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Abstract—Community is a mesoscopic feature of the multi-

scale phenomenon of complex networks, which is the bridge to 

revealing the formation and evolution of complex networks. Due 

to high computational efficiency, label propagation becomes a 

topic of considerable interest within community detection, but its 

randomness yet produces serious fluctuations. Facing the 

inherent flaws of label propagation, this paper proposes a series 

of solutions. Firstly, this paper presents a heuristic label 

propagation algorithm named Label Propagation Algorithm use 

Cliques and Weight (LPA-CW). In this algorithm, labels are 

expanded from seeds and propagated based on node linkage 

index. Seeds are produced from complete subgraph, and node 

linkage index is related to neighboring nodes. This method can 

produce competitive modularity Q but not Normalized Mutual 

Information (NMI), and compensate with existing methods, such 

as Stepping Community Detection Algorithm based on Label 

Propagation and Similarity (LPA-S). Secondly, in order to 

combine the advantages of different algorithms, this paper 

introduces a game theory framework, design the profit function 

of the participant algorithms to attain Nash equilibrium, and 

build an algorithm integration model for community detection 

(IA-GT). Thirdly, based on the above model, this presents an 

algorithm, named Label Propagation Algorithm based on IA-GT 

model (LPA-CW-S), which integrates LPA-CW and LPA-S and 

solves the incompatibility between modularity and NMI. Fully 

tested on both computer-generated and real-world networks, this 

method gives better results in indicators such as modularity and 

NMI than existing methods, effectively resolving the 

contradiction between the theoretical community and the real 

community. Moreover, this method significantly reduces the 

randomness and runs faster. 

Keywords—Community detection; label propagation; node 

linkage; complete subgraph; game theory 

I. INTRODUCTION 

Human beings are surrounded by systems that are 
unprecedentedly complicated. Behind each complex system, 
there is an intricate network that encodes the interactions 
among these system components. Among those networks, the 
most influential ones are social networks, communication 
networks, world wide web and cognitive neural networks etc. 
[1], which are characterized by small-world [2], scale-free [3], 
community structure [4]. Since Newman [4] put forward the 
problem of complex network community structure in 2002, 
domestic and foreign scholars have devoted themselves to 
studying the community nature of networks and proposed a 
large number of community discovery algorithms, which can 
be broadly divided into bottom-up community discovery and 
top-down community discovery [5]. The bottom-up method 

can efficiently expand the community gradually from nodes 
based on heuristic rules, which can be divided into three 
categories: modularity optimization class, local extension class 
and label propagation class. With the outstanding algorithm 
efficiency, the label propagation community discovery method 
has been widely concerned. However, the randomness of the 
existing methods cannot guarantee the stable and reliable 
results of community division, and each algorithm has its own 
advantages and disadvantages, so it cannot adapt to all 
scenarios alone. 

Inspired by relevant theories in sociology, mathematics, 
biology and other fields, the idea of this paper is originated 
from three points. Fig. 1 is a vivid description of them. 

 Inspiration 1: Social identity theory in sociology [6] and 
acquaintance model. In social relationship, the number 
of friends, the degree of intimacy and the co-neighbor 
relationship greatly affect the social relationship. Based 
on relational model in sociology, a node link 
relationship model is proposed in this paper, which 
provides a theoretical basis for label selection strategy. 

 Inspiration 2: Classical game theory in mathematics and 
evolutionary game theory in biology [7]. There exist 
conflict, competition and cooperation among nodes in 
complex network, and their microscopic dynamic 
evolution mechanism can be described by game model. 

 Inspiration 3: The contradiction exists between the 
theoretical community division and the real-world 
division. Community detection algorithms are mainly 
based on graph theory and quality function, and the 
results of community detection are usually refined, but 
small and large communities are not effective for 
communication, Therefore, community scale in the real 
world tend to be greater. 

These ideas improve the initialization, propagation, and 
convergence processes in the new algorithm. Meantime, this 
paper introduces game theory to explain the cooperation and 
competition among nodes in complex networks, and propose 
an algorithmic integration model for community detection, and 
then a novel algorithm is proposed based on this model. Fig. 2 
shows the theoretical framework and technical route of this 
paper. The main contributions can be summarized in the 
following three points: 
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Fig. 1. Source of inspirations for this paper. 

 

Fig. 2. The theoretical framework of this paper. 

 Contribution 1: This paper proposes a label 
propagation community detection algorithm (LPA-CW) 
based complete subgraphs and Node Link Strength. In 
the initialization phase, non-overlapping complete 
subgraphs are introduced as the seed community, and 
Node Link Strength based mechanism is introduced in 
the propagation phase, which improves the stability and 
accuracy of the community division, suitable for large-
scale networks. 

 Contribution 2: This paper proposes an integrated 
model of community detection algorithms, IA-GT 
model, based on game theory. The model sets the 
payoff function of the participant algorithm, derives and 
verifies the Nash equilibrium under the mixed strategy, 
which can theoretically realize the complementary 
advantages of different algorithms and hence has strong 
scalability. 

 Contribution 3: Based on this new IA-GT model, 
LPA-CW algorithm and LPA-S algorithm are selected 
as the combination objects, and then LPA-CW-S 
algorithm is proposed. Experiments have proved that 
the game mechanism effectively takes into account the 
contradiction between the theoretical community 
structure and the real community division, and performs 
well in metrics such as modularity and NMI, which 
improves the efficiency and decreases the randomness 
and volatility. 

The remander of this paper is organized as follows. Section 
Ⅱ introduces the research status of label propagation algorithm 
and the research status of introducing game theory framework 
to solve the problem of community discovery. Section Ⅲ and 
Ⅳ respectively describe the LPA-CW algorithm, IA-GT game 
theory model and LPA-CW-S integrated algorithm. Section Ⅴ 
is the experimental setting and result analysis, and Section Ⅵ 
gives conclusions. 

II. RELATED WORK 

This section introduces the research status of community 
detection algorithm based on label propagation and game 
theory, and then proposes the existing limitations and research 
direction. 

A. Label Propagation Algorithm 

In 2002, Zhu et al. first proposed the label propagation 
algorithm (LPA), which predicts the label information of 
unlabeled nodes with the labeled nodes. In 2007, Raghavan et 
al. [8] applied LPA to community detection for the first time. 
LPA can detect community structure in a near-linear time, 
which is greatly attractive. In 2009, Barber et al. [9] redefined 
LPA as an equivalent optimization problem, expanding the 
scope of application, and proposed the LPAm by modifying the 
objective function, which is applicable to both two-part 
network and single-part network. In 2017, Li et al. [10] 
proposed Stepping-LPA-S (short for LPA-S) aiming at 
reducing side effects of community merging by introducing a 
new quality function. 

