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Abstract—Computer technology's maturity has enabled 

intelligent and interactive sports training. Jumping rope test in 

secondary school faces difficulties due to bulky testing equipment 

and inefficient data measurement. An ALSTM-LSTM model 

based on visual human posture estimation is proposed for motion 

system analysis. Joint pose features are fused through LSTM, 

and the attention mechanism assigns weights to feature sequences 

to achieve motion recognition, considering the data's 

multidimensional and hierarchical nature. The model’s precision 

value is 95.83. Its average accuracy is much higher than LSTM, 

ML-KNN, and RSN models. Additionally, the model has 95.2% 

accuracy in localizing jump rope stance movements with low data 

consumption. The model can improve the accuracy of the 

analysis of the jump rope sport’s posture based on the 

characteristics of human movement, and inspire new technical 

tools for teaching instruction. 

Keywords—ALSTM-LSTM model; jumping rope exercise; 

Sports; human posture estimation algorithm; attention mechanisms 

I. INTRODUCTION 

The development and maturity of computer vision and 
intelligent technology has provided new research tools and 
ideas for human motion analysis. They are also applied in 
pattern recognition, image processing, and interaction between 
real and imaginary scenes. In addition, the application of 
computer vision and intelligence technology to sports training 
makes the analysis of movement types and posture recognition 
possible. The estimation of human posture is achieved by 
using algorithms to identify and locate the position of the 
body’s joints [1-2]. With the development of national fitness 
activities, strengthening the integration of artificial 
intelligence and the sports industry is an important direction 
for development. As a sport with regularity and requiring 
coordination and cooperation, jumping rope is crucial for the 
enhancement of individual fitness and the development of 
children’s intellectual ability [3]. The bulky nature of 
traditional sports jumping rope monitoring equipment and the 
high cost of manual measurement make it difficult to train 
effectively and to provide normative guidance on student 
performance [4]. Existing human motion recognition 
algorithms suffer from poor accuracy due to overburdening 
and have less application in posture assessment [5]. Common 
jumping rope detection is often calculated using instruments 
or manual calculations, which lack stability in algorithm 
accuracy and effectiveness. There are few common 
applications for posture assessment in jumping rope, and the 
dynamic nature of its jumping behavior greatly reduces the 
accuracy of traditional posture estimation. In order to better 
adapt to the action analysis of students in the jumping rope 

scene, the research first introduced short-term memory 
network for in-depth learning based on the mobile visual 
characteristics of the action, and fused multi-level features to 
improve the target detection performance. The proposed 
algorithm is to give full play to the complementary feature of 
information detection in different dimensions and levels, so as 
to ensure that the classification data can recognize the 
information in dynamic and static scenes. According to the 
differences in the role and speed of different limb movements 
in jumping rope, image distortion is inevitable. Therefore, the 
study introduced the concept of learning weight into the 
network structure for different feature extraction. The study 
starts with the analysis and characteristics of the movements 
of the research object (jumping rope), and proposes 
continuous improvement and optimization of network 
structure features to achieve accuracy in motion capture and 
analysis. The study aims to effectively detect jumping rope 
movements, and construct corresponding systems to provide 
reference and guidance for improving the quality of physical 
education teaching. 

