
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

948 | P a g e

www.ijacsa.thesai.org

Experimentation on Iterated Local Search

Hyper-heuristics for Combinatorial Optimization

Problems

Stephen A. Adubi1, Olufunke O. Oladipupo2, Oludayo O. Olugbara3
Computer and Information Sciences Covenant University, Ota 112104, Ogun State, Nigeria1, 2

MICT SETA 4IR Center of Excellence, Durban University of Technology, Durban 4001, South Africa3

Abstract—Designing effective algorithms to solve cross-

domain combinatorial optimization problems is an important

goal for which manifold search methods have been extensively

investigated. However, finding an optimal combination of

perturbation operations for solving cross-domain optimization

problems is hard because of the different characteristics of each

problem and the discrepancies in the strengths of perturbation

operations. The algorithm that works effectively for one problem

domain may completely falter in the instances of other

optimization problems. The objectives of this study are to

describe three categories of a hyper-heuristic that combine low-

level heuristics with an acceptance mechanism for solving cross-

domain optimization problems, compare the three hyper-

heuristic categories against the existing benchmark algorithms

and experimentally determine the effects of low-level heuristic

categorization on the standard optimization problems from the

hyper-heuristic flexible framework. The hyper-heuristic

categories are based on the methods of Thompson sampling and

iterated local search to control the perturbation behavior of the

iterated local search. The performances of the perturbation

configurations in a hyper-heuristic were experimentally tested

against the existing benchmark algorithms on standard

optimization problems from the hyper-heuristic flexible

framework. Study findings have suggested the most effective

hyper-heuristic with improved performance when compared to

the existing hyper-heuristics investigated for solving cross-

domain optimization problems to be the one with a good balance

between “single shaking” and “double shaking” strategies. The

findings not only provide a foundation for establishing

comparisons with other hyper-heuristics but also demonstrate a

flexible alternative to investigate effective hyper-heuristics for

solving complex combinatorial optimization problems.

Keywords—Combinatorial optimization; heuristic algorithm;

heuristic categorization; local search; Thompson sampling

I. INTRODUCTION

Combinatorial optimization problems (COPs) are
practically challenging because of the different characteristics
of each problem domain and multiple conflicting constrictions
to be adequately resolved. They are intrinsically non-
deterministic polynomial-time hard problems with no single
method that can generally outperform others across varying
problem instances [1]. Due to the intrinsic hiccups of the
earlier heuristic, and meta-heuristic methodologies, hyper-
heuristic has emerged as a feasible search methodology for
solving multifarious COPs occurring in varying practical

applications [2]. It has been effectively applied in multiple
application domains, including scheduling [3], [4], timetabling
[5], routing [6]–[8], software engineering [9], [10], and
manufacturing [11]. In general, hyper-heuristics provide two
different types of search space, which are low-level heuristics
(LLHs) and acceptance mechanisms. However, how to select
LLHs and combine them with an acceptance mechanism to
realize an effective strategy for solving different COPs is
particularly challenging.

In recent times, different methods, including machine
learning have been investigated to improve the performance of
hyper-heuristic optimization strategies. In this paragraph, we
briefly review some related works that have attempted to
improve the performance of hyper-heuristics. The Q-learning
was utilized to select LLHs for a multi-objective route planning
problem [12] and to choose an action in solving the interaction
testing problem [9]. Deep Q-network [6] was applied as a
heuristic selection mechanism to solve two routing problems
from the library of hyper-heuristics flexible (HyFlex) [13]. In
addition, Q-learning was applied to solve six problems from
the HyFlex library by learning the pair of selection and
acceptance mechanisms that are most suitable for an instance
of a given problem [14]. Thompson sampling (TS) learning
based on the selection of LLHs was recently introduced for
solving COPs [15]–[17]. Moreover, TS has been applied to
automatically configure the perturbation behavior of iterated
local search (ILS) to solve six HyFlex COPs [18]. The
evolutionary-based ILS hyper-heuristic was recently designed
and tested on the extended HyFlex COPs to provide further
evidence of the necessity for more categories of algorithms
with improved perturbation strength [19].