This search for LPA optimization has attracted much 
interest in recent years due to the side effects of propagation 
instability. Liu et al. [11] introduced node influence, network 
propagation update and node attribute characteristics in LPA. 
SUN et al. [12] transformed node partition problem into link 
partition problem in LPA. Kouni et al. [13] introduced node 
aggregation coefficient in LPA to evaluate node importance. 
ZHANG et al. [14], from the perspective of human society and 
radar transmission, defined four node capabilities (propagation, 
attraction, emission and reception), label influence and a novel 
label propagation mechanism to cope with instability and 
efficiency. In the field of community detection, LPA 
optimization is still a research hotspot, but it is trapped in 
homogeneity without breakthrough. 

 Limitation 1: Most algorithms emphasize on network 
structure, ignoring node importance during network 
formation. 

 Limitation 2: The improvement mainly focuses on 
the label selection stage, ignoring the overall 
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consideration for other stages, such as initialization 
and convergence. 

Inspired by clique percolation and sociological relationship 
theory, this paper optimizes most stages including 
initialization, propagation and convergence, and proposes a 
novel algorithm. 

B. Game Theory 

Since the publication of Von Neumann’s article “Theory of 
Parlor Games” [15], game theory has been widely applied to 
psychology, economics, sociology, politics and many other 
fields. However, game theory rarely appears in the field of 
community detection. Chen et al. [16] first introduced game 
theory framework to solve the problem of community 
detection, which reflects the formation of real-world 
communities and detects communities by the gain and loss 
function. Ioana et al. [17] proposed a dynamic community 
detection method based on game theory elements and 
extremum optimization, but its experimental results had 
unobvious advantage compared with existing algorithms, and 
there were few related studies since then. 

Since 2019, there has been a series of new improvements. 
For example, Hesamipour et al. [18] used the Adamic/Adar 
(AA) index to detect the local host node and extended its 
surrounding community based on the game theory. ZHOU et 
al. [19] proposed an edge weight calculation method for 
computing node and alliance Shapley values in combination 
with game theory for community detection. Kumar et al. [20] 
used a game theory method (Dynamic Clustering game, 
DCFG) to analyze the clustering problem of attribute graphs, 
and provided a solution for balancing topology structure and 
node attributes. Obviously, there are some new entry points to 
combine game theory with community detection, but there are 
still some limitations. 

 Limitation 1: Most game theory based community 
detection algorithms can’t get satisfactory results in 
benchmark experiments, and improvement bottlenecks 
still exist compared with classical algorithms. 

 Limitation 2: The game selection didn’t effectively 
solve the contradiction between the theoretical 
optimization of community division and the real world 
needs, and didn’t take full advantage of game theory. 

Considering the above problems, this paper views some 
community detection algorithms as participants, and proposes 
an extensible model. 

III. A COMMUNITY DETECTION ALGORITHM FOR LABEL 

PROPAGATION BASED ON COMPLETE SUBGRAPHS AND NODE 

LINK STRENGTH 

A. Problem Formulation 

Given ( , )G V E represents a complex network, where 

 { | 1,2,..., }V v i i n   represents the set of nodes in the network, 

and  { | 1,2,..., }E e i i m   represents the set of edges. 

Communities are subsets of nodes highly linked among 
themselves but loosely connected to the rest of the network. 
Communities are believed to play a central role in the 

functional properties of complex structures. They are 

represented by   1 2, ,..., 1 | |KC C C C K V   and K is the 

number of network communities. 

 Definition 1: Direct link strength. It denotes the direct 

contribution to the link strength of edge (1), (2)v ve
 of 

nodes 
(1)v

 and 
(2)v

 concerning their neighbor nodes, 

which is marked as 
(1), (2)v vDL

 and the equation is as 
follows: 

(1), (2)
(1) (2)

1
v v

v v

DL
d d




               (1)  

In which (1)vd and (2)vd respectively represent the number of 

neighbor nodes of nodes (1)v  and (2)v , namely the degree. 

The larger the node degree is, the more important the node is, 
but the smaller contribution to the link intensity value. 

 Definition 2: Indirect link strength. It denotes the 
indirect contribution degree of the link strength of edge 

(1), (2)v ve
 between nodes (1)v  and (2)v  according to the 

common neighbor nodes, which is marked as (1), (2)v vIL
 

and the equation is as follows: 

    
(1), (2)

(1) (2)

| (1) (2) | +1
v v

v v

N v N v
IL

d d





         (2) 

In which 
 (1)N v

and 
 (2)N v

 denote neighbor node sets 

of nodes 
(1)v

and 
(2)v

, respectively,
   (1) (2)N v N v

 

represents common neighbor node sets of nodes 
(1)v

 and 
(2)v

. The more common neighbors between nodes are, the stronger 

their connectivity is. 

 Definition 3: Node link strength. It denotes the joint 

contribution of nodes (1)v  and (2)v  to the link 

strength of edges (1), (2)v ve  via direct link and indirect 

link strength, which is marked as (1), (2)v vLS  and the 

equation is as follows: 

   

   

       

   

   

1 , 2 1 2

1 , 2
1 , 2 1 , 2 1 2

1 1

2*    1 1

v v v v

v v
v v v v v v

DL if d or d
LS

DL IL if d and d

 
 

  

 (3) 

According to neighbor nodes between node 
(1)v

and 
(2)v

, 
if exists, the direct link and indirect link strength are calculated, 
and if not, only the direct link strength is calculated. 

B. Description of LPA-CW Algorithm 

1) Label initialization based on non-overlapping complete 

subgraph: In the traditional LPA, a unique label is assigned to 

each node during initialization, which causes the scattered 

labels. In the subsequent propagation process, it is hard to 

converge and easy to lead to fluctuation. The node-link 

relationship tells us that the community structure is highly 
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similar to complete subgraph. Therefore, identifying the non-

overlapping complete subgraph first can improve label 

propagation. 

The label initialization process is as follows, sorting all the 
unassigned nodes in descending order of degree, then looking 
for a complete subgraph starting from the node with greatest 
degree, and then process continuously cycles until each node 
have been assigned to some subgraph, finally assigning the 
same label to nodes in the same complete subgraph. 
Approximation strategy ensures algorithm efficiency, making 
subsequent label propagation process converge faster. The 
pseudocode of this procedure is as follows: 

Algorithm 1 Find Nonoverlapping Complete Subgraph 

Data: Graph 

Output: nonoverlapping cliques 

1: node ←nodes of G sorted by degree in descending order 

2: done ← [0 for each i in node] #0:unassigned, 1:assigned 

to some clique 

3: c ← [[] for each i in node] 

4: t ← 0 #record the number of cliques 

5: while node is not empty do 

6:    n ← node[0] #node with the largest degree among  

unassigned nodes 

7:    done[n] ← 1 

8:    node.remove(n) 

9:    c[t].append(n) 

10:   for each j in neighbors of n sorted by degree in 

descending order do 

11:       if done[j] = = 0 and j have edge(i,j) for each i in c[t] 

then 

12:          done[j] ← 1 

13:          node.remove(j) 

14:          c[t].append(j) 

15:        end if 

16:    end for 

17:    t++ 

18: end while 

19: c ← c[:t] 

20: return c 

2) Label update strategy based on node link strength: 

When a node has multiple neighbor labels with the same 

highest frequency, one of these labels will be randomly 

selected as its own label, which is the traditional problem of 

LPA. This randomness greatly reduces accuracy and stability 

of community division. 

