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Abstract—Designing effective algorithms to solve cross-

domain combinatorial optimization problems is an important 

goal for which manifold search methods have been extensively 

investigated. However, finding an optimal combination of 

perturbation operations for solving cross-domain optimization 

problems is hard because of the different characteristics of each 

problem and the discrepancies in the strengths of perturbation 

operations. The algorithm that works effectively for one problem 

domain may completely falter in the instances of other 

optimization problems. The objectives of this study are to 

describe three categories of a hyper-heuristic that combine low-

level heuristics with an acceptance mechanism for solving cross-

domain optimization problems, compare the three hyper-

heuristic categories against the existing benchmark algorithms 

and experimentally determine the effects of low-level heuristic 

categorization on the standard optimization problems from the 

hyper-heuristic flexible framework. The hyper-heuristic 

categories are based on the methods of Thompson sampling and 

iterated local search to control the perturbation behavior of the 

iterated local search. The performances of the perturbation 

configurations in a hyper-heuristic were experimentally tested 

against the existing benchmark algorithms on standard 

optimization problems from the hyper-heuristic flexible 

framework. Study findings have suggested the most effective 

hyper-heuristic with improved performance when compared to 

the existing hyper-heuristics investigated for solving cross-

domain optimization problems to be the one with a good balance 

between “single shaking” and “double shaking” strategies. The 

findings not only provide a foundation for establishing 

comparisons with other hyper-heuristics but also demonstrate a 

flexible alternative to investigate effective hyper-heuristics for 

solving complex combinatorial optimization problems. 

Keywords—Combinatorial optimization; heuristic algorithm; 

heuristic categorization; local search; Thompson sampling 

I. INTRODUCTION 

Combinatorial optimization problems (COPs) are 
practically challenging because of the different characteristics 
of each problem domain and multiple conflicting constrictions 
to be adequately resolved. They are intrinsically non-
deterministic polynomial-time hard problems with no single 
method that can generally outperform others across varying 
problem instances [1]. Due to the intrinsic hiccups of the 
earlier heuristic, and meta-heuristic methodologies, hyper-
heuristic has emerged as a feasible search methodology for 
solving multifarious COPs occurring in varying practical 

applications [2]. It has been effectively applied in multiple 
application domains, including scheduling [3], [4], timetabling 
[5], routing [6]–[8], software engineering [9], [10], and 
manufacturing [11]. In general, hyper-heuristics provide two 
different types of search space, which are low-level heuristics 
(LLHs) and acceptance mechanisms. However, how to select 
LLHs and combine them with an acceptance mechanism to 
realize an effective strategy for solving different COPs is 
particularly challenging. 

In recent times, different methods, including machine 
learning have been investigated to improve the performance of 
hyper-heuristic optimization strategies. In this paragraph, we 
briefly review some related works that have attempted to 
improve the performance of hyper-heuristics. The Q-learning 
was utilized to select LLHs for a multi-objective route planning 
problem [12] and to choose an action in solving the interaction 
testing problem [9]. Deep Q-network [6] was applied as a 
heuristic selection mechanism to solve two routing problems 
from the library of hyper-heuristics flexible (HyFlex) [13]. In 
addition, Q-learning was applied to solve six problems from 
the HyFlex library by learning the pair of selection and 
acceptance mechanisms that are most suitable for an instance 
of a given problem [14]. Thompson sampling (TS) learning 
based on the selection of LLHs was recently introduced for 
solving COPs [15]–[17]. Moreover, TS has been applied to 
automatically configure the perturbation behavior of iterated 
local search (ILS) to solve six HyFlex COPs [18]. The 
evolutionary-based ILS hyper-heuristic was recently designed 
and tested on the extended HyFlex COPs to provide further 
evidence of the necessity for more categories of algorithms 
with improved perturbation strength [19]. 

A new perturbation strategy for ILS was proposed in [20] 
to solve the problems of pseudo-Boolean optimization where 
decision variables are perturbed to improve a local search 
strategy by maximizing the distance between solutions and 
maximizing the fitness similarity. An ILS algorithm was 
proposed in [21] for solving the problem of aircraft landing 
based on a search methodology that successively invokes a 
local search procedure to find a local optimum solution. The 
authors used a perturbation operator to modify the current 
solution to escape from the local optimum and provide a new 
solution for the local search procedure. The fair-share iterated 
local search (FS-ILS) [22] is a simple state-of-the-art selection 
hyper-heuristic that uses a conservative restart condition to 
prevent restarts, and only restart when a method is stuck and 
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enough time is available to attain a solution of similar quality. 
The work [23] presented an efficient algorithm for solving the 
problem of aircraft landing based on a mechanism that 
hybridizes the ILS and simulated annealing (SA) algorithms to 
find a feasible aircraft scheduling solution within the range of 
target time. The sequence-based selection hyper-heuristic 
inspired by a hidden Markov model was proposed in [24] as a 
general purpose hyper-heuristic for solving cross-domain 
COPs. However, the authors conceded that the performance of 
a selection hyper-heuristic may vary depending on the choice 
of the LLHs and that not all the heuristics contribute to the 
improvement of a candidate solution during the search process 
unless they are applied in a combination with sequences of 
heuristics. 

Despite myriads of research publications on hyper-
heuristics, the published results on cross-domain optimization 
algorithms still need further improvement. The confines shown 
by the existing algorithms for solving different COPs have 
provided a unique opportunity to improve the performance of a 
hyper-heuristic across different problem domains. The findings 
from the literature have generally suggested that identifying the 
right intensity of perturbation operations in ILS is challenging 
but warrants further investigation [20]. The focus of the present 
work is to extensively experiment with three categories of the 
TS-ILS hyper-heuristic [18] imbued with different perturbation 
behaviors and compare their performances against the existing 
benchmark algorithms on HyFlex COPs. The testing of a 
hyper-heuristic algorithm on standard problems with varying 
characteristics will enable a meticulous comparison of its 
generalization capability. Since an ILS-based hyper-heuristic is 
potentially targeted toward solving numerous COPs, an 
efficient strategy for determining its proper perturbation 
behavior on a specific problem is paramount to the success of 
ILS methodology [7], [21]. 

