027.

[70] M. Savić, M. Ivanović, and M. Radovanović, “Analysis of high
structural class coupling in object-oriented software systems,”
Computing, vol. 99, no. 11, pp. 1055–1079, 2017, doi: 10.1007/s00607-
017-0549-6.

[71] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493,
1994, doi: 10.1109/32.295895.

[72] S. Wanjala Munialo, G. Muchiri Muketha, and K. Kabeti Omieno, “Size
Metrics for Service-Oriented Architecture,” Int. J. Softw. Eng. Appl.,
vol. 10, no. 2, pp. 67–83, 2019, doi: 10.5121/ijsea.2019.10206.

[73] J. Estdale and E. Georgiadou, “Applying the ISO/IEC 25010 Quality
Models to Software Product,” Commun. Comput. Inf. Sci., vol. 896, no.
January, pp. 492–503, 2018, doi: 10.1007/978-3-319-97925-0_42.

[74] M. Perepletchikov, C. Ryan, and K. Frampton, “Cohesion metrics for
predicting maintainability of service-oriented software,” Proc. - Int.
Conf. Qual. Softw., no. Qsic, pp. 328–335, 2007, doi:
10.1109/QSIC.2007.4385516.

[75] J. Ludwig, S. Xu, and F. Webber, “Static software metrics for reliability
and maintainability,” Proc. - Int. Conf. Softw. Eng., pp. 53–54, 2018,
doi: 10.1145/3194164.3194184.

[76] J. A. Valdivia, A. Lora-González, X. Limón, K. Cortes-Verdin, and J. O.
Ocharán-Hernández, “Patterns Related to Microservice Architecture: a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

866 | P a g e

www.ijacsa.thesai.org

Multivocal Literature Review,” Program. Comput. Softw., vol. 46, no. 8,
pp. 594–608, 2020, doi: 10.1134/S0361768820080253.

[77] J. Kazanavicius and D. Mazeika, “Migrating Legacy Software to
Microservices Architecture,” 2019 Open Conf. Electr. Electron. Inf. Sci.
eStream 2019 - Proc., 2019, doi: 10.1109/eStream.2019.8732170.

[78] R. Khadka et al., “Does software modernization deliver what it aimed
for? A post modernization analysis of five software modernization case

studies,” in 2015 IEEE 31st International Conference on Software
Maintenance and Evolution, ICSME 2015 - Proceedings, Sep. 2015, pp.
477–486, doi: 10.1109/ICSM.2015.7332499.

[79] A. Mishra, R. Shatnawi, C. Catal, and A. Akbulut, “Techniques for
calculating software product metrics threshold values: A systematic
mapping study,” Appl. Sci., vol. 11, no. 23, 2021, doi:
10.3390/app112311377.