To minimize randomness, this paper uses the node link 
strength to set a new label update strategy. Label update rules 

are defined as follows: (1) calculate the link strength ( ), ( )v i v jLS
 

between any two nodes in the network, according to the 

random access order, for the current nodes 
( )v i

, find out all the 

node sets lnlabeR  with the same label in its neighbor ( )r j  
(according to Equation 4). Then calculate the link strength 

cumulative sum between node 
( )v i

 and each node set lnlabeR
 

(according to Equation 5). Find the label nlabel
 corresponding 

to the accumulated and largest node set, and the node 
( )v i

 

label is updated to nlabel
. 

ln ln{ (1), (2),..., (| |)}labe labeR r r r R  

1 2 ln{ , ,..., }label label labeR R R R        (4) 

1 2 ln

1 2 ln( ), ( ) ( ), ( ) ( ), ( )

1 1 1

{ , ,..., }
label label labe

label label labe

R R R

v i r j R v i r j R v i r j R

j j j

L LS LS LS  

  

                       (5) 

 

Fig. 3. A simple example for node link strength. 

As shown in Fig. 3, calculate node link strength of 
( )v a

-

( )v b
and 

( )v a
-

( )v d
 according to Equation 3. The calculation 

steps for the above two are as follows: 

( ), ( ) 1/ (3 3) 2*(2 1) / (3 3) 1.167v a v bLS      
, 

( ), ( ) 1/ (3 5) 2*(2 1) / (3 5) 0.875v a v dLS      
. Here node 

color denotes node label, set current node = 
( )v d

, and its 
neighbor node set with identical labels is 

{{ ( ), ( )},{ ( )},{ ( )},{ ( )}}R r a r b r c r e r f
. Then accumulate 

node link strength with the same labels and the result is 

calculated as L={1.75 ， 0.875 ， 0.714 ， 0.714}, so the 
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maximal value 1.75 is selected and node 
( )v d

 is updated for 
the yellow label. 

3) Algorithm procedure: The algorithm procedure of 

LPA-CW is shown in Fig. 4, and its pseudo-code is described 

in Algorithm 1. 

 
Fig. 4. Flow chart of LPA-CW algorithm. 

Algorithm 1 Pseudocode of Label Propagation Algorithm 

use Cliques and Weight 

Input: Graph 

Output: partition 

1: addWeight(G) 

2: labeling ← v : k for k, v in enumerate(G) 

3: cliques ← getCliques(G) 

4: maxc ← maxLength(cliques) 

5: for i in cliques do 

6:   if length(cliques[i]) == maxc then 

7:     maxLabel = max(i) 

8:     for j in i do 

9:        labeling[j] ← maxLabel 

10:    end for 

11:  end if 

12: end for 

13: while not labelCompleteEdgeWeight(labeling, G) do 

14:   for n in G.nodes() do 

15:      updateLabelEdgeWeight(n, labeling, G) 

16:   end for 

17: end while 

18: partition ← getResult(labeling) 

19: return partition 

4) Algorithm analysis: Assuming that the network has n  

nodes and m  edges, the average degree of nodes is denoted 

by k , and the number of non-overlapping complete subgraphs 

searched in ⅢA is denoted by  . 

The running time is mainly consumed during two stages. 
The first stage is the initialization phase, and it takes 

( log )O kn n
 to identify non-overlapping complete subgraphs, 

then label assignment to the subgraph is 
( )O 

, and calculating 

node link strength is 
( 2 )O n m

. The second stage is the label 

propagation process, and it takes 
( 2 )O n m

 to access 

neighbor nodes, and takes 
( ( 2 ))O r n m 

 to loop iteration r  
times. The value of r  is related to data sets, when the scale of 
the data set increases or the average degree increases, r  will 
also increase. Generally, r  is in [3,6]. 

In summary, the time complexity of the new algorithm is 
( ( 2 ))O r n m  . In the subsequent experiment section, it can be 

proved that this algorithm is prone to faster convergence. 

IV. COMMUNITY DETECTION ALGORITHM INTEGRATION 

MODEL BASED ON GAME THEORY 

A. Problem Formulation and Basic Definitions 

According to the analysis of experimental data in Section 
ⅤB of this paper, LPA-CW algorithm has obvious advantages 
in modularity Q, which shows that community partition is of 
high quality and refinement; the comparison algorithm LPA-S 
[10] has complementary advantages in standard mutual 
information NMI, and has high accuracy in comparison with 
real community partition. Therefore, this paper introduces the 
game model to explain the individual choice and overall 
stability maintenance in the process of community formation. 
Firstly, in this paper, the combination of label propagation 
algorithms, namely LPA-CW algorithm and LPA-S algorithm, 
is selected. 

The strategic game G is represented by the set 

1 1{ ,{ } ,{ } }N N
i i i iG N A u  , where  1,...,N N  is the set of 

participants, 1 2{ , ,..., }i nA A A A  is the set of strategies available 

to the participant i, and iu  is the payoff of the participant i. 

When constructing the model, this paper uses the payoff matrix 
and mixed strategy in game theory. 

B. IA-GT Community Detection Model Construction and 

Verification 

The IA-GT (Integration Algorithm-Game Theory) 
community detection model is divided into three stages. Fig. 5 
shows the frame diagram of the model construction. This 
model is an extensible model that can be flexibly replaced and 
combined. In the first step, the selection of participants must be 
based on the principle of the algorithm itself and the game 
theory, which has theoretical integration and practical 
significance. The second step is to define the payoff function of 
the participant according to the selected strategy and the core 
parameters of the algorithm. In the third step, the Nash 
equilibrium solution result needs to be verified by algorithm 
experiment. 
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Fig. 5. IA-GT community detection model. 

1) Integrated model building process: According to the 

game theory, this paper uses the payoff matrix to construct the 

model, with LPA-CW algorithm and LPA-S algorithm as two 

participants. Combining the core principles of the two 

algorithms, first initialize the network label, and then update 

the node label according to the game theory selection 

algorithm. The community label of each node has two states 

"changed" or "unchanged". In this model, the strategy of the 

two participants is to "change (c)" or " don't change (d)" the 

label of the current processing node. Symbolizing the above 

game process can be obtained: 

{{ },{ , } - ,{ , }}- LPA S LPA CW LPA S LPA CWG A A uLPA S LPA C uW     ，

Participants:
-{ } -N LPA S LPA CW ，

 represents two 
algorithms; 

Strategy:
{ , }LPA S LPA CWA A c d  

use c and d to indicate 
change and don't change. 