A new perturbation strategy for ILS was proposed in [20]
to solve the problems of pseudo-Boolean optimization where
decision variables are perturbed to improve a local search
strategy by maximizing the distance between solutions and
maximizing the fitness similarity. An ILS algorithm was
proposed in [21] for solving the problem of aircraft landing
based on a search methodology that successively invokes a
local search procedure to find a local optimum solution. The
authors used a perturbation operator to modify the current
solution to escape from the local optimum and provide a new
solution for the local search procedure. The fair-share iterated
local search (FS-ILS) [22] is a simple state-of-the-art selection
hyper-heuristic that uses a conservative restart condition to
prevent restarts, and only restart when a method is stuck and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

949 | P a g e

www.ijacsa.thesai.org

enough time is available to attain a solution of similar quality.
The work [23] presented an efficient algorithm for solving the
problem of aircraft landing based on a mechanism that
hybridizes the ILS and simulated annealing (SA) algorithms to
find a feasible aircraft scheduling solution within the range of
target time. The sequence-based selection hyper-heuristic
inspired by a hidden Markov model was proposed in [24] as a
general purpose hyper-heuristic for solving cross-domain
COPs. However, the authors conceded that the performance of
a selection hyper-heuristic may vary depending on the choice
of the LLHs and that not all the heuristics contribute to the
improvement of a candidate solution during the search process
unless they are applied in a combination with sequences of
heuristics.

Despite myriads of research publications on hyper-
heuristics, the published results on cross-domain optimization
algorithms still need further improvement. The confines shown
by the existing algorithms for solving different COPs have
provided a unique opportunity to improve the performance of a
hyper-heuristic across different problem domains. The findings
from the literature have generally suggested that identifying the
right intensity of perturbation operations in ILS is challenging
but warrants further investigation [20]. The focus of the present
work is to extensively experiment with three categories of the
TS-ILS hyper-heuristic [18] imbued with different perturbation
behaviors and compare their performances against the existing
benchmark algorithms on HyFlex COPs. The testing of a
hyper-heuristic algorithm on standard problems with varying
characteristics will enable a meticulous comparison of its
generalization capability. Since an ILS-based hyper-heuristic is
potentially targeted toward solving numerous COPs, an
efficient strategy for determining its proper perturbation
behavior on a specific problem is paramount to the success of
ILS methodology [7], [21].

The overarching objectives of the present work are
threefold. To describe three categories of the TS-ILS hyper-
heuristic that combine low-level heuristics with an acceptance
mechanism for solving standard HyFlex COPs. To
experimentally compare the three categories of the TS-ILS
hyper-heuristic against the existing benchmark algorithms on
the standard HyFlex COPs. To experimentally determine the
effects of LLHs categorization on the standard HyFlex COPs.
The remaining parts of the paper are fleetingly organized as
follows. Section II describes the TS-ILS hyper-heuristic with
three categorizations of LLHs. Section III presents the
experimental results of comparing the three categories of the
TS-ILS hyper-heuristic against the existing benchmark
algorithms on the standard HyFlex COPs. Section IV examines
the effects of LLHs categorization on the standard HyFlex
COPs. Section V discusses the study results and highlights the
potential areas for further improvement. The paper is
ultimately concluded in Section VI by explicating the category
of the TS-ILS hyper-heuristic that recorded a good balance
between “single shaking” and “double shaking” configurations.

II. THOMPSON SAMPLING ITERATED LOCAL SEARCH

Thompson sampling iterated local search (TS-ILS) hyper-
heuristic is a probabilistic learning of profitable perturbation
operations for a problem instance [19]. The hyper-heuristic
augments the functional capabilities of TS and ILS to control
the perturbation behavior of ILS. It selects LLHs and accepts
or rejects a solution using the FS-ILS [22]. The local search
phase of the hyper-heuristic is triggered after a perturbation
process to improve the solution obtained from the perturbation
stage, while the resultant solution is then considered for
acceptance. There are six configurations in the config = {0, 1,
2, 3, 4, 5} set and each one is an integer representation of a
perturbation operation. Table I defines each element of a
perturbation configuration set of length n, where the value of n
was taken to be 6 in the present work.