The overarching objectives of the present work are 
threefold. To describe three categories of the TS-ILS hyper-
heuristic that combine low-level heuristics with an acceptance 
mechanism for solving standard HyFlex COPs. To 
experimentally compare the three categories of the TS-ILS 
hyper-heuristic against the existing benchmark algorithms on 
the standard HyFlex COPs. To experimentally determine the 
effects of LLHs categorization on the standard HyFlex COPs. 
The remaining parts of the paper are fleetingly organized as 
follows. Section II describes the TS-ILS hyper-heuristic with 
three categorizations of LLHs. Section III presents the 
experimental results of comparing the three categories of the 
TS-ILS hyper-heuristic against the existing benchmark 
algorithms on the standard HyFlex COPs. Section IV examines 
the effects of LLHs categorization on the standard HyFlex 
COPs. Section V discusses the study results and highlights the 
potential areas for further improvement. The paper is 
ultimately concluded in Section VI by explicating the category 
of the TS-ILS hyper-heuristic that recorded a good balance 
between “single shaking” and “double shaking” configurations. 

II. THOMPSON SAMPLING ITERATED LOCAL SEARCH 

Thompson sampling iterated local search (TS-ILS) hyper-
heuristic is a probabilistic learning of profitable perturbation 
operations for a problem instance [19]. The hyper-heuristic 
augments the functional capabilities of TS and ILS to control 
the perturbation behavior of ILS. It selects LLHs and accepts 
or rejects a solution using the FS-ILS [22]. The local search 
phase of the hyper-heuristic is triggered after a perturbation 
process to improve the solution obtained from the perturbation 
stage, while the resultant solution is then considered for 
acceptance. There are six configurations in the config = {0, 1, 
2, 3, 4, 5} set and each one is an integer representation of a 
perturbation operation. Table I defines each element of a 
perturbation configuration set of length n, where the value of n 
was taken to be 6 in the present work. 

TABLE I.  PERTURBATION OPERATIONS OF THE TS-ILS HYPER-
HEURISTIC 

Value Operation 

0 Perturb with Mutation LLH + Mutation LLH (Mut + Mut) 

1 Perturb with Mutation LLH + Ruin-Recreate LLH (Mut + RR) 

2 Perturb with Ruin-Recreate LLH + Mutation LLH (RR + Mut) 

3 Perturb with Ruin-Recreate LLH + Ruin-Recreate LLH (RR + RR) 

4 Perturb with Mutation LLH only (Mut) 

5 Perturb with Ruin-Recreate LLH only (RR) 

The TS-ILS hyper-heuristic algorithm learns promising 
perturbation operations for the ILS by splitting the mutation 
(Mut) and ruin-recreate (RR) heuristics into two distinct 
entities as in the first two lines of Algorithm 1. The two vectors 
𝛼 and 𝛽 are respectively representing the success and failure 
tallies for the perturbation configurations in the config set. The 
pair of elements in the two vectors at the same corresponding 
positions respectively correspond to the success and failure 
counts of the options in the config set. The initial solution for 
the problem instance being solved is generated. The resultant 
solution is then used to initialize the current solution 𝑆0 and the 
best solution found so far (𝑆𝑏). The Thompson sampling 
procedure generates the utility values for the elements of the 
config set based on tallies that are stored in the vectors α and β 
by sampling from a Beta distribution. This phase of the TS-ILS 
hyper-heuristic algorithm decides which of the perturbation 
operations that are represented in the config set is to be 
invoked. These perturbation operations can be seen as the 
alternative operators to be selected in the bandit problem. The 
corresponding first element, 𝛼0 and 𝛽0 of the α and β vectors 
are respectively passed as parameters to the sampling module 
to generate the utility value for the first element in the config 
set. The pseudocode for the TS-ILS hyper-heuristic algorithm 
is given by the following Algorithm 1.  
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Algorithm 1: TS-ILS Hyper-heuristic 

𝑀 ← {𝑚1, 𝑚2, … ,𝑚𝑗}  

𝑅 ← {𝑟1, 𝑟2, … , 𝑟𝑘}  

config ← {𝑐1, 𝑐2, … , 𝑐𝑛}  ⊳ Line 3 

𝛼 ← {0,… , 0}  

𝛽 ← {0,… , 0}  

𝑆0 ← generateInitialSolution() 

𝑆𝑏 ← 𝑆0  

while (¬stopping_condition) do 

 Φ = {𝜙1, … , 𝜙𝑙} ← generateUtilityValues() 

 select i from config: 𝜙𝑖 maximizes Φ 

 𝑆′ ← perturb(𝑆0, 𝑖) 

 𝑆′′ ← localSearch() 

 if (𝑆′′ is accepted) then 

  𝑆0 ← 𝑆′′ 

 end 

 if (𝑆′′ < 𝑆𝑏) then 

      𝛼𝑖 ← 𝛼𝑖 + 1 

   updateLS() 

   updateParam() 

 else 

      𝛽𝑖 ← 𝛽𝑖 + 1 

 end 

 updateLLH() 

 end 

Studying the effects of LLHs categorization on the standard 
HyFlex COPs is paramount to the present work to determine 
the most appropriate algorithm for solving cross-domain COPs. 
Thus, TS-ILS1, TS-ILS2, and TS-ILS3 hyper-heuristics 
constitute three categories of the TS-ILS hyper-heuristic 
algorithm. The TS-ILS1 uses the subset {4, 5} and perturbs a 
solution once before intensification. The TS-ILS2 uses the 
subset {1, 2, 4, 5} and has been featured in the previous study 
[18]. The TS-ILS3 uses the entire set {0, 1, 2, 3, 4, 5} and all 
the options presented in Table I during the perturbation stage. 
The TS-ILS1 can only perturb a solution once before the 
intensification (single shaking) phase while the last two 
categories can perturb a resolution twice before the 
intensification (double shaking) phase. These differences are 
enforced by line 3 of Algorithm 1 [18] which has been 
extended in this study to any set of perturbation configurations. 
The categorizations have significantly affected the TS-ILS 
hyper-heuristic for solving diverse COPs. This is because the 
different perturbation strengths determine the effectiveness of 
the ILS-based hyper-heuristics [7], [20], [23]. 

The element of the set config that maximizes the utility 
values in Φ is selected, and the corresponding perturbation 
operation is carried out as designated in the next two lines. 
During the perturbation phase, the speedNew selection 
mechanism [14], [22] is employed to choose a given candidate 
LLH selected by the TS procedure. For example, if the selected 
configuration is 2, the selection mechanism chooses a 
perturbative LLH from the ruin-recreate set and applies it to a 
solution. The resultant solution is further perturbed by selecting 
and applying a perturbative LLH from the mutation set. The 
intensity of mutation and the depth of search are two parameter 

archetypes in the HyFlex framework for parameterizing the use 
of LLHs [13]. A parameter value is chosen within the {0.0, 0.1, 
…, 1.0} set of 11 values using a roulette-wheel procedure for 
the selected LLH to be analogously parameterized as in [24]. 
The local search module of the TS-ILS hyper-heuristic  [18], 
[19] is triggered on the resultant solution to produce another 
solution (𝑆′′). The next operation decides if 𝑆′′ is to be 
accepted to replace the current solution 𝑆0 based on the accept 
probabilistic worse (APW) acceptance mechanism [14], [22]. 