Payoff: ( , ), ( , )LPA S LPA CWu c c u c c  ; ( , ), ( , )LPA S LPA CWu c d u c d  ;  

( , ), ( , )LPA S LPA CWu d c u d c  ; ( , ), ( , )LPA S LPA CWu d d u d d  ;  

In game theory, the payoff function needs to be defined 
according to the problem domain. For example, for the strategy 

group
( , )A d c

, 
( , )LPA Su d c  is the payoff of the participant 

LPA-S under this set of strategies, not only related to its own 
strategy choice, but also related to the opponent (LPA-CW) 
strategy choice and initial profit value during the interaction. 
Combining the label update rules of LPA-S and LPA-CW, 
define the participant's own benefits and the preference 
relationship between participants, under the selected strategy. 

 Definition 4: Participant LPA-S's own benefits under 
the c strategy: The maximum value of similarity 
between the current processing node v(i) and its 
neighbors minus the maximum value of similarity 

between node v(i) and the neighbors with the same 

label as node v(i), the equation denoted as LPA SI   is 

as follows. 

 
1 2

1 ( ), (1) ( ), (2) ( ), ( )

2 ( ), (1) ( ), (2) ( ), ( ) l

max{ } max( )

{ , ,..., }, ( ) ( )

{ , ,..., }, ( )

LPA S

v i r v i r v i r j

v i r v i r v i r h labe i

I S S

S s s s r j N v i

S s s s r h R

  

 

 

   (6) 

Where ( ), (1)v i rs
 is the similarity between the node v(i) and 

its neighbors [21], 
 ( )N v i

is the set of all neighbors of node 

v(i), labeliR is the set of neighbors with the same label as node 

v(i), 1S
is the set of similarity between node v(i) and all its 

neighbors r(j), 2S
is the set of similarity between node v(i) and 

its neighbor r(h) with the same label as node v(i). The LPA-S 
algorithm changes the label according to the neighbor with the 
greatest similarity, and the label doesn't need to be changed if it 

is the same. The overall value of LPA SI   is between 
( 1,1)

, 

When 
( 1,0]LPA SI   

, it is required to treat it as 
0LPA SI  

 

uniformly, and the label is not changed; when 
(0,1)LPA SI  

, 
the greater the difference, the higher the payoff gained from 
label changes. 

 
Fig. 6. Example of label selection for LPA-S. 

Fig. 6 shows an example, the neighbor with the largest 
similarity of current processing node v(a) is node r(e). Among 
neighbors r(b) and r(c) that have the same label as node v(a), 
the similarity of r(b) is greater. According to the calculation,

1 {0.87,0.62,0.42,0.91,0.54}S 
, 2 {0.87,0.62}S 

 and

0.91 0.87 0.04LPA SI    
. 

 Definition 5: Participant LPA-CW's own benefits 
under the c strategy: The maximum value in the 
cumulative sum of Link Strengths between the current 
processing node v(i) and each neighbor node set 

lnlabeR  minus the cumulative sum of Link Strengths 

between the node v(i) and its neighbors with the same 

label, the equation denoted as LPA CWI   is as follows. 

i

i( ), ( )
1

max{ }
label

label

R

LPA CW v i r h R
h

I L LS 


         (7) 

Where the Node Link Strength 
( ), ( )v i r hLS

, set L , lnlabeR

are defined in detail in section ⅢB2). The LPA-CW algorithm 
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changes the label according to the neighbor set with the largest 
accumulation of Node Link Strength, and the label doesn't need 
to be changed if it is the same. By performing standard 

normalization treatment on LPA CWI   to get 
'LPA CWI  , When 

( 1,0]LPA CWI   
, the label is not changed; when 

(0,1)LPA CWI  
, the greater the difference, the higher the 

payoff gained from label changes. 

 

Fig. 7. Example of label selection for LPA-CW. 

Fig. 7 shows an example, the current processing node v(a), 
all node sets with the same label in its neighbors are

{{ ( ), ( )},{ ( )},{ ( ), ( )}}R r b r c r d r e r f
,the corresponding Node 

Link Strength accumulation is L={0.59 ， 0.42 ， 0.82},

max{ } 0.82L 
.Where the neighbors with the same label as 

node v(a) are r(b) and r(c), the cumulative sum of their Node 
link strengths is 0.59, according to the calculation, 

0.82 0.59 0.23LPA CWI    
. 

 Definition 6: The preference relationship between 
payoff of IA-GT community detection model: Under 
the selected strategy group, the influence of 
opponent's choice on the payoff of participants [22]. 

Combined with the idea of label propagation algorithm, the 
convergence result of community division is that the labels will 
no longer change, so it is assumed that the initial payoff value 
of each node is 0. When the participant chooses the "change" 
strategy, its own payoff is calculated according to definitions 4 
and 5. At this time, if the opponent also chooses the "change" 
strategy, the participants' overall payoff minus 1, but if the 
opponent chooses the "don't change" strategy, there will be no 
impact. When participants choose "don't change" strategy, its 
own payoff is 0, at this time if the opponent choose "change" 
strategy, the participants' overall payoff minus 1, if the 
opponent also choose "don't change" strategy, the participants' 
overall payoff plus 1. 

According to definitions 4, 5, and 6, calculate the overall 
payoff of the participants LPA-S and LPA-CW under the 
selected strategy group, and construct the payoff matrix of the 
IA-GT model as shown in Fig. 8. 

( , )A c c : ( , ) 1LPA S LPA Su c c I   ; ( , ) ' 1LPA CW LPA CWu c c I    

( , )A c d : ( , )LPA S LPA Su c d I  ; ( , ) 0 1 1LPA CWu c d      

( , )A d c : ( , ) 0 1 1LPA Su d c     ; ( , ) 'LPA CW LPA CWu d c I   

( , )A d d : ( , ) 0 1 1LPA Su d d    ; ( , ) 0 1 1LPA CWu d d     

 
Fig. 8. Payoff matrix of IA-GT community detection model. 

2) Reasoning verification of integrated model: After the 

payoff matrix is determined, the participants will randomly 

choose different strategies according to a certain probability 

distribution, at this time, and then Nash equilibrium under 

mixed strategies can be solved. Based on the integration needs 

of the two algorithms, this paper chooses the payoff equivalent 

method to calculate. 

When two participants choose different strategies, for the 
current processing node v(i), it is assumed that the probability 

of community label change is 1  when LPA-S algorithm is 

applied, and the probability is 2  when LPA-CW algorithm is 
applied. Fig. 9 shows the payoff probability matrix of IA-GT 
community detection model under mixed strategy. 