TABLE I. PERTURBATION OPERATIONS OF THE TS-ILS HYPER-
HEURISTIC

Value Operation

0 Perturb with Mutation LLH + Mutation LLH (Mut + Mut)

1 Perturb with Mutation LLH + Ruin-Recreate LLH (Mut + RR)

2 Perturb with Ruin-Recreate LLH + Mutation LLH (RR + Mut)

3 Perturb with Ruin-Recreate LLH + Ruin-Recreate LLH (RR + RR)

4 Perturb with Mutation LLH only (Mut)

5 Perturb with Ruin-Recreate LLH only (RR)

The TS-ILS hyper-heuristic algorithm learns promising
perturbation operations for the ILS by splitting the mutation
(Mut) and ruin-recreate (RR) heuristics into two distinct
entities as in the first two lines of Algorithm 1. The two vectors
𝛼 and 𝛽 are respectively representing the success and failure
tallies for the perturbation configurations in the config set. The
pair of elements in the two vectors at the same corresponding
positions respectively correspond to the success and failure
counts of the options in the config set. The initial solution for
the problem instance being solved is generated. The resultant
solution is then used to initialize the current solution 𝑆0 and the
best solution found so far (𝑆𝑏). The Thompson sampling
procedure generates the utility values for the elements of the
config set based on tallies that are stored in the vectors α and β
by sampling from a Beta distribution. This phase of the TS-ILS
hyper-heuristic algorithm decides which of the perturbation
operations that are represented in the config set is to be
invoked. These perturbation operations can be seen as the
alternative operators to be selected in the bandit problem. The
corresponding first element, 𝛼0 and 𝛽0 of the α and β vectors
are respectively passed as parameters to the sampling module
to generate the utility value for the first element in the config
set. The pseudocode for the TS-ILS hyper-heuristic algorithm
is given by the following Algorithm 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

950 | P a g e

www.ijacsa.thesai.org

Algorithm 1: TS-ILS Hyper-heuristic

𝑀 ← {𝑚1, 𝑚2, … ,𝑚𝑗}

𝑅 ← {𝑟1, 𝑟2, … , 𝑟𝑘}

config ← {𝑐1, 𝑐2, … , 𝑐𝑛} ⊳ Line 3

𝛼 ← {0,… , 0}

𝛽 ← {0,… , 0}

𝑆0 ← generateInitialSolution()

𝑆𝑏 ← 𝑆0

while (¬stopping_condition) do

 Φ = {𝜙1, … , 𝜙𝑙} ← generateUtilityValues()

 select i from config: 𝜙𝑖 maximizes Φ

 𝑆′ ← perturb(𝑆0, 𝑖)

 𝑆′′ ← localSearch()

 if (𝑆′′ is accepted) then

 𝑆0 ← 𝑆′′

 end

 if (𝑆′′ < 𝑆𝑏) then

 𝛼𝑖 ← 𝛼𝑖 + 1

 updateLS()

 updateParam()

 else

 𝛽𝑖 ← 𝛽𝑖 + 1

 end

 updateLLH()

 end

Studying the effects of LLHs categorization on the standard
HyFlex COPs is paramount to the present work to determine
the most appropriate algorithm for solving cross-domain COPs.
Thus, TS-ILS1, TS-ILS2, and TS-ILS3 hyper-heuristics
constitute three categories of the TS-ILS hyper-heuristic
algorithm. The TS-ILS1 uses the subset {4, 5} and perturbs a
solution once before intensification. The TS-ILS2 uses the
subset {1, 2, 4, 5} and has been featured in the previous study
[18]. The TS-ILS3 uses the entire set {0, 1, 2, 3, 4, 5} and all
the options presented in Table I during the perturbation stage.
The TS-ILS1 can only perturb a solution once before the
intensification (single shaking) phase while the last two
categories can perturb a resolution twice before the
intensification (double shaking) phase. These differences are
enforced by line 3 of Algorithm 1 [18] which has been
extended in this study to any set of perturbation configurations.
The categorizations have significantly affected the TS-ILS
hyper-heuristic for solving diverse COPs. This is because the
different perturbation strengths determine the effectiveness of
the ILS-based hyper-heuristics [7], [20], [23].