The success tally (𝛼𝑖) of the i element of the config set 
invoked in the current iteration is incremented only if the 
solution generated is strictly better than the best solution (𝑆𝑏) 
found so far, otherwise, the value of 𝛽𝑖 is incremented. This 
update scheme has enabled the TS-based probabilistic learning 
algorithm to adjust its preference according to the observed 
rewards of the alternative actions to be taken at every iteration. 
The function updateLLH() updates the parameters of the 
perturbative LLHs applied based on the speedNew selection 
mechanism. This update scheme does not apply to the local 
search heuristics and further details of how it is carried out can 
be found in [22]. The function updateLS() updates the data 
structures of the local search heuristics employed for the local 
search phase of the ILS hyper-heuristic. Finally, the function 
updateParam() updates the utility matrix used by the 
parameters of parameterized LLHs from the local search, 
mutation, and ruin-recreate operations. The entry for the 
parameter value selected by a roulette wheel procedure is 
updated after the iteration. The selection and update of values 
for the parameterized LLHs are analogous to the 
implementation in [24]. 

III. EXPERIMENTAL RESULTS 

Three categories of the TS-ILS hyper-heuristic were 
implemented on an Intel i5-3340M CPU computer with 
random access memory of 8 gigabytes and a 2.70 gigahertz 
clock speed. The TS-ILS1, TS-ILS2, and TS-ILS3 hyper-
heuristics were tested on the problem instances of Boolean 
satisfiability (SAT), Bin packing (BP), Personnel scheduling 
(PS), Permutation flow-shop (PFS), Travelling salesman 
problem (TSP), and Vehicle routing problem (VRP) reported in 
HyFlex v1.0. The testing was also performed on the ten 
instances of the Knapsack problem (KP), Quadratic assignment 
problem (QAP), and Maximum cut (MAC) problem reported 
in HyFlex v2.0. The execution time returned by a benchmark 
program on the computer machine is 507 seconds, which is the 
equivalent of 600 seconds on a standard testing machine 
according to the organizers of the cross-domain heuristic 
search challenge (CHeSC) in 2011. 

The comparison of the different algorithms is based on the 
metrics of median objective function values (ofvs), formula 
one, µ-norm, and boxplot visualization as subsequently 
illustrated. The performances of the three categories of the TS-
ILS hyper-heuristic were compared using the ofvs across nine 
HyFlex COPs. In addition, the performances of TS-ILS1, TS-
ILS2, and TS-ILS3 were compared with those of the FS-ILS, 
NR-FS-ILS, AdapHH, EPH, SR-IE, SR-AM, and SSHH 
benchmark algorithms [25], [26] across eight HyFlex COPs. 
The results obtained for the PS problem by the existing 
algorithms could not be compared with those computed by TS-
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ILS1, TS-ILS2, and TS-ILS3 because of the differences in the 
updated Java library used in the present work. The updated 
library has fixed a bug in the previous library that was used to 
produce the results [26]. The overall comparison of the 
algorithms will be prejudicial if an attempt is made to 
incorporate the results obtained for the PS problem. The data 
used for testing the existing algorithms, excluding the SSHH 
on HyFlex problems, were obtained online 
(https://github.com/Steven-Adriaensen/hyflext). The ofvs of 
the results computed by the SSHH algorithm can be found in 
[25]. In total, 60 instances of HyFlex COPs were tested for 
each of the three categories of TS-ILS hyper-heuristic based on 
the median ofvs. Moreover, 55 instances of the HyFlex COPs 
were tested separately for each of the three categories of the 

TS-ILS hyper-heuristic. The three categories were also 
compared with seven benchmark algorithms based on the 
formula one, μ-norm, and boxplot visualization of median ofvs. 

A. Comparison based on Median ofvs 

Tables II and III highlight the performances of the TS-ILS 
categories in terms of the median ofvs obtained across the 
benchmark instances of the HyFlex COPs. The KP, QAP, and 
MAC problems of HyFlex v2.0 have ten benchmark instances 
which are five more than the first six problems of SAT, BP, 
PS, PFS, TSP, and VRP in HyFlex v1.0. The values in bold 
font denote the median ofv of the hyper-heuristic that reported 
the best performance for a problem instance.