 
Fig. 9. Payoff probability matrix of IA-GT community detection model 

under mixed strategy. 

According to game theory, the participants's expected 
payoff is evaluated by the probability of opponents choosing 
strategies, that is, the expected payoff of LPA-CW algorithm is 

evaluated by 1 . For LPA-CW algorithm: 

Expected payoff from choosing "change" strategy:

1 1( ) ( ' 1) ' (1 )LPA CW LPA CW LPA CWEu c I I        
; 

Expected payoff from choosing "don't change" strategy:

1 1( ) 1 1 (1 )LPA CWEu d        
; 

According to the Nash Equilibrium Payoff Equivalence 
Method: 

( ) ( )LPA CW LPA CWEu c Eu d  , 1 1 'LPA CWI   ; 

The same can be obtained 2 1 LPA SI   . 

Both 1 and 2 are the probability when the label changes, 

so only the case of 
', (0,1)LPA CW LPA SI I  

 need to be 
considered, because when the two are less than 0, the label 
doesn't change. 
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According to Equation 6 and 7: 

ln

ln

| |

1 ( ), ( )
1

1 (max{ } ) '
labe

labe

R

v i r h R
h

L LS 


            (8) 

 2 1 21 max{ } max( )S S                (9) 

1 1 2 2{{ ,1 },{ ,1 }}p                  (10)  

1 and 2 are related to the payoff of the two participants' 
algorithms, and they are both solved. The result of mixed 
strategy game is mixed strategy Nash equilibrium, so Nash 
equilibrium is obtained, as shown in Equation 10. This paper 
combines the game theory with the community detection 
problem, and constructed the IA-GT community detection 
algorithm integration model. 

C. Model Application: Description of LPA-CW-S Algorithm 

 In the previous section, this paper has theoretically 
proved the effectiveness of the IA-GT model. Through 
dynamic analysis, with the update of each node's label by 
community detection, the payoff size of algorithm 
implementation and strategy selection probability will also 
change correspondingly. According to the game payoff matrix, 
at this time the algorithm needs to choose the optimal strategy 
for processing. Fig. 10 shows an application example of the 
model, namely LPA-CW-S algorithm, which proves the 
feasibility of the model from the experimental point of view. 

 

Fig. 10. The framework of LPA-CW-S. 

1) Algorithm steps: According to the above theory, LPA-

CW-S integration algorithm steps are as follows: 

a) Initialization stage: Initialize all labels, search for the 

non-overlapping minimum complete subgraph in the graph, 

and let the clique with the largest number of nodes assign the 

same label. Initialize the similarity matrix, and refer to LPA-S 

for calculation; creating a random access sequence of nodes. 

b) Label game operation stage: According to the 

obtained access sequence, the following values are calculated 

one by one: 1 , applying LPA-CW algorithm, the probability 

of community label change; 2 , applying LPA-CW 

algorithm, the probability of community label change; If 1 >

2 , the label is updated by similarity strategy, otherwise, it is 

updated by Node Link Strength strategy. After each traversal, 

the modular Q is calculated once, and if the difference 

between the two times is less than 0.01, the first operation is 

finished. 

c) Sub-graph merging operation stage: Preparation 

stage: get subnets from the current G, and then obtain the 

similarity matrix between subnets, save the current partition 

results. Operation stage: Initialize the subnet random access 

sequence; Calculate modularity Q once every time a subnet is 

updated. If Q is larger than the Q of previous partition results, 

save the current partition results to obtain the optimal solution, 

until there are two communities left. 

d) Complete and return the optimal partition result: 

According to the above steps, the LPA-CW-S algorithm is 

divided into three stages. In the first stage, Algorithm 2-1 for 

the pseudo-code of initialization; in the second stage, 

Algorithm 2-2 for the pseudo-code of label game; and in the 

third stage, Algorithm 2-3 for the pseudo-code of subgraph 

merging. 

Algorithm 2-1 Initialization 

Data: A network G = (V, E) 

1: G1 ← G.copy() 

2: initializeLabel(G) 

3: addWeight(G) 

4: sDict ← initializeSimilarityMatrix(G) 

5: nodeOrder ← initializeNodeOrder(G) 

6: cliques ← getCliques(G) 

7: maxc ← maxLength(cliques) 

8: for i in cliques do 

9:   if length(cliques[i]) == maxc then 

10:    maxLabel = max(i) 

11:    for j in i do 

12:      G.nodes[i][label] ← maxLabel 

13:    end for 

14:  end if 

15: end for 
 

Algorithm 2-2 Propagation step one 

1: state1 ← False 

2: oldQ ← 1 

3: while state1 == False do 

4:   for i in nodeOrder do 

5:     pi1 ← getPi1(G, i) 

6:     pi2 ← getPi2(G, i) 

7:     if pi1 ≥ pi2 then 

8:       updateNodeLabelUseSimilarity(G, sDict, i) 

9:     else 

10:      updateNodeLabelUseEdgeWeight(G, i) 

11:    end if 

12:   end for 

13:   partition ← getCurrentPartition(G) 

14:   newQ ← modularity(G1, partition) 

15:   changeQ ← abs(oldQ − newQ) 

16:   if changeQ ≤ 0.01 then 

17:      state1 ← True 

18:   end if 

19: end while 
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Algorithm 2-3 Propagation step two 

Result: Communities P = {C1, C2, ..., Cn} 

1: labelForNetwork ← getSubNetwork(G) 

2: sSubDict ← initializeSubSimilarityMatrix(G) 

3: partition ← getResult(labelForNetwork) 

4: state2 ← False 

5: while state2 == False do 

6:   if len(partition) == 2 then 

7:     break 

8:   end if 

9:   labelOrder ← initializeLabelOrder(labelForNetwork) 

10:  curPartition ← getResult(labelForNetwork) 

11:  maxQ ← modularity(G1, curPartition) 

12:  for label in labelOrder do 

13:     updateNetworkLabel(labelForNetwork, label) 

14:  end for 

15:  curPartition ← getResult(labelForNetwork) 

16:  currentQ ← modularity(G1, curPartition) 

17:  if currentQ ≥ maxQ then 

18:     partition ← curPartition 

19:  end if 

20:  if len(labelForNetwork) == 2 then 

21:     state2 ← True 

22:     break 

23:  end if 

24: end while 

25: return partition 

2) Algorithm complexity analysis: According to the step 

analysis of LPA-CW-S algorithm, the running time is mainly 

used in three stages. The first stage is the initialization stage, 

the complexity of identifying non-overlapping complete 

subgraphs is
( log )O k n

, the complexity of initializing the label 

assignment to the subgraphs is 
( )O 

, and the complexity of 

initializing the similarity matrix is 
2( )O n

. The second stage is 

the first label propagation stage, which calculates that the Link 

Strength and similarity complexity of nodes are both

( 2 )O n m
,the number of loop iterations is 1r ,so the 

complexity is 1( ( 2 ))O r n m 
. The third stage is the second 

step of label propagation, if the number of iterations is 2r , the 

time complexity is 2( ( 2 ))O r n m 
. 