II. RELATED WORKS 

The progressive development of society and the increase in 
economic have led to a greater focus on physical exercise, 
while the maturation of the theory of intelligent technology 
has provided new tools and instruments for the analysis of 
sports. The mathematical model based on the acceleration 
sensor was developed by Xu to better analyse the 
experimental data of the rope and hand during jumping rope. 
A control group and an experimental group were set up, and 
volunteers were selected to carry out experimental 
observations of exercise energy consumption. It was proved 
that the sensor can construct and generate a model of the 
multidimensional data of the subjects, and can effectively 
analyse the energy consumption of the experimental group. 
The results of this experiment can effectively provide new 
ideas for improving the teaching of jumping rope sports [6]. In 
order to ensure the fitness of jumping rope while enhancing its 
safety, Wang and other scholars applied the inverse mechanics 
model to the analysis of jumping rope movement and 
combined big data to analyse the changes of each joint 
position during the movement. The results showed that the 
validity of the motion analysis of fancy jump rope was better 
and the introduction of fancy jump rope in university physical 
education had high significance and value [7]. Nie proposed a 
hierarchical contextual refinement network for the estimation 
of human posture in order to reduce the problem of poor joint 
localization performance, i.e., to achieve the transfer detection 
of diffuse joints. The method effectively achieved the 
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detection of joint points in the hierarchical state and is less 
affected by interference factors [8]. Cao and other scholars 
proposed a motion detection system based on deep learning 
guidance for better analysis of motion data. It was proved that 
it is more than 95% accurate in the evaluation of jumping rope 
data and its recall values were high. The wearable device 
under this monitoring system can effectively analyse the 
sports data [9]. Yu innovated the application of EMG signal 
acquisition to sports. Based on the actual needs of athletes, the 
individual differences and wavelet principal component model 
for sports recognition was proposed. The wavelet-based model 
had high accuracy and detail observation of motion 
recognition, and also has high theoretical value [10]. For the 
detection and recognition of specific motion, Cust and others 
used the help of inertial measurement units and computer 
vision for in-depth analysis. Database search results show that 
support vector machines and convolutional neural networks as 
well as long and short-term memory architectures are mostly 
used for data processing and target motion feature recognition 
[11]. Ramirez Campillo R scholars used a meta-analysis 
system to analyze the jumping rope training for effectively 
improving the physical fitness of athletes. The analysis 
including resting heart rate, body mass index, fat mass, 
cardiopulmonary endurance, and so on [12]. They analyzed 
the impact mechanism between enhanced jumping training 
(PJT) and athlete's repetitive sprint ability (RSA) [13]. Layne 
T scholars believed that using sports technology feedback 
education for jumping performance testing can effectively 
stimulate the potential of athletes [14]. 

Deep learning algorithms have good data processing and 
information extraction capabilities. It can provide new tools 
for the recognition of sports analysis and can effectively 
reduce the influence of objective factors and individual 
differences in performance on the results [15-16]. The team of 
Rana found that the emergence of wearable inertial sensors 
provided a convenient tool to carry out sports analysis, and the 
device could effectively provide solutions based on the 
characteristics of different athletes compared to the original 
manual analysis of athletes’ data metrics [17]. The edge box 
method was used to refine the scale of the tracker, while a 
convolutional network was used under the recursive concept 
to implement frame video image recognition. The results show 
that the improved method is highly effective and efficient for 
the analysis of sports videos [18]. To address the difficulty of 
quantifying feature extraction, Mathis and Mamidanna 
proposed a bit-pose estimation method with deep neural 
networks and migrated the method to markerless applications 
to avoid the impact of intrusive markers on motion control. 
Experimental results demonstrated the high accuracy as well 
as versatility of the framework approach and the accuracy of 
its data tests was comparable to the real values [19]. Kong 

scholars proposed to accelerate the analysis and prediction of 
trajectory data under localization technology based on 
real-time location and long time access are the more common 
services. The study proposed spatio-temporal long- and 
short-term memory for data analysis, and the results showed 
that the method can link and predict historical visit 
information backwards and forwards, with a high fit between 
the real values [20]. Nadeem scholar team identified human 
behaviors with the help of entropy Markov model, and added 
contour detection and multidimensional cues to the original 
automatic human posture estimation method. They 
implemented action recognition through image preprocessing 
and image noise removal as part model construction. The 
method can detect limb movements with high recognition 
accuracy, and its interactive advantage has good applicability 
in other fields [21]. He introduced three-dimensional space 
technology in image processing and established a sports 
tracking system with the help of particle filtering to improve 
its accuracy. A similarity estimation method was proposed 
according to the characteristics of volleyball. The method has 
good tracking performance and its success rate exceeds 80% 
[22]. Jalal introduced a pseudo-2D model to the original 
human pose estimation method to achieve the extraction of 
contour features and pose point features He introduced a 
K-ary tree hashing algorithm to optimize the data set. The 
results proved that the method has an accuracy of more than 
80% in key point detection in motion datasets, which is a good 
application in sports [23]. 