TABLE II.  MEDIAN OFVS OBTAINED BY CATEGORIES OF TS-ILS HYPER-HEURISTIC ON SIX HYFLEX V1.0 PROBLEMS 

Problem Category  Problem Instance 

1 2 3 4 5 

SAT 

TS-ILS1 

TS-ILS2 
TS-ILS3 

2.00000000 

2.00000000 

2.00000000 

2.00000000 

3.00000000 
3.00000000 

1.00000000 

1.00000000 

1.00000000 

1.00000000 

1.00000000 

1.00000000 

9.00000000 

8.00000000 

9.00000000 

BP 

TS-ILS1 

TS-ILS2 

TS-ILS3 

0.02371400 

0.01876799 

0.01828719 

0.00807447 

0.00350695 

0.00355599 

0.00491703 

0.00052035 

0.00236484 

0.10828062 

0.10828402 

0.10828455 

0.01260111 

0.00142866 

0.00557662 

PS 

TS-ILS1 

TS-ILS2 

TS-ILS3 

19.00000000 

21.00000000 

21.00000000 

9546.00000000 

9548.00000000 

9570.00000000 

3213.00000000 

3181.00000000 

3193.00000000 

1609.00000000 

1550.00000000 

1593.00000000 

330.00000000 

330.00000000 

335.00000000 

PFS 

TS-ILS1 

TS-ILS2 

TS-ILS3 

6223.00000000 

6232.00000000 

6237.00000000 

26755.00000000 

26785.00000000 

26788.00000000 

6323.00000000 

6325.00000000 

6323.00000000 

11327.00000000 

11340.00000000 

11354.00000000 

26585.00000000 

26601.00000000 

26605.00000000 

TSP 
TS-ILS1 
TS-ILS2 

TS-ILS3 

48194.92010000 

48194.92010000 

48194.92010000 

20701672.20000000 

20779493.20000000 

20817079.70000000 

6809.10000000 
6805.30000000 

6804.70000000 

66194.70000000 

66133.00000000 

66150.80000000 

53806.20000000 
53762.40000000 

53635.70000000 

VRP 
TS-ILS1 
TS-ILS2 

TS-ILS3 

65151.40000000 
63709.00000000 

62658.50000000 

13290.50000000 
13292.80000000 

13285.50000000 

146927.10000000 

145401.50000000 

146801.90000000 

20654.10000000 
20654.70000000 

20654.00000000 

145865.40000000 

145205.40000000 

145436.20000000 

TABLE III.  MEDIAN OFV OBTAINED BY CATEGORIES OF TS-ILS HYPER-HEURISTICS ON  THREE HYFLEX V2.0 PROBLEMS 

Problem Problem Instance TS-ILS1 TS-ILS2 TS-ILS3 

KP 

0 -104046 -104046 -104046 

1 -1257913 -1258367 -1259059 

2 -242324 -242255 -242179 

3 -431342 -431340 -431336 

4 -396167 -396167 -396167 

5 -4254605 -4254402 -4252958 

6 -941561 -940026 -939070 

7 -1577175 -1577175 -1577175 

8 -1530489 -1530479 -1530470 

9 -1467357 -1467357 -1467357 

QAP 

0 152112 152132 152156 

1 153972 154036 154036 

2 147894 147952 147944 

3 149782 149768 149778 

4 21276862 21269484 21307840 

https://github.com/Steven-Adriaensen/hyflext
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5 1187188954 1186656060 1186575184 

6 501189032 501487948 501258178 

7 44863086 44865718 44870864 

8 8154812 8155312 8153852 

9 273212 273228 273266 

MAC 

0 -41375743 -41417466 -41324351 

1 -277192517 -276843715 -277614604 

2 -3054 -3054 -3055 

3 -3032 -3034 -3034 

4 -3037 -3039 -3038 

5 -13217 -13216 -13227 

6 -1354 -1358 -1356 

7 -10077 -10093 -10084 

8 -456 -456 -456 

9 -2906 -2914 -2912 

B. Comparison based on Formula One 

The formula one scoring system has inspired one of the 
well-known metrics for evaluating hyper-heuristics [2]. 
Competing hyper-heuristics are assigned points based on the 
ofvs of their median best solutions obtained after 31 trials for 
each problem instance in the given test suite. The scores of 10, 
8, 6, 5, 4, 3, 2, and 1 are respectively awarded to the best 
performing hyper-heuristic down to the eight-best one for a 
problem instance. Ties are handled by averaging the points that 
would have been given to one hyper-heuristic if there was no 
tie and assigning each of the hyper-heuristics the average score. 
In the rating system, the higher the score, the better the 
performance of a hyper-heuristic relative to the median results 
obtained by other hyper-heuristics. 

The results of comparing eight hyper-heuristics on HyFlex 
COPs using formula one scores are presented in Table IV. The 
overall score in the table is the sum of scores obtained by a 

given hyper-heuristic across problem instances. The categories 
of the TS-ILS hyper-heuristic can be observed to emerge as the 
most dominant hyper-heuristics across the HyFlex COPs 
considered. The overall performance of the categories of the 
TS-ILS hyper-heuristic on HyFlex v2.0 COPs was found to be 
superior to the performances of the other hyper-heuristics. The 
maximum score for each HyFlex v2.0 problem domain is 100 
with the highest score of 10 for each problem instance. It can 
be inferred that the top three hyper-heuristics on HyFlex v1.0 
problem based on the formula one scoring are TS-ILS2 with 
162.8 points, followed by TS-ILS3 with 148.8 points, and TS-
ILS1 with 146.9 points. The order of performances of the 
algorithms on HyFlex v2.0 problem instances is TS-ILS2 with 
215.8 points, followed by TS-ILS1 with 214.8 points, and TS-
ILS3 with 203.3 points. It is noticeable that there is a close race 
performance among the three categories of the TS-ILS hyper-
heuristic on HyFlex v2.0, while TS-ILS2 outperformed the 
other categories on HyFlex v1.0. problems.

TABLE IV.  FORMULA ONE RANKING OF CATEGORIES OF TS-ILS HYPER-HEURISTIC ON EIGHT  HYFLEX PROBLEMS, EXCLUDING PS 

Problem AdapHH EPH FS-ILS NR-FS-ILS SR-AM SR-IE SSHH TS-ILS1 TS-ILS2 TS-ILS3 

SAT 21.00 10.00 34.85 23.35 0.00 5.00  35.10 34.85 30.85 

BP 18.00 19.00 11.00 18.00 0.00 18.00  29.00 44.00 38.00 

PFS 19.50 11.50 25.00 27.50 5.00 0.00  47.00 32.50 27.00 

TSP 23.00 26.00 25.50 22.00 2.00 3.00  29.50 33.00 31.00 

VRP 20.00 16.00 26.00 22.00 0.00 8.00  28.00 35.000 40.00 

Overall 101.50 82.50 122.35 112.85 7.00 34.00  168.60 179.35 166.85 

KP 59.23 49.33 6.21 11.21 19.85 7.83 48.33 69.33 62.33 56.33 

QAP 40.00 26.00 31.50 40.50 20.00 0.00 2.00 84.00 74.00 72.00 

MAC 28.50 5.00 14.50 20.00 36.50 1.00 68.50 61.50 79.50 75.00 

Overall 127.73 80.33 52.21 71.71 76.36 8.83 118.83 214.83 215.83 203.33 
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C. Comparison based on µ-norm Metric 

This section compares the performances of ten hyper-
heuristics across eight HyFlex COPs based on the µ-norm 
scores [25], [26]. The µ-norm is the average normalized 
evaluation function value. It is a more robust evaluation metric 
than the formula one scoring because it evaluates the 
performance of a hyper-heuristic based on the quality of the 31 
solutions obtained over 31 trials on a problem instance. The µ-
norm metric enables all the obtained ofvs to be normalized 
within the range [0, 1], where 0 means a hyper-heuristic 
outperforms other hyper-heuristics on all the tested instances, 
and a value of 1 connotes the opposite. 

Table V provides comparative results of the categories of 
TS-ILS hyper-heuristics against the existing ones using the µ-
norm scores. The data for the existing hyper-heuristics on the 
problem domains presented in Table V were taken from the 
paper [26]. The categories of the TS-ILS hyper-heuristic jointly 

won seven out of the eight HyFlex problems. They 
outperformed the other hyper-heuristics on the PFS, KP, and 
QAP. The only problem domain where none of the categories 
of the TS-ILS hyper-heuristic recorded the best µ-norm value 
is SAT, where FS-ILS emerged as the best hyper-heuristic. The 
AdapHH is the closest challenger to the top algorithm (TS-
ILS1) on the Knapsack problem. The three categories of the 
TS-ILS hyper-heuristic dominated all others on the QAP and 
MAC problems because they all constituted the top three 
successful algorithms across the problem domains. The EPH 
and SR-IE algorithms obtained the worst results on the MAC 
problem. The overall performance in Table V further 
consolidates the observation that the three categories of the TS-
ILS hyper-heuristic are general in their applications to HyFlex 
v2.0 problems. Overall, the next best algorithms based on the 
μ-norm score, after the three categories of the TS-ILS hyper-
heuristic, are AdapHH and FS-ILS, while the SR-AM 
algorithm delivered the worst performance.