Because of the influence of the network size, average 
degree and other factors, the final time complexity of the LPA-
CW-S algorithm takes the highest value among the above three 
stages depending on the specific situation. 

V. EXPERIMENTAL RESULTS 

In this paper, the algorithm is implemented in Python3.9, 
and the experiment is carried out on the Windows 10 desktop 
with a 4-core i5@2.4GHz CPU and 16G memory.The LPA-
CW, LPA-CW-S, LPA [8], LPAm [23], LPA-S [10], CNM 
[24] algorithms will be contrasted on 10 real network and 9 
artificial network, which have different parameter settings. 
This part analyzes the experimental results from the 

perspectives of community division, modularity, stability, and 
time efficiency to verify the superiority of the algorithm 
proposed in this paper. 

A. Datasets and Evaluation Index 

1) Real network datasets: In this paper, four commonly 

used labeled network data sets, such as Karate, and six 

unlabeled network data sets, such as Lesmis, are selected. It 

contains real networks with different scales of nodes and 

different practical application scenarios, which can 

comprehensively evaluate the performance of the algorithm. 

Its parameter characteristic are shown in the following Table Ⅰ. 

TABLE I.  BASIC STRUCTURAL PARAMETERS OF REAL NETWORK 

Network Reference N M c <k> 

Karate [25] 34 78 2 4.588 

Dolphins [26] 62 159 2 5.129 

Football [4] 115 613 12 10.661 

Polbooks [27] 105 441 3 8.400 

Lesmis [28] 77 254 - 6.579 

Jazz [29] 198 2742 - 27.697 

Sandi [30] 674 613 - 1.819 

Netscience [31] 1589 2742 - 3.451 

Facebook [32] 4039 88234 - 43.691 

Power [33] 4941 6594 - 2.669 

2) Artificial network: Artificial network is generated by 

benchmark of Lancichinetti et al. [34] LFR benchmark can 

generate networks with real network characteristics based 

personal demand. Its parameter characteristic is shown in the 

following Table Ⅱ. 

TABLE II.  PARAMETER DESCRIPTION OF LFR BENCHMARK ARTIFICIAL 

NETWORK GENERATION 

Parameter Meaning 

N number of nodes 

k averange degree 

maxk the maximum degree of nodes 

mu mixing parameter 

t1 power law distribution index of node degree 

t2 power law distribution index of community size 

minc the minimum community size 

maxc the maximum community size 

Mu represents the probability that the node linking with the 
community outside. N represents the number of nodes. The 
bigger the mu, the less obvious the boundary of the community 
and the difficult it is to detect the community structure. LFR-1 
to LFR-5 are set to N to 1000, mu to 0.1 to 0.5 arithmetic 
increments. LFR-6 to LFR-9 are set to 2000 to 5000 arithmetic 
increments, mu to 0.3. Their parameter setting is listed in the 
following Table Ⅲ. 
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TABLE III.  PARAMETER SETTING OF ARTIFICIAL NETWORK DATASET 

Network N k maxk mu minc maxc 

LFR-1 1000 10 40 0.1 30 60 

LFR-2 1000 10 40 0.2 30 60 

LFR-3 1000 10 40 0.3 30 60 

LFR-4 1000 10 40 0.4 30 60 

LFR-5 1000 10 40 0.5 30 60 

LFR-6 2000 10 40 0.3 30 60 

LFR-7 3000 10 40 0.3 30 60 

LFR-8 4000 10 40 0.3 30 60 

LFR-9 5000 10 40 0.3 30 60 

3) Evaluation index: The evaluation indicators about the 

community detection mainly include the following two, both 

of which are scientifically evaluated and have different 

focuses, and can comprehensively evaluate the performance of 

the algorithm from many aspects such as graph theory 

structure and real division. 

Modularity, proposed by Newman and Girvan [27,35], this 
evaluation index does not have a priori requirements for the 
internal structure of the community, and only needs to count 
the total number of edges inside and outside the community as 
shown in Equation 11: 

2

1

1
[2 ]

2 2

n

c

dc
Q lc

m m


                      (11) 

Among the equation, c is the community number, n is the 
number of communities, lc is the number of edges in 
community c, dc is the sum of node degrees in community c, 
and m is the number of all edges in the entire network. The 
bigger the Q value, the better the effect of community division. 
The value of Q ranges in [-0.5, 1). When the value of Q is in 
[0.3, 0.7], it indicates that the quality of community clustering 
is great. 

NMI (normalized mutual information), proposed by 
DanonL [36] in 2005 is generally used to measure the 
difference between the community structure divided by the 
algorithm and the result of the real community division. This 
indicator can evaluate the accuracy and stability of the 
community discovery algorithm as shown in Equation 12: 

2 log( )
1 1

( , )

log( ) log( )
1 1

ijA B
ij

i j

jA Bi
i j

N Nc c
N

i j N N
NMI A B

Nc cN
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i jN N


 




 

 

 
    (12) 

Among the equation, Ac
represents the number of real 

community divisions, Bc
 represents the number of algorithmic 

community divisions, the sum of the i-th row of the matrix Nij 

is denoted as iN
, and the sum of the j-th column is denoted as 

jN
. The value range of the NMI is [0, 1], and the bigger the 

NMI value, it indicates that the detected community structure 
is closer to the real community division. 

B. Experimental Result of LPA-CW 

1) Real network experiment comparison: The labeled 

network has the real division of the community, and the 

algorithm performance can be compared through the Q value 

of the algorithm community division result and the NMI 

index. The unlabeled network does not have the real 

community division, and only the Q value can be used to 

compare the algorithm performance. 

a) Labeled network: As can be seen from the modularity 

comparison curve in Fig. 11, the value of the division result of 

the LPA-CW algorithm on the labeled real network data set is 

generally higher than that of other comparison algorithms, 

indicating that the algorithm has the quality and stability of 

community division. The superiority is precisely because the 

sub-graph structure and node link strength guidance are added 

to the algorithm, which makes the divided community 

structure stronger and the clustering quality higher. By 

observing the comparison curve in the figure, it can be found 

that the NMI index of LPA-CW algorithm is not ideal, while 

the NMI index of LPA-S algorithm is much higher than other 

comparison algorithms. Comparing the Q value and NMI 

index of the two algorithms in Table IV, it can be seen that the 

LPA-CW algorithm and the LPA-S algorithm are 

complementary. This paper considers combining these two 

algorithms. The above-mentioned experimental phenomena 

and the label selection characteristics of label propagation 

algorithms provide experimental basis for the combination of 

algorithms. 