The aforementioned studies suggest that enhancing feature 
recognition in sport is a key focus for improving video data 
analysis and the quality of sports. Some scholars have 
proposed sensor design, short and long term memory networks, 
convolutional neural networks and entropic Markov models to 
achieve information recognition and data analysis. Therefore, 
this study will improve on the long-short memory network and 
apply it to the analysis of sports jumping rope to improve its 
posture recognition accuracy, and provide a new tool for the 
improvement of physical education. 

III. ANALYSIS OF SPORT JUMPING ROPE MOVEMENT AND 

SYSTEM CONSTRUCTION BASED ON ALSTM-LSTM MODEL 

A. ALSTM-LSTM Model based on Human Posture 

Recognition 

Human pose recognition is a key problem in human 
behaviour analysis and is currently a hot topic of research. It is 
widely used in robot training, motion tracking, film production 
and sports analysis. The OpenPose pose estimation open 
source library extracts information from the human bone 
nodes with good real-time performance and accuracy [24-25]. 
The architecture is shown in Fig. 1. 
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Fig. 1. OpenPose network structure diagram. 

The confidence map expression formula for the location of 
key points in motion recognition is equation (1). 
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In equation (1), j denotes the joint point of the human 

body, k  is the target person in the image, p  is the 

predicted coordinates of the person, ,j kX is the specific 

coordinate position, and δ denotes the minimal value. The 
length of the limb between two joint points can be expressed 

as , 2, 1,
2

c k j k j kl X X  . The study introduces weight values 
and penalty terms in the loss function of the model to reduce 
the impact of branching losses on the accuracy results, and the 
mathematical expression is shown in equation (2). 
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 denotes the penalty term. In the 

jumping rope movement analysis, the movement involves the 
head, shoulders, wrist tin cream, ankles and other limbs of the 
human posture parts. This real-time movement and limb 
movement quality assessment can be affected by a variety of 
factors, so the research is based on the characteristics of 
mobile vision for movement analysis, and introduces the Long 
Short-Term Memory (LSTM) models. The LSTM network 
algorithm can effectively process long time sequences of data 
and information, and selectively forget new information and 
accumulated information by introducing a gating mechanism. 
By using memory units to transfer information cyclically, the 
model can effectively avoid the problem of gradient 
disappearance during the training process. Fig. 2 shows the 
structure of the recurrent unit of the LSTM network. 

Based on the LSTM input human action data, the formulae 

for input gate ti , forgetting gate tf  and output gate to  at 
moment t  are shown in equation (3). 
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Fig. 2. Schematic diagram of network cycle unit structure. 
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In equation (3), 1th   is the output of the previous layer 

and the information of the structure, th  is the output, σ  is 

the gate activation function, tx  is the input value and ,M b  
denote the weight matrix and the deviation value. The 
long-term memory state at moment t can be expressed as 
equation (4). 

 1 1tanh( * , )t t t t c t t cc f c i W h x b    
    (4) 

In equation (4), ,c cW b  denote the weight value and bias 
of the input gate, and   denotes multiplication by element. 
The LSTM network fuses static and dynamic features when 
classifying action recognition. Changes in different nodes can 
have an impact on action pose recognition, and degree 
discrimination of node importance can effectively highlight 
the information data of valid actions, so the study introduces 
an attention mechanism for weighting [26-28]. The attention 
mechanism assigns different weight values to different input 
feature sequences to show the difference in their attention, 
which can effectively improve the LSTM network to treat 
different feature states the same, ignoring the 
multi-dimensionality and hierarchy of features. The study 
represents the degree of correlation between information 
features and output values with the help of a one-layer 
perceptron, the mathematical expression of which is shown in 
equation (5). 

'
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    (5) 

In equation (5), 
'

ih  is the intermediate layer state after 

LSTM recognition, y  is the target intent and 1 2, ,v W W  are 
the learning parameters. The normalisation is performed to 
obtain the attention weights of the features, see equation (6). 
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 In equation (6), is  is the learning degree of the feature 
and m  denotes the number of features. Fig. 3 shows the 
network architecture of the introduced attention mechanism. 