TABLE V.  COMPARATIVE RESULTS USING µ-NORM ON EIGHT HYFLEX PROBLEMS, EXCLUDING PS 

Problem TS-ILS2 TS-ILS3 TS-ILS1 AdapHH FS-ILS NR-FS-ILS EPH SR-IE SR-AM 

SAT 0.0159 0.0184 0.0181 0.0276 0.0146 0.0238 0.0927 0.3787 0.8759 

BP 0.0138 0.0316 0.0852 0.1828 0.1727 0.1581 0.1478 0.1769 0.9559 

PFS 0.1676 0.1817 0.1263 0.2224 0.2059 0.1816 0.2671 0.7242 0.6223 

TSP 0.0538 0.0556 0.0584 0.0677 0.0647 0.0626 0.0658 0.4993 0.5392 

VRP 0.0623 0.0538 0.0731 0.0841 0.0687 0.0832 0.2186 0.2714 0.9347 

KP 0.0315 0.0308 0.0276 0.0297 0.1513 0.0554 0.3625 0.3312 0.3970 

QAP 0.0728 0.0795 0.0689 0.1089 0.1512 0.1396 0.1062 0.6363 0.1097 

MAC 0.1018 0.0987 0.1112 0.2829 0.2585 0.5222 0.3772 0.7371 0.3946 

Overall 0.0649 0.0688 0.0711 0.1258 0.1360 0.1533 0.2047 0.4694 0.6037 

D. Comparison based on Boxplot Visualization of Median 

ofvs 

Fig. 1 presents the boxplots of the normalized ofvs of ten 
hyper-heuristics in Table IV. The minimum–maximum 
normalization scheme was applied to obtain the normalized 
median ofv of a hyper-heuristic on a particular instance of a 
problem domain [25]. The performances of the categories of 
the TS-ILS hyper-heuristic were benchmarked against the 
existing hyper-heuristics on HyFlex problems [26]. 

KP, The median score of the TS-ILS2 appears to be closest 
to the base of the plot in Fig. 1(a) to indicate good 
performance. A similar phenomenon can be observed for the 
TS-ILS1 and TS-ILS3 categories. The TS-ILS2 and TS-ILS3 
have smaller boxes than the TS-ILS1 category. The three 
categories performed better than any of the other algorithms on 
the HyFlex v1.0 problems. The gap in the performance of the 
categories of the TS-ILS hyper-heuristic and other hyper-
heuristics is more glaring for the QAP, and MAC HyFlex v2.0 
problems.
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Fig. 1. Boxplots of the overall normalized median ofvs obtained by the hyper-heuristics in Table IV.

The sizes of the boxes in Fig. 1(b) support the dominance 
of the categories of the TS-ILS hyper-heuristic. The 
interquartile range of the boxplots of each of the three 
categories of the TS-ILS hyper-heuristic is a minimal value, 
denoting low variability in their data. Combining the inter-
quartile range with the proximity of the boxes to the minimum 
score means that the categories have enjoyed dominance over 
other algorithms on almost all problem instances of Knapsack, 
Quadratic Assignment, and Maximum-Cut. The categories can 
be observed to generalize well across eight HyFlex problem 
domains in sharp contrast to the other standard ILS hyper-
heuristics, like FS-ILS and NR-FS-ILS. 

IV. EFFECTS OF LOW-LEVEL HEURISTICS CATEGORIZATION 

ON HYFLEX PROBLEMS 

The effects of LLHs on HyFlex problems have been 
investigated in this work. The first TS-ILS1 hyper-heuristic 
does not employ the double shaking strategy, but the other two 
categories that respectively implemented four and six 
perturbation configurations do. The problem domains of Bin 
packing, Permutation flow-shop, Knapsack, Maximum cut, 
Vehicle routing, and Quadratic assignment were chosen to 
demonstrate the differences among the three categories of the 
TS-ILS hyper-heuristic. The values in the config set have been 
defined according to the entries in Table I. The parameter C1 
represents the first option that applied two mutation heuristics 
in succession before the application of the intensification 
heuristic. The parameter C6 represents the application of only 
one ruin-recreate heuristic before applying the intensification 
heuristic. The heuristic calls were recorded throughout the 
problem-solving process to obtain the boxplots. In addition, the 
perturbation configurations applied at each iteration were 
recorded accordingly. If a successful iteration of the best new 
solution is produced, the selected tally of a configuration was 
recorded. The log files of the top three runs for each problem 
domain were congregated for each category of the TS-ILS 
hyper-heuristic as shown in Fig. 2 to 4. 

It is important to explain Fig. 2 to 4 to provide more clarity 
before interpreting the results provided by the figures. The 
multiple bar charts provide the success rates of the six different 
perturbation configurations (C1 to C6) for the three TS-ILS 
categories of TS-ILS1 (red), TS-ILS2 (blue), and TS-ILS3 
(black). TS-ILS1 is a single shaking variant that utilizes the 
two configurations of mutation only (C5) and ruin-recreate 
only (C6) and therefore, it explains why only two red bars 
appear in each of the charts. Similarly, TS-ILS2 utilizes four 
configurations (C2, C3, C5, and C6) and it explains why only a 
maximum of four blue bars can be seen on each chart. The 
most successful configuration for both the TS-ILS2 and TS-
ILS3 is C6 using the BP9 instance of Fig. 2 as an example, 
while the most successful configuration for TS-ILS3 is C4. 
This means that the application of only the ruin-recreate 
heuristic (C6) has found more best new solutions than any 
other configuration during the run of TS-ILS1 and TS-ILS2. 
However, for TS-ILS3, the application of two ruin-recreate 
heuristics in succession before the intensification (C4) was 
found to be the most productive option. Consequently, because 
TS-ILS2 outperformed TS-ILS3 on the multiple trials on the 
BP9 instance, it could be said that TS-ILS3 having so many 
configurations (six) slowed down its performance on the BP9 
instance when compared to the performance of TS-IL2. 
Finally, the presence of the double shaking configuration (C2) 
in both TS-IL2 and TS-ILS3 has made them superior solvers 
than TS-ILS1 on the BP9 instance because the configuration 
has contributed to almost 40% of the best solutions found 
during the runs of TS-ILS2 and TS-LS3. 