 

 

Fig. 11. Comparison of experimental results Q and NMI on labeled real 

network. 
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TABLE IV.  COMPARISON OF ALGORITHM INDEX DATA ON LABELED REAL NETWORK 

Network Criterion LPA LPAm LPA-S CNM LPA-CW(ours) 

Karate 
Q 0.3251 0.3470 0.3688 0.3807 0.3949 

NMI 0.3636 0.5150 0.7760 0.5646 0.4738 

Dolphins 
Q 0.4986 0.4760 0.4494 0.4955 0.5042 

NMI 0.5270 0.4870 0.8888 0.5727 0.5214 

Football 
Q 0.5831 0.5930 0.5203 0.5497 0.5331 

NMI 0.8697 0.7536 0.7447 0.6977 0.8892 

Polbooks 
Q 0.4811 0.5150 0.4525 0.5020 0.5201 

NMI 0.5341 0.5190 0.5979 0.5308 0.5075 

b) Unlabeled network: At present, most networks in the 

real world are unlabeled networks and do not yet have real 

division results. Therefore, it is very important to continuously 

improve the modularity and time efficiency of community 

detection algorithms, which can be used to further guide 

community activities and behaviors in the real world. As 

shown in Table Ⅴ, since CNM is based on modularity 

optimization algorithms, it has more advantages in modularity 

comparison, but it is also susceptible to the limitation of 

modularity resolution [37]. The real world network is complex 

and the data is huge. In most cases, the LPA-CW algorithm 

has obtained better community division results. The Q value is 

higher than that of similar label propagation algorithms and 

has higher time efficiency. It has great adaptability for large-

scale network community detection. 

TABLE V.  COMPARISON OF Q RESULTS ON UNLABELED REAL NETWORK 

Network LPA LPA-S CNM LPA-CW(ours) 

Lesmis 0.5267 0.4492 0.5006 0.5312 (1) 

Sandi 0.7796 0.8037 0.9313 0.8439 (2) 

Jazz 0.2816 0.1719 0.4389 0.2822 (2) 

Facebook 0.7369 0.6977 0.7774 0.7885 (1) 

Power 0.6271 0.6012 0.9346 0.6478 (2) 

Netscience 0.9074 0.8102 0.9551 0.8589 (3) 

2) Artificial network experiment comparison: The analysis 

of real network experiment results has proved that compared 

with other classic community discovery algorithms, the LPA-

CW algorithm has better community division quality and is 

complementary to the LPA-S algorithm. The algorithm is 

based on the optimization of the classic LPA algorithm, so in 

order to further verify the internal performance of the LPA-

CW algorithm, this paper adopts the artificial network dataset 

of control variables (see section ⅤA2) for R1-R5 parameters), 

and verify the LPA-CW through experiments compared with 

the LPA algorithm, whether the LPA-CW algorithm can 

effectively reduce the randomness and instability of label 

selection in the process of label propagation. 
As shown in Fig. 12 and Table VI, under the same 

conditions, the modularity Q and the NMI index are decreasing 
when the mu is from 0.1 to 0.5. The greater the coincidence, 
the more difficult it is to identify the characteristics of the 
community structure. The modularity Q and NMI index 
obtained by the division results of the LPA-CW algorithm are 
mostly higher than those of the LPA algorithm. At the same 
time, it also solves the problem of the lower resolution of the 

LPA algorithm as the community boundary in the network 
becomes less obvious. The improvement measures of the 
algorithm on the LPA algorithm have obvious effects, and the 
resolution of network recognition with unobvious community 
boundaries has been improved. 

C. Analysis of Experimental Results of LPA-CW-S Algorithm 

Based on the experiment in Section ⅤB, it can be seen that 
the LPA-CW algorithm has a higher modularity and a lower 
NMI index and the LPA-S algorithm has a higher NMI index 
and a lower modularity, because LPA-CW-S algorithm is 
obtained by combining game theory model. The experiment in 
this section will prove whether the performance of the 
algorithm after the combination is improved based on both, and 
the advantages are complementary. 

As shown in Fig. 13 and Table Ⅶ, it can be found that the 
LPA-CW-S algorithm that combines the two games has shown 
great results in terms of modularity Q value. The modularity of 
the Dolphins and Football datasets is higher than that of the 
LPA-CW algorithm. The modularity of the other two data sets 
is also almost close to the LPA-CW algorithm, and higher than 
the LPA-S algorithm, which verifies that the probability game 
of adding similarity and node link strength in the label 
propagation process is preferential. Similarly, in terms of NMI 
index, the LPA-CW-S algorithm that combines the two games 
is much higher than the LPA-S algorithm and the LPA-CW 
algorithm on the Football dataset. On the Polbooks dataset, the 
NMI has reached LPA-S algorithm level, the NMI on the other 
two data sets is also significantly improved compared to the 
LPA-CW algorithm, verifying that the subgraph merging in the 
second stage of the algorithm can make the final community 
division result better. 

TABLE VI.  COMPARISON OF ALGORITHM INDEX DATA ON ARTIFICIAL 

NETWORK 

Network Criterion LPA LPA-CW(ours) 

R1 
Q 0.8330 0.8321 

NMI 0.9712 0.9848 

R2 
Q 0.7100 0.7378 

NMI 0.9230 0.9878 

R3 
Q 0.5713 0.6242 

NMI 0.8041 0.9424 

R4 
Q 0.4892 0.4363 

NMI 0.7662 0.7684 

R5 
Q 0 0.3470 

NMI 0 0.6991 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 5, 2023 

935 | P a g e  

www.ijacsa.thesai.org 

 

 

Fig. 12. Comparison of Q and NMI when N=1000 and   changes from 0.1 

to 0.5. 

 

 

Fig. 13. Comparison of experimental results Q and NMI on real network. 

TABLE VII.  COMPARISON OF ALGORITHM EVALUATION INDEX RESULTS 

ON REAL NETWORK 

Network Criterion LPA-S LPA-CW LPA-CW-S(GT) 

Karate 
Q 0.3688 (3) 0.3949 (1) 0.3718 (2) 

NMI 0.7760 (1) 0.4738 (3) 0.6772 (2) 

Dolphins 
Q 0.4494 (3) 0.5042 (2) 0.5126 (1) 

NMI 0.8888 (1) 0.5214 (3) 0.6932 (2) 

Football 
Q 0.5203 (3) 0.5331 (2) 0.5637 (1) 

NMI 0.7447 (3) 0.8892 (2) 0.9102 (1) 

Polbooks 
Q 0.4525 (3) 0.5201 (1) 0.5056 (2) 

NMI 0.5979 (1) 0.5075 (3) 0.5979 (1) 

 

(1) karate                      (2) dolphins 

 

(3) football                      (4) polbooks 

Fig. 14. Community division results of real network under LPA-CW-S 

algorithm. 