The analysis of human posture during jumping rope can be 
regarded as a label classification problem with temporal and 
sequential characteristics, and the body movements involved 
in it can also have an impact on the continuity and integrity of 
jumping rope when deviations and movements occur. The 
study incorporates an attention mechanism into the LSTM 
model, as shown in Fig. 3(b). The ALSTM-LSTM model 
consists of five aspects: the input layer, the batch 
normalisation layer, the ALSTM-LSTM layer, the connection 
layer and the sigmoid layer. The data is normalized by 
BatchNorm to ensure predictability of the data gradient and to 
reduce the data fluctuation problem of the problem solution, 
allowing the algorithm performance to achieve high 
convergence within the learning rate range. Traditional jump 
rope physical education is taught through demonstration by 
the physical education teacher as well as explanation of the 
movements, followed by the students exercising on their own 
[29-30]. Since there is a large variability among individual 
students, their mastery of the ability varies. Therefore, the 
study introduced an attention mechanism into the LSTM 
model to make the extraction of effective movement 
information more effective. Fig. 4 is the schematic diagram of 
the analysis model for jumping rope movements. 
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Fig. 3. Network architecture of introducing attention mechanism. 
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Fig. 4. Schematic diagram of analysis model flow of rope skipping. 

The ALSTM-LSTM model can effectively transform the 
posture of the athlete during the jumping rope movement into 
a classification problem, and carry out a before-and-after 
correlation analysis. It makes a comprehensive judgment on 
the key points of the limbs in the posture analysis to achieve 
an effective analysis of the jumping rope movement. 

B. Analysis of Physical Education Campaigns to Improve the 

CDA Module 

Human motion detection is highly difficult in the computer 
recognition process due to the complexity of the movement of 
the human target and the interference of the external 
environment. Enhancing the relevance and accuracy of motion 
target detection and human motion recognition is the focus of 

current research. Most current human motion detection 
algorithms include both centroid-based and high-resolution 
feature-based examinations. Among them, anchor frame 
definition network features are more prone to target detection 
bias as well as sample imbalance problems, and they require 
higher accuracy in target detection for the interaction ratio 
between the labeled and real frames [31-32]. There are 
differences in limb node movements driven by jumping rope 
behaviour, and the task of detecting targets at different 
locations increases the difficulty of information processing 
and hyperparameter overload. Therefore, the study uses 
multi-level features for fusion to improve the target detection 
performance and give full play to the complementary feature 
of different dimensional levels of information detection. 
Content Descriptive Attention (CDA) module is introduced to 
achieve multi-scale feature extraction and adaptivity of fused 
information. Fig. 5 shows a schematic diagram of adaptive 
feature fusion. 

Consistency in image size maintenance as well as 
non-linear characteristics is important to ensure that features 
are extracted by the CDA module. This means that the input 
image is sampled for matching, the convolution of the 
sampled image, the acquisition of features that feel different 
scales and the selection of features. It fuses several aspects to 
achieve the output of the processed image [33]. The global 
average pooling of the feature data gives the channel 
information, as equation (7). 
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Fig. 5. Schematic diagram of adaptive feature fusion process. 

In equation (7), , cZ u  represents the channel information 

and descriptive features, ,H W  are the two aspects of the 

spatial dimension and ,i j  are the number of elements in the 

channel information. The channel dependencies are described 
with the help of the fully connected layer (FC), for which the 
extracted mathematical expressions are given in equation (8). 

0( )s δ W z
                (8) 

In equation (8), 0,δ W denote the activation function and 

the weight of the first connected layer, respectively. The 
output value of the features under feature fusion is the product 
of the feature representation of each component and its 
corresponding attention vector. The output value of the CAD 
module can be a representation of the semantic features 
extracted from the network, and the mathematical expression 
is shown in equation (9). 

in out att outU U U U            (9) 

In equation (9), ,in outU U  represent the inputs and outputs 

of the network, attU  is the attention map in the module and 

 is the Hadamard product. Fig. 6 shows a schematic 
diagram of the application of the CAD module in target 
detection. 