Most successful iterations were achieved with the 
application of ruin-recreate heuristics for the TS-ILS1 on the 
BP problem domain. This can be seen in the C6 column of the 
TS-ILS1 which has the highest bar for all instances. The TS-
ILS2 and TS-ILS3 are better algorithms for solving the BP 
problem. They utilize more pairing of heuristics, especially 
with the pairing of Mut and RR (C2).  Though, an exception is 
observed in the BP10 instance, where a single application of 
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RR is the most rewarding strategy. This phenomenon explains 
why the TS-ILS1 category, which is the weakest algorithm on 
the BP problem, outperformed its counterparts on the BP10 
instance. The reason is that it could easily focus on the RR 
among only two options with the second option of Mut (C5) 
being a bad choice. The overall comparison of the 
performances of the hyper-heuristics on the BP problem 
domain has shown in Table II that the TS-ILS2 and TS-ILS3 
are better than the TS-ILS1 across four of the five problem 
instances. This can be traced to their heavy reliance on C2, 
which cannot be observed for the TS-ILS1 category. 

The single application of perturbation heuristics from the 
Mut is the best strategy for solving the instances of the PFS 
problem as evidenced in the plots of PFS3, PFS8, PFS10, and 
PFS11. It is not surprising that the TS-ILS1 outperformed the 
TS-ILS2 and TS-ILS3 categories. The six options available to 
the TS-ILS3 have appeared to be noisy. The reason is that it 
would take a considerable number of epochs for the TS 
procedure to converge using only the Mut strategy (C5) while 
solving the instances of the PFS problem. The double shaking 
options available to the TS-ILS2 and TS-ILS3 somewhat mired 
them from performing at a higher level for most instances of 
KP2, KP5, and KP6 of the knapsack problem. Interestingly, the 
four instances of KP1, KP2, KP5, and KP6 perfectly present 
the TS-ILS2 with four options as the most balanced based on 
the number of perturbation configurations. Observing the 
behavior of the TS-ILS3 on the MAC problem instances, none 
of the double shaking options of Mut + RR, RR + Mut, RR + 
RR, and Mut + Mut have a lower bar than the single 
perturbation options. This observation implies the importance 

of pairing heuristics for solving these instances, and it explains 
why the TS-ILS2 and TS-ILS3 outperformed the TS-ILS1 on 
the problem. More interestingly, the performance of the TS-
ILS2 on the MAC problem diverges from the performance of 
the other categories. Comparing their median ofvs across the 
ten problem instances, the TS-ILS2 obtained a lower (better) 
value across five problem instances while the TS-ILS3 
managed to achieve the same feat in only three problem 
instances. This means that the two double-shaking options 
available to it are sufficient to make it excel in solving the 
MAC problem instances. 

The mutation heuristics are more appropriate for the VRP 
problem because the column for the application of mutation 
heuristics is way longer than the application of ruin-recreate 
heuristics for the three categories of the TS-ILS hyper-
heuristic. It is innocuous to generally conclude that the TS-
ILS3 is a better solver of the VRP problem instances. This 
assertion can be justified by comparing the figures for the TS-
ILS1, TS-ILS2, and TS-ILS3 on the VRP problem with their 
median ofvs in Table II. The top two perturbation 
configurations of the TS-ILS hyper-heuristic are the 
application of Mut and Mut + Mut (Fig. 4). The latter may be 
why the TS-ILS3 has performed better than the TS-ILS1 and 
TS-ILS2 on the VRP problem according to the values 
presented in Table V. This is because only the TS-ILS3 
possesses the Mut + Mut option. The TS-ILS1 effectively 
leveraged the effectiveness of mutation heuristics on the QAP, 
while the plot for the TS-ILS2 and TS-ILS3 have demonstrated 
their partial reliance on the Mut option only.

 
Fig. 2. The analysis of the perturbation configurations on the BP and PFS problems. 
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Fig. 3. The analysis of the perturbation configurations on the KP and MAC problems. 

 

Fig. 4. The analysis of the perturbation configurations on the VRP and QAP problems.

V. DISCUSSION OF RESULTS 

In this section, an extensive discussion of the results 
computed by the three categories of the TS-ILS hyper-heuristic 

is provided.  The study results generally indicate why the TS-
ILS algorithm is effective using a component-based analysis of 
the hyper-heuristic. In addition, a few areas where further 
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improvement of the TS-ILS hyper-heuristic is required are 
highlighted in this section. The TS-ILS hyper-heuristics share 
similarities with existing ILS-based hyper-heuristics like FS-
ILS [22]. The FS-ILS selects a single LLH heuristic during the 
perturbation stage by engaging a heuristic selection metric 
based on the ratio of the number of improvements made on an 
incumbent solution by an LLH to the total amount of its 
execution time when invoked. The TS-ILS hyper-heuristics use 
the same procedure to select LLHs, but the perturbation actions 
are governed by a Thompson sampling layer procedure that is 
featured in Algorithm 1. 

Experimentation was set up to study the perturbation 
behavior of FS-ILS, TS-ILS1, TS-ILS2, and TS-ILS3 to 
reinforce the claim made in Section I about the need to control 
the depth of a perturbation. The experimentation profiles how 
these four hyper-heuristics solve cross-domain optimization 
problems, with results showing the weakness of some 
algorithms like FS-ILS, and why the successful categories of 
TS-ILS hyper-heuristics have overcome this weakness by 
varying perturbation control mechanisms. In the 
experimentation, three instances BP9, KP1, and MAC6 from 
three different problem domains were selected. The selected 
instances were taken from the problem domains where FS-ILS 
struggled to obtain good results to study if the perturbation 
control mechanisms of TS-ILS algorithms were responsible for 
their success. The four algorithms were run wherein each trial 
lasted for 279 secs, and the starting solution of each hyper-
heuristics was initialized using the same seed. Tables VI, VII, 
and VIII present the results of the experiments for BP9, KP1, 
and MAC6 respectively. 

There are seven trials for each algorithm, and the entries for 
the second trial of BP9 can be seen in the row “BP9-2”. This 
convention is used in all the tables for easy understanding. The 
average values obtained for the four algorithms in the order of 
appearance in the tables on the BP9 instance are captured in the 
following set {0.01247419, 0.00565258, 0.00137980, 
0.00400226}. Likewise, the average values for the KP1 
instance are {-1235575.0, -1256610.9, -1249428.4, -
1250803.0} and finally, for MAC6, it is {-1330.3, -1348.3, -
1354.9, -1350.6}. Each entry in the last six columns (“Mut + 
Mut” to “RR”) represents the number of times a configuration 
was used during the run of a hyper-heuristic. For example, FS-
ILS invoked 8,834 ruin-recreate heuristics and 7,324 mutation 
heuristics during its first trial as in row BP9-1 of Table VI. 