Fig. 14 shows the visualization of the algorithm results. The 
network partition is complete, the clustering effect is obvious 
and clear, the nodes within the community are tightly 
connected, and the nodes between the communities are 
sparsely connected. From the perspective of the community 
structure, the division results obtained by the LPA-CW-S 
algorithm are reasonable and effective. 

In summary, in the comparison of the overall modularity Q 
of the above dataset and the NMI, the game theory LPA-CW-S 
algorithm is more global than the two participant algorithms. 
The experiment proves the feasibility and rationality of the IA-
GT model in this paper. It shows that game selection and 
subgraph merging can well neutralize the contradiction 
between the theoretical community structure and the actual 
community division, which helps to improve the accuracy and 
rationality of the community division results. 

D. Analysis of Stability 

In statistical description, variance [38] is an important 
equation in statistics, used to measure the stability of a set of 
data, the smaller the variance, the more stable the set of data, 
on the contrary, the more unstable the set of data. As shown in 
Equation 13. 
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TABLE VIII.  COMPARISON OF ALGORITHM STABILITY DATA 

 Karate Dolphins Football Polbooks Lesmis Sandi Jazz Facebook Power Netscience 

LPA-S 0.0003 0.0010 0.0004 0.0009 0.0002 0.0003 0.0012 0.0096 0.0125 0.0073 

LPA-CW 0 0 0 0 0 0 0 0 0 0 

LPA-CW-S 0.0002 0.0002 0.0003 0.0006 0.0001 0.0001 0.0009 0.0013 0.0078 0.0065 

2 2

1

1
( )

n

i

i

s x x
n



                 (13) 

In the above equation, 2s represents the variance, ix

represents the modularity value during the i-th run and x

represents the average value of this group of modularity Q 
values. 

Considering the combination of the LPA-CW algorithm 
and the LPA-S algorithm, this article evaluates the stability of 
the algorithm partitioning results. Table VIII shows the 
variance of the modularity Q calculated by the LPA-S 
algorithm, the LPA-CW algorithm, and the LPA-CW-S 
integrated algorithm running on the real network dataset for 17 
times on average. 

Table Ⅷ shows that the stability of the LPA-S algorithm 
is worse than that of the LPA-CW algorithm proposed in this 
article. The LPA-CW-S algorithm after the game combination 
neutralizes the algorithm of the two participants, and the 
stability is improved compared with the LPA-S algorithm. As 
the number of nodes continues to increase and the scale of the 
network continues to increase, the stability improvement 
becomes more obvious. The above experimental results prove 
that through the combination of game theory framework while 
retaining the advantages of algorithm community division, it 
also reduces the instability and volatility of the algorithm. 

E. Analysis of Time Efficiency 

Label propagation algorithms are widely used due to their 
close to linear time complexity. To understand the time 
efficiency of the LPA-CW algorithm and the game theory 
LPA-CW-S algorithm proposed in this paper, Table Ⅸ shows 
its comparison with the comparison algorithm. The comparison 
of time complexity is analyzed from the perspective of orders 
of magnitude. The CNM algorithm is a modular optimization 
algorithm based on the improvement of the FN algorithm that 
uses the heap data structure to calculate and update the 

network. It is close to linear time complexity and the LPA-S 
algorithm time complexity is at the square level. The LPA-CW 
algorithm proposed in this paper is complex. The degree is also 
close to linear. The game theory LPA-CW-S algorithm 
proposed in this paper is a three-stage algorithm and its time 
complexity is the highest among the three stages according to 
the data set size, which is between linear and square. 

TABLE IX.  COMPARISON OF TIME COMPLEXITY OF ALGORITHMS 

Algorithm Complexity 

CNM 2( log )O n n  

LPA ( )O n m  

LPA-S 2( )O n  

LPA-CW ( ( 2 ))O r n m   

LPA-CW-S 2( )O n /
1( ( 2 ))O r n m  /

2( ( 2 ))O r n m   

At the same time, in order to further verify the superiority 
of the algorithm in this paper, as shown in Table Ⅹ, the 
experimental point of proof is given. Under the same condition 
of mu=0.3, the number of nodes increases from 1000 to 5000. 
The time efficiency of the LPA-CW algorithm proposed is 
similar to that of the LPA algorithm and it is also close to 
linear time complexity. The LPA-CW algorithm is obviously 
more efficient than the CNM algorithm. 

The time efficiency of the LPA-CW-S algorithm is between 
the LPA-CW and LPA-S algorithms, but it is much higher than 
the LPA-S algorithm. Although it is no longer linear 
complexity, it is better than some modular optimization 
algorithms. Algorithms such as the GN and FN algorithms are 
faster. At the same time, the experiments in the last two 
sections also prove that the algorithm in this paper has obvious 
advantages in the accuracy of community division. Therefore, 
the LPA-CW-S algorithm achieves a compromise between 
time cost and accuracy, and this computational complexity is 
acceptable in practice. 

TABLE X.  COMPARISON OF TIME EFFICIENCY DATA OF ALGORITHMS (S) 

Network CNM LPA LPA-S LPA-CW LPA-CW-S(GT) 

LFR-3 0.8846 0.0747 14.7138 0.2753 1.7833 

LFR-6 2.2111 0.1536 61.1946 0.5585 5.5451 

LFR-7 3.8703 0.2533 130.5576 0.8487 10.826 

LFR-8 6.6011 0.2942 332.1598 0.9365 18.5639 

LFR-9 9.355 0.4159 430.2665 1.4511 30.6681 
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VI. CONCLUSION 

In this paper, LPA- CW algorithm is proposed to reduce the 
initialization time of labels by identifying non-overlapping 
holograms. The label update strategy based on Node Link 
Strength reduces the randomness in label propagation, and 
improves the accuracy of community division results. 
Combined with game theory, this paper proposes an IA-GT 
community detection algorithm integration model to simulate 
individual community selection behavior in complex networks. 
From a new modeling point of view, this paper reasonably 
explains the individual's choice and the overall stability 
maintenance in the process of community formation. This 
paper also puts forward LPA-CW-S algorithm for model 
verification, experiments show that the contradiction between 
theoretical community structure and real community division 
can be well neutralized by game selection, which can reduce 
the volatility and randomness of the algorithm, and improve 
the time efficiency. This compromise strategy will better adapt 
to the real community detection application scenario. 

Through the double verification of theoretical model and 
experimental algorithm, this paper holds that complex 
networks and game theory are naturally combinable. The future 
work is as follows: 

 Optimize the balance of various evaluation indexes 
through game theory, and explore the combination of 
more community detection algorithms by combining 
the integrated model of community detection algorithms 
(IA-GT) proposed in this paper, and extend it to the 
field of overlapping community detection. 

 Apply game theory to other directions in complex 
networks, such as evolutionary networks. Or it can be 
applied to spatio-temporal dynamic network [39] in 
combination with spatio-temporal location, providing 
solutions for more practical application scenarios. 
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