The High Resolution Network (HRNet), which is often 
applied to feature fusion, only adjusts and directly fuses 
features of different resolutions, without taking into account 
the differences in the representation of different resolution 
feature images and feature information data [34]. To reduce 
the distortion of image accuracy with direct fusion 
manipulation, a WFHRNet network that adds learning weights 
to the input features is proposed for feature extraction to 
distinguish the importance of different features in the overall 
network. The mathematical expression is shown in equation 
(10). 
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Fig. 6. Application diagram of CAD module in target detection. 
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In equation (10), σ  denotes the Sigmoid function, iw  is 

the learning scalar, and 
( , )if I k

 denotes the input resolution 
iI adjusted to the k  resolution via the sampling step. The 

size of the distance between prediction frames in different 
images can have an impact on information recognition. Non 
Maximum Suppression (NMS) processing is mostly used to 
remove redundant frames, but this method uses the 
intersection ratio metric to assess the difference of the 
assessed frame and the real frame. When the intersection ratio 
of the two targets is high, the correctly predicted prediction 
frames will be removed due to non-maximum suppression, 
resulting in the algorithm missing detection,. The overlap of 
the redundant prediction frames and the equiposition 
relationship between different prediction frames will make the 
algorithm accuracy impaired. Therefore, the research proposes 
to improve the NMS with Manhattan Distance based Non 
Maxi-mum Suppression (MD-NMS), which can represent the 
sum of the distances of the prediction frames in the vertical 
and horizontal directions. Its mathematical expression is given 
in Equation (11). 

1 2 1 2( , ) ( , ) ( , ) ( , )B BMD B B MD m n MD n v MD c c  
  (11) 

In equation (11), ( , ), ( , )m n n v  denote the point in the 
vertical direction of the upper left and lower right corners of 

the two prediction frames 1 2,B B , and 1 2,B Bc c  is the centroid 

of 1 2,B B . There is an inverse relationship between the value 
of Manhattan distance and image similarity. The mathematical 
expression of MD-NMS is shown in equation (12). 
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i i i i
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S
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 
 

        (12) 

In equation (12), loU  denotes the intersection ratio, ,iS  

is the threshold, ib  is the confidence score of the prediction 
frame, and M  denotes the prediction frame at the highest 
confidence level. 

IV. ANALYSIS OF EXPERIMENTAL RESULTS FOR THE 

ANALYSIS OF PHYSICAL EDUCATION AND SPORTS TEACHING 

The participants’ body movements during jumping rope 
were analyzed and identified, and the network was constructed 
after identifying the key points through the human body. The 
MPII motion data set and the jumping rope data set were used 
for this experimental dataset. The jumping rope data set was 
obtained from an experimental secondary school. In the 
process of data acquisition, the height and width of the video 
frames of different sizes were set uniformly in order to detect 
the node position of the research subject in the jumping rope 
movement. During the analysis of the posture estimation 
jumping rope movements, the data analysis and visualization 
effects were displayed with the help of the JupyterNotebook 
interactive application. The hardware environment was set as: 
CPU: Intel Core i7-8700K, 3.70GHz; memory: 32G; GPU: 
GTX 1080Ti. Performance evaluation of the ALSTM-LSTM 
model proposed in the study was carried out, and the results 
are shown in Fig. 7. 
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Fig. 7. Error comparison results of different algorithm functions for moving 

image analysis. 