The evaluation of the results presented in Table VI shows a 
huge discrepancy in the perturbation behavior of the FS-ILS 

and TS-ILS algorithms.  It can be observed that while the TS-
ILS algorithms choose to use more ruin-recreate heuristics, FS-
ILS did not discriminate amongst the two categories of 
perturbative heuristics, although it did slightly favor the ruin-
recreate heuristics. This explains why FS-ILS did not perform 
well on Bin packing problems. The poor performance of FS-
ILS for the trials on the instance of KP1 can be blamed on the 
issue that plagued it. Its relatively lower number of 
perturbation-intensification cycles (sum of the invocations of 
the number of perturbation and ruin-recreate heuristics) when 
compared with the TS-ILS algorithms. For the first three trials 
on KP1, FS-ILS completed an average of 173.3 cycles as 
opposed to 1,019.7 cycles for TS-ILS, 1,074 cycles for TS-
ILS2, and 1,150 cycles for TS-ILS3. This means that FS-ILS 
did not have enough opportunity to search the heuristic space 
(and ultimately the solution space) unlike the TS-ILS variants. 
The main reason for this problem of FS-ILS is its excessive 
invocations of local search heuristics during the intensification 
phase, as reported in a previous study [19]. Finally, on the 
MAC6 instance, although the number of cycles completed by 
FS-ILS is not too far from that of TS-ILS2 and TS-ILS3, it still 
fell short in relative performance, as shown by its reported ofv 
per trial in Table VIII. The other algorithms concentrated their 
best perturbation efforts on invoking two perturbative 
heuristics in succession before entering the intensification 
phase. For example, the following phenomenon can be 
observed in the behavior of TS-ILS2 during the last three trials 
of Table VIII. The invocation of double shaking (Mut + RR or 
RR + Mut) was more favored (71.8% of the time) than the 
single shaking strategy. 

The experiments performed in this work have shed more 
light on why the strategies of TS-ILS algorithms are effective. 
Moreover, it has provided a deeper understanding of the 
shortcomings of the previous ILS-based algorithms that do not 
affect the TS-ILS algorithms. The ability of TS-ILS to 
automate its perturbation behavior and utilize a local search 
module that is mindful of excessive invocations of local search 
heuristics elevated its performance and offered its better 
generalization ability across the nine problem domains from 
the extended HyFlex library. In future works, TS-ILS2 should 
be used in conjunction with tabu search, hidden Markov, and 
other adaptive perturbation strategies for performance 
improvement. In addition, investigating the variations of TS-
ILS2 such as TS-ILS3 for different applications is an attractive 
venture. In particular, it should be exciting to apply The S-ILS2 
algorithm in the field of evolutionary dynamic optimization, 
where perturbation strategy can assume an influential role.

TABLE VI.  EXPERIMENTAL RESULTS OF PERTURBATION PROFILE ON BP9 

Instance Algorithm Objective Function 

Value 

Mut + Mut Mut + RR RR + Mut RR + RR Mut RR 

BP9-1 

FS-ILS 

TS-ILS1 

TS-ILS2 
TS-ILS3 

0.01243285 

0.00701407 

0.00256314 

0.00501827 

 

 

 
66 

 

 

2628  
2899 

 

 

70  
537 

 

 

  
7230 

7324 

452 

521  
71 

8384 

17674 

12159 
542 

BP9-2 

FS-ILS 

TS-ILS1 

TS-ILS2 
TS-ILS3 

0.01334600 

0.00389196 

0.00148164 

0.00498399 

 

  

  
134 

 

 

7376  
2059 

 

 

622 
489 

 

  

  
8304 

7612 

1175  

60 
134 

8311 

16989 

5550 
1502 

BP9-3 

FS-ILS 

TS-ILS1 
TS-ILS2 

0.01010801 

0.00500537 

0.00270674 

 

  
  

 

  
2776 

  

 
1441 

 

  
 

7702 

780  
488 

8139 

15476  
9560 
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TS-ILS3 0.00279360 108 3551 522 6030 109 2286 

BP9-4 

FS-ILS 

TS-ILS1 
TS-ILS2 

TS-ILS3 

0.01136454 

0.00463139 

0.00052194 

0.00138283 

 

  
  

344 

 

  
8191 

5168 

 

  
180 

102 

 

  
  

5044 

7035 

176  
374 

272 

7977 

17709  
4714 

2625 

BP9-5 

FS-ILS 

TS-ILS1 
TS-ILS2 

TS-ILS3 

0.01116060 

0.00484655 

0.00053781 

0.00495967 

 

  
  

454 

 

  
4068 

1188 

 

  
614 

477 

 

  
  

7388 

7699 

81  
64 

309 

8526 

15532  
12111 

2850 

BP9-6 

FS-ILS 
TS-ILS1 

TS-ILS2 

TS-ILS3 

0.01224321 
0.00481612 

0.00131507 

0.00499338 

 
 

  

121 

 
  

7965 

1222 

 
  

76 

1018 

 
  

  

8292 

7247 
172  

133 

323 

7933 
16357  

8121 

2174 

BP9-7 

FS-ILS 
TS-ILS1 

TS-ILS2 

TS-ILS3 

0.01666414 
0.00936258 

0.00053226 

0.00388404 

 
  

  

70 

 
  

6796 

2530 

 
  

346 

108 

 
  

  

6627 

6847 
480  

378 

111 

7709 
14971  

7622  

3881 

TABLE VII.  EXPERIMENTAL RESULTS OF PERTURBATION PROFILE ON KP1 

Instance Algorithm Objective Function 

Value 

Mut + Mut Mut + RR RR + Mut RR + RR Mut RR 

KP1-1 

FS-ILS 

TS-ILS1 
TS-ILS2 

TS-ILS3 

-1245175.0 

-1262316.0 

-1254037.0 

-1259804.0 

 

 
  

99 

 

 
115 

100 

 

 
391 

181 

 

 
  

109 

117 

659 
348 

586 

63 

109 
376 

57 

KP1-2 

FS-ILS 

TS-ILS1 
TS-ILS2 

TS-ILS3 

-1225378.0 

-1262078.0 

-1261056.0 

-1247433.0 

 

  
  

464 

 

 
169 

104 

 

  
100 

57 

 

  
  