The element of the set config that maximizes the utility
values in Φ is selected, and the corresponding perturbation
operation is carried out as designated in the next two lines.
During the perturbation phase, the speedNew selection
mechanism [14], [22] is employed to choose a given candidate
LLH selected by the TS procedure. For example, if the selected
configuration is 2, the selection mechanism chooses a
perturbative LLH from the ruin-recreate set and applies it to a
solution. The resultant solution is further perturbed by selecting
and applying a perturbative LLH from the mutation set. The
intensity of mutation and the depth of search are two parameter

archetypes in the HyFlex framework for parameterizing the use
of LLHs [13]. A parameter value is chosen within the {0.0, 0.1,
…, 1.0} set of 11 values using a roulette-wheel procedure for
the selected LLH to be analogously parameterized as in [24].
The local search module of the TS-ILS hyper-heuristic [18],
[19] is triggered on the resultant solution to produce another
solution (𝑆′′). The next operation decides if 𝑆′′ is to be
accepted to replace the current solution 𝑆0 based on the accept
probabilistic worse (APW) acceptance mechanism [14], [22].

The success tally (𝛼𝑖) of the i element of the config set
invoked in the current iteration is incremented only if the
solution generated is strictly better than the best solution (𝑆𝑏)
found so far, otherwise, the value of 𝛽𝑖 is incremented. This
update scheme has enabled the TS-based probabilistic learning
algorithm to adjust its preference according to the observed
rewards of the alternative actions to be taken at every iteration.
The function updateLLH() updates the parameters of the
perturbative LLHs applied based on the speedNew selection
mechanism. This update scheme does not apply to the local
search heuristics and further details of how it is carried out can
be found in [22]. The function updateLS() updates the data
structures of the local search heuristics employed for the local
search phase of the ILS hyper-heuristic. Finally, the function
updateParam() updates the utility matrix used by the
parameters of parameterized LLHs from the local search,
mutation, and ruin-recreate operations. The entry for the
parameter value selected by a roulette wheel procedure is
updated after the iteration. The selection and update of values
for the parameterized LLHs are analogous to the
implementation in [24].

III. EXPERIMENTAL RESULTS

Three categories of the TS-ILS hyper-heuristic were
implemented on an Intel i5-3340M CPU computer with
random access memory of 8 gigabytes and a 2.70 gigahertz
clock speed. The TS-ILS1, TS-ILS2, and TS-ILS3 hyper-
heuristics were tested on the problem instances of Boolean
satisfiability (SAT), Bin packing (BP), Personnel scheduling
(PS), Permutation flow-shop (PFS), Travelling salesman
problem (TSP), and Vehicle routing problem (VRP) reported in
HyFlex v1.0. The testing was also performed on the ten
instances of the Knapsack problem (KP), Quadratic assignment
problem (QAP), and Maximum cut (MAC) problem reported
in HyFlex v2.0. The execution time returned by a benchmark
program on the computer machine is 507 seconds, which is the
equivalent of 600 seconds on a standard testing machine
according to the organizers of the cross-domain heuristic
search challenge (CHeSC) in 2011.

The comparison of the different algorithms is based on the
metrics of median objective function values (ofvs), formula
one, µ-norm, and boxplot visualization as subsequently
illustrated. The performances of the three categories of the TS-
ILS hyper-heuristic were compared using the ofvs across nine
HyFlex COPs. In addition, the performances of TS-ILS1, TS-
ILS2, and TS-ILS3 were compared with those of the FS-ILS,
NR-FS-ILS, AdapHH, EPH, SR-IE, SR-AM, and SSHH
benchmark algorithms [25], [26] across eight HyFlex COPs.
The results obtained for the PS problem by the existing
algorithms could not be compared with those computed by TS-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

951 | P a g e

www.ijacsa.thesai.org

ILS1, TS-ILS2, and TS-ILS3 because of the differences in the
updated Java library used in the present work. The updated
library has fixed a bug in the previous library that was used to
produce the results [26]. The overall comparison of the
algorithms will be prejudicial if an attempt is made to
incorporate the results obtained for the PS problem. The data
used for testing the existing algorithms, excluding the SSHH
on HyFlex problems, were obtained online
(https://github.com/Steven-Adriaensen/hyflext). The ofvs of
the results computed by the SSHH algorithm can be found in
[25]. In total, 60 instances of HyFlex COPs were tested for
each of the three categories of TS-ILS hyper-heuristic based on
the median ofvs. Moreover, 55 instances of the HyFlex COPs
were tested separately for each of the three categories of the

TS-ILS hyper-heuristic. The three categories were also
compared with seven benchmark algorithms based on the
formula one, μ-norm, and boxplot visualization of median ofvs.