What can be seen from Fig. 7 is that there are large 
differences in the error results of different algorithmic models 
under different numbers of iterations. Specifically, when it is 
less than 25, the data loss curves of the five algorithm models 
are slanted larger, and the error values between different 
models do not exceed 0.2%. When the number of iterations 
increases, the increase of data information will cause different 
degrees of redundancy to the algorithm performance. The 
average error in information for the LSTM model is 4.23% 
between 25 and 200 iterations, and only gradually plateaus 
when the number of iterations exceeds 200, with the value 
remaining at 1.37%. Meanwhile, the maximum error in 
information extraction between the LSTM model and the 
proposed ALSTM-LSTM model reached 26.35% at more than 
25 iterations. The LSTM model with the addition of a residual 
network (ResNet), the LSTM model with a bi-directional 
mechanism (Bi-directional) and the LSTM model with a 
unidirectional attention mechanism all showed varying 
degrees of improvement in algorithmic loss compared to the 
single LSTM model. The loss curves also leveled off in the 
later stages of the algorithm, with the average errors of 
15.24%, 10.28% and 9.36%, respectively, but the fluctuations 
of the nodes were more obvious. The above results indicate 
that the proposed model can enhance the information 
extraction accuracy capability. Subsequently, the model 
performance was further explored, and for the convenience of 
data statistics, the study referred to the five algorithmic 
models as Models 1-5, where the model proposed in the study 
was Model 1. Two other models are added, namely the 
Multi-label k-Nearest Neighbor algorithm (Model 6) and the 
Channel-Split Human Pose Estimation algorithm 
(Channel-SplitResidual StepsNetwork (Channel-SplitRSN) 
(Model 7). The result is Fig. 8. 

What can be seen in Fig. 8 is that the performance 
expressed by the different algorithmic models varies 
considerably. In terms of accuracy values, the models with 
values above 90 are models 1-4, while models 5-7 have 
accuracy values in the range 60-75. The average accuracy of 
models 1-7 is 95.83, 94.73, 93.23, 92.13, 63.43, 75.53 and 
74.43 respectively, which reflects the stable performance of 
the algorithm in information extraction. The average accuracy 
of several models improved compared with LSTM in the 
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figure is basically above 40%, among which the average 
accuracy of the model proposed in the study reaches 62.57%, 
and its accuracy error is 22.3% higher than the traditional 
LSTM model, and 19.32% and 17.31% higher than the 
ML-KNN model and RSN model. The results in Fig. 8(b) 
show that the models performing in order from best to worst 
in terms of recall metrics are ALSTM-LSTM model > 
LSTM-BN model > ALSTM-BN model > LSTM model > 
BiLSTM model > RSN model > ML-KNN model. The recall 
rate of the proposed model was 94.21%, corresponding to an 
F1 value of 94.1, and the maximum difference between this 
model and the other models in terms of recall index was 17.9. 
The above results show that the ALSTM-LSTM model can 
better take into account the correlation between sequence 
information, achieve the extraction of feature information data, 
and effectively avoid the problem of missing and omitted data. 
To further evaluate the performance of the ALSTM-LSTM 
model, the study was designed to compare it with the LSTM 
model at different values, the results of which are shown in 
Fig. 9. 

In Fig. 9, the two models exhibit different ROC curve 
characteristics under different target fetch values. In Fig. 9(a), 
the single LSTM model is more influenced by the fetching 
values and the AUC areas under each label are 0.781, 0.829, 
0.891, 0.765, 0.831 and 0.944 respectively. In Fig. 9(b), the 
improved LSTM model has a higher accuracy rate in image 
information prediction selection and is less disturbed by the 
fetching values, and its average accuracy reached 86.37%. The 
above data tells that the model created in the study has good 
application performance. The results of limb movement 
localization in jumping rope movements were then analyzed 
and the results are shown in Table I. 

The results in Table I show that the ALSTM-LSTM model 
has a high localization accuracy for feature extraction of 
different limb parts with a maximum value of 95.2 and it 
performs best in the comparison results with other models 
with a high improvement in the loss of data. The maximum 
localization accuracy values of the other six models were 90.4, 
78.3, 78.9, 81.8, 76.1 and 71.7 respectively, all of which were 
smaller than the proposed mode in the study. It was then 
analyzed and the results are shown in Fig. 10. 
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Fig. 8. Performance comparison of different algorithm models. 
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Fig. 9. ROC and AUC curves of LSTM model and ALSTM-LSTM model. 