116 

95 

899 
563 

56 

41 

211 
94 

59 

KP1-3 

FS-ILS 
TS-ILS1 

TS-ILS2 

TS-ILS3 

-1260047.0 

-1245069.0 

-1256584.0 

-1259408.0 

 
  

  

97 

 
  

116 

206 

  
 

68 

117 

 
  

 

61 

150 
863 

758 

922 

54 
318 

124 

59 

KP1-4 

FS-ILS 

TS-ILS1 

TS-ILS2 
TS-ILS3 

-1231437.0 

-1258008.0 

-1258850.0 

-1259233.0 

 

 

 
49 

 

 

310 
111 

 

 

129 
50 

 

  

 
59 

113 

735 

1034 
546 

56 

142  

144 
102 

KP1-5 

FS-ILS 

TS-ILS1 

TS-ILS2 
TS-ILS3 

-1242785.0 

-1258381.0 

-1229977.0 
-1250668.0 

 

  

  
454 

 

  

186 
1188 

 

  

551 
477 

 

  

  
7388 

117 

744 

86 
309 

62 

505  

92 
2850 

KP1-6 

FS-ILS 

TS-ILS1 
TS-ILS2 

TS-ILS3 

-1207909.0 

-1251513.0 

-1256018.0 

-1250344.0 

 

  
  

286 

 

  
150 

66 

 

  
80 

144 

 

  
 

68 

113 

840 
978 

393 

35 

183 
77 

224 

KP1-7 

FS-ILS 

TS-ILS1 
TS-ILS2 

TS-ILS3 

-1236294.0 

-1258911.0 

-1229477.0 

-1228731.0 

 

 
  

252 

 

  
338 

80 

 

  
246 

79 

 

  
 

252 

90 

729 
79 

80 

39 

126 
274  

83 

TABLE VIII.  EXPERIMENTAL RESULTS OF PERTURBATION PROFILE ON MAC6 

Instance Algorithm Objective Function 

Value 

Mut + Mut Mut + RR RR + Mut RR + RR Mut RR 

MAC6-1 

FS-ILS 

TS-ILS1 

TS-ILS2 
TS-ILS3 

-1328.0 

-1350.0 

-1350.0 

-1344.0 

 

 

  
4796 

 

 

7648 
3065 

 

 

6852 
4220 

 

 

  
2059 

6343 

11410 

589 
1489 

10412 

11894 

2371 
291 

MAC6-2 

FS-ILS 

TS-ILS1 
TS-ILS2 

TS-ILS3 

-1320.0 

-1340.0 
-1348.0 

-1350.0 

 

  
  

1407 

 

 
4408 

2491 

 

  
7677 

5584 

 

  
  

2966 

6734 

4744 
3209 

2026 

9871 

19056 
1889 

3415 

MAC6-3 

FS-ILS 

TS-ILS1 
TS-ILS2 

TS-ILS3 

-1322.0 

-1348.0 
-1350.0 

-1358.0 

 

  
  

1635 

 

  
11251 

6021 

  

 
5128 

4021 

 

 
 

5437 

6286 

14548 
2348 

344 

10955 

9450 
405 

2943 

MAC6-4 

FS-ILS 
TS-ILS1 

TS-ILS2 

TS-ILS3 

-1346.0 

-1362.0 

-1354.0 

-1354.0 

 
  

  

5292 

 
  

10312 

6626 

 
  

6789 

344 

 
  

  

1055 

6728 
25825 

356 

2740 

10178 
8968 

1135 

3639 
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MAC6-5 

FS-ILS 

TS-ILS1 
TS-ILS2 

TS-ILS3 

-1330.0 

-1346.0 

-1360.0 

-1350.0 

 

  
  

3148 

 

  
9655 

320 

 

  
3989 

4529 

 

  
  

8014 

6251 

8292 
2625 

1003 

10932 

25385 
4659 

2698 

MAC6-6 

FS-ILS 
TS-ILS1 

TS-ILS2 

TS-ILS3 

-1336.0 
-1346.0 

-1358.0 

-1348.0 

 
  

  

4371 

 
  

2309 

318 

 
  

8734 

1912 

 
  

 

7161 

6208 
18116 

3611 

1320 

11061 
11993 

1875 

3532 

MAC6-7 

FS-ILS 
TS-ILS1 

TS-ILS2 

TS-ILS3 

-1330.0 
-1346.0 

-1364.0 

.1350.0 

 
  

  

2553 

 
  

14213 

3022 

 
  

2685 

3167 

 
  

  

4293 

6223 
8633 

1525 

483 

10677 
22889 

2069 

1574 

VI. CONCLUSION 

The objectives of the present work have been achieved 
through the description of three categories of the TS-ILS 
hyper-heuristic, experimentally comparing the three categories 
against the existing benchmark algorithms and the 
determination of the effects of LLHs categorization on HyFlex 
COPs. The TS-ILS2 with {1, 2, 4, 5} subset configuration has 
edged out the other categories across eight HyFlex problems. It 
can be observed with a further granularity that the TS-ILS1 has 
struggled to effectively solve the instances of the Bin packing 
problem according to the comparison based on the μ-norm 
scores. This observation can be ascribed to the lack of double 
shaking or a stronger perturbation feature in its composition 
because it uses only {4, 5} configuration subset. Although the 
TS-ILS1 outshone the other categories on the problems of 
Permutation flow-shop, Knapsack, and Quadratic assignment, 
its weakness was badly exposed when it was applied to solve 
the Bin packing problem. This eventually had a strong effect 
on its overall performance when compared to the other 
categories. The overall performances of the algorithms on the 
HyFlex v2.0 problems suggest a close race among the three 
categories after TS-ILS2 emerged as the overall best algorithm 
based on formula one and μ-norm scores. 

The comparative results show that the TS-ILS3 recorded 
the best performance on three problem domains while the TS-
ILS2 gave the best performance on the remaining problems. 
The uncanny fact is that the TS-ILS2 outperformed the TS-
ILS3 on all but one of the problem domains. The TS-ILS2 
recorded a better performance than the TS-ILS3 on the KP and 
MAC problems according to the formula one score, while the 
TS-ILS3 fared better than TS-ILS2 on the same problem 
domains based on the µ-norm scores. The reasonable 
explanation for this scenario is that the TS-ILS3 with more 
strategy options can sometimes obtain poor runs because of the 
convergence of the Thompson sampling module on the sub-
optimal selection. Hence, this will affect its median ofv on the 
problem domains, but it has failed to perform better than TS-
ILS2 in certain situations. In conclusion, the TS-ILS2 has a 
good balance between “single shaking” and “double shaking” 
configurations and emerged as the best hyper-heuristic 
algorithm for solving COPs. 
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