A. Comparison based on Median ofvs

Tables II and III highlight the performances of the TS-ILS
categories in terms of the median ofvs obtained across the
benchmark instances of the HyFlex COPs. The KP, QAP, and
MAC problems of HyFlex v2.0 have ten benchmark instances
which are five more than the first six problems of SAT, BP,
PS, PFS, TSP, and VRP in HyFlex v1.0. The values in bold
font denote the median ofv of the hyper-heuristic that reported
the best performance for a problem instance.

TABLE II. MEDIAN OFVS OBTAINED BY CATEGORIES OF TS-ILS HYPER-HEURISTIC ON SIX HYFLEX V1.0 PROBLEMS

Problem Category Problem Instance

1 2 3 4 5

SAT

TS-ILS1

TS-ILS2
TS-ILS3

2.00000000

2.00000000

2.00000000

2.00000000

3.00000000
3.00000000

1.00000000

1.00000000

1.00000000

1.00000000

1.00000000

1.00000000

9.00000000

8.00000000

9.00000000

BP

TS-ILS1

TS-ILS2

TS-ILS3

0.02371400

0.01876799

0.01828719

0.00807447

0.00350695

0.00355599

0.00491703

0.00052035

0.00236484

0.10828062

0.10828402

0.10828455

0.01260111

0.00142866

0.00557662

PS

TS-ILS1

TS-ILS2

TS-ILS3

19.00000000

21.00000000

21.00000000

9546.00000000

9548.00000000

9570.00000000

3213.00000000

3181.00000000

3193.00000000

1609.00000000

1550.00000000

1593.00000000

330.00000000

330.00000000

335.00000000

PFS

TS-ILS1

TS-ILS2

TS-ILS3

6223.00000000

6232.00000000

6237.00000000

26755.00000000

26785.00000000

26788.00000000

6323.00000000

6325.00000000

6323.00000000

11327.00000000

11340.00000000

11354.00000000

26585.00000000

26601.00000000

26605.00000000

TSP
TS-ILS1
TS-ILS2

TS-ILS3

48194.92010000

48194.92010000

48194.92010000

20701672.20000000

20779493.20000000

20817079.70000000

6809.10000000
6805.30000000

6804.70000000

66194.70000000

66133.00000000

66150.80000000

53806.20000000
53762.40000000

53635.70000000

VRP
TS-ILS1
TS-ILS2

TS-ILS3

65151.40000000
63709.00000000

62658.50000000

13290.50000000
13292.80000000

13285.50000000

146927.10000000

145401.50000000

146801.90000000

20654.10000000
20654.70000000

20654.00000000

145865.40000000

145205.40000000

145436.20000000

TABLE III. MEDIAN OFV OBTAINED BY CATEGORIES OF TS-ILS HYPER-HEURISTICS ON THREE HYFLEX V2.0 PROBLEMS

Problem Problem Instance TS-ILS1 TS-ILS2 TS-ILS3

KP

0 -104046 -104046 -104046

1 -1257913 -1258367 -1259059

2 -242324 -242255 -242179

3 -431342 -431340 -431336

4 -396167 -396167 -396167

5 -4254605 -4254402 -4252958

6 -941561 -940026 -939070

7 -1577175 -1577175 -1577175

8 -1530489 -1530479 -1530470

9 -1467357 -1467357 -1467357

QAP

0 152112 152132 152156

1 153972 154036 154036

2 147894 147952 147944

3 149782 149768 149778

4 21276862 21269484 21307840

https://github.com/Steven-Adriaensen/hyflext

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

952 | P a g e

www.ijacsa.thesai.org

5 1187188954 1186656060 1186575184

6 501189032 501487948 501258178

7 44863086 44865718 44870864

8 8154812 8155312 8153852

9 273212 273228 273266

MAC

0 -41375743 -41417466 -41324351

1 -277192517 -276843715 -277614604

2 -3054 -3054 -3055

3 -3032 -3034 -3034

4 -3037 -3039 -3038

5 -13217 -13216 -13227

6 -1354 -1358 -1356

7 -10077 -10093 -10084

8 -456 -456 -456

9 -2906 -2914 -2912

B. Comparison based on Formula One

The formula one scoring system has inspired one of the
well-known metrics for evaluating hyper-heuristics [2].
Competing hyper-heuristics are assigned points based on the
ofvs of their median best solutions obtained after 31 trials for