TABLE I. LIMB POSITIONING RESULTS OF ROPE SKIPPING UNDER DIFFERENT ALGORITHM MODELS 

Model Head Shoulder Elbow Wrist Hip Knee Ankle 

ALSTM-LSTM 95.2 87.3 75.8 72.5 78.6 70.1 64.8 

ALSTM-BE 90.4 82.5 71 67.7 73.8 65.3 60.4 

LSTM-BE 78.3 70.4 58.9 55.6 61.7 53.2 47.9 

BiLSTM 78.9 71.0 59.5 56.2 62.3 53.8 48.5 

LSTM 81.8 73.9 62.4 59.1 65.2 56.7 51.4 

ML-KNN 76.1 68.2 56.7 53.4 59.5 51.2 45.7 

RSN 71.7 63.8 52.3 49 55.1 46.6 41.3 
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Fig. 10. System test results of two models. 

In Fig. 10, the system processing performance of the 
LSTM model for all three pose features is poor, with the 
average time consumed for data upload, data query and feature 
extraction all greater than 15s. The system processing 
performance of the ALSTM-LSTM model proposed in the 
study is better and more balanced, with an average time 
consumption of 11.23s. The human posture recognition 
algorithm is applied to the classroom evaluation of a certain 
jumping rope teaching, and it evaluates students' physical 
performance in the final stage. Firstly, perform a result 
analysis on its matching accuracy, as shown in Fig. 11. 
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Fig. 11. Evaluation accuracy of human pose recognition algorithm. 

The results in Fig. 11 indicate that the pose recognition 
model proposed in the study achieved motion recognition 
accuracy of 94.7% and 93.5% for the general and detailed 
movements of jumping rope on two types of data, respectively. 
Among them, the matching accuracy of the lunge movement 
was the highest (98.77%), and its posture matching error 
situation was effectively improved. The results indicate that 
the recognition algorithm has good application effect in 
physical education teaching evaluation. The satisfaction of 
students is collected during the evaluation process, and the 
results are shown in Fig. 12. 

In Fig. 12, the satisfaction score obtained by the action 
recognition algorithm used in the study in student sports 
evaluation reached over 90 points. Compared to other 
algorithms, students are more satisfied with the proposed one. 
The results indicate that the recognition algorithm can 

effectively assist in the jumping rope sport teaching and help 
students improve their academic performance. In future sports 
teaching, teachers can use this motion analysis system to help 
students master the standard movements of jumping rope. 
Appropriate teaching strategy adjustments can be made based 
on the feedback from students, in order to continuously 
improve teaching effectiveness and quality. 
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Fig. 12. Student satisfaction in the evaluation process of physical education 

teaching. 

V. CONCLUSION 

The study analyses the pose in jumping rope movement 
scenarios and introduces an attention mechanism to improve 
the neural network, converting the video analysis problem into 
a limb key point coordinate analysis problem. The results of 
the proposed model system were analyzed and it was found 
that the average error of the LSTM model information 
extraction between 25 and 200 iterations was 4.23%, which 
gradually leveled off at more than 200 iterations and remained 
at 1.37%. It was much larger than the maximum error of 
information extraction of the proposed ALSTM-LSTM model 
at more than 25 iterations, which was 26.35%. The maximum 
error in information extraction with the proposed 
ALSTM-LSTM model at more than 25 iterations was 26.35%, 
larger than that of the LSTM-RE, BiLSTM and ALSTM 
models at 15.24%, 10.28% and 9.36%. For information 
extraction accuracy, the accuracy value of the ALSTM-LSTM 
proposed in the study reached 95.83, and its average accuracy 
was 62.57%, which was 22.3%, 19.32% and 17.31% higher 
compared with the LSTM model, ML-KNN model and RSN 
model. The ALSTM-LSTM model also has a larger AUC area 
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than the single LSTM model, with a maximum value of 95.2 
for the localization of the subdivision of the jumping rope 
pose movements. The jumping rope motion system 
constructed with the ALSTM-LSTM model shows better 
performance. Further research is needed to enhance the 
motion scene analysis ability and to widen the dimension of 
pose estimation. 
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