each problem instance in the given test suite. The scores of 10,
8, 6, 5, 4, 3, 2, and 1 are respectively awarded to the best
performing hyper-heuristic down to the eight-best one for a
problem instance. Ties are handled by averaging the points that
would have been given to one hyper-heuristic if there was no
tie and assigning each of the hyper-heuristics the average score.
In the rating system, the higher the score, the better the
performance of a hyper-heuristic relative to the median results
obtained by other hyper-heuristics.

The results of comparing eight hyper-heuristics on HyFlex
COPs using formula one scores are presented in Table IV. The
overall score in the table is the sum of scores obtained by a

given hyper-heuristic across problem instances. The categories
of the TS-ILS hyper-heuristic can be observed to emerge as the
most dominant hyper-heuristics across the HyFlex COPs
considered. The overall performance of the categories of the
TS-ILS hyper-heuristic on HyFlex v2.0 COPs was found to be
superior to the performances of the other hyper-heuristics. The
maximum score for each HyFlex v2.0 problem domain is 100
with the highest score of 10 for each problem instance. It can
be inferred that the top three hyper-heuristics on HyFlex v1.0
problem based on the formula one scoring are TS-ILS2 with
162.8 points, followed by TS-ILS3 with 148.8 points, and TS-
ILS1 with 146.9 points. The order of performances of the
algorithms on HyFlex v2.0 problem instances is TS-ILS2 with
215.8 points, followed by TS-ILS1 with 214.8 points, and TS-
ILS3 with 203.3 points. It is noticeable that there is a close race
performance among the three categories of the TS-ILS hyper-
heuristic on HyFlex v2.0, while TS-ILS2 outperformed the
other categories on HyFlex v1.0. problems.

TABLE IV. FORMULA ONE RANKING OF CATEGORIES OF TS-ILS HYPER-HEURISTIC ON EIGHT HYFLEX PROBLEMS, EXCLUDING PS

Problem AdapHH EPH FS-ILS NR-FS-ILS SR-AM SR-IE SSHH TS-ILS1 TS-ILS2 TS-ILS3

SAT 21.00 10.00 34.85 23.35 0.00 5.00 35.10 34.85 30.85

BP 18.00 19.00 11.00 18.00 0.00 18.00 29.00 44.00 38.00

PFS 19.50 11.50 25.00 27.50 5.00 0.00 47.00 32.50 27.00

TSP 23.00 26.00 25.50 22.00 2.00 3.00 29.50 33.00 31.00

VRP 20.00 16.00 26.00 22.00 0.00 8.00 28.00 35.000 40.00

Overall 101.50 82.50 122.35 112.85 7.00 34.00 168.60 179.35 166.85

KP 59.23 49.33 6.21 11.21 19.85 7.83 48.33 69.33 62.33 56.33

QAP 40.00 26.00 31.50 40.50 20.00 0.00 2.00 84.00 74.00 72.00

MAC 28.50 5.00 14.50 20.00 36.50 1.00 68.50 61.50 79.50 75.00

Overall 127.73 80.33 52.21 71.71 76.36 8.83 118.83 214.83 215.83 203.33

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

953 | P a g e

www.ijacsa.thesai.org

C. Comparison based on µ-norm Metric

This section compares the performances of ten hyper-
heuristics across eight HyFlex COPs based on the µ-norm
scores [25], [26]. The µ-norm is the average normalized
evaluation function value. It is a more robust evaluation metric
than the formula one scoring because it evaluates the
performance of a hyper-heuristic based on the quality of the 31
solutions obtained over 31 trials on a problem instance. The µ-
norm metric enables all the obtained ofvs to be normalized
within the range [0, 1], where 0 means a hyper-heuristic
outperforms other hyper-heuristics on all the tested instances,
and a value of 1 connotes the opposite.

Table V provides comparative results of the categories of
TS-ILS hyper-heuristics against the existing ones using the µ-
norm scores. The data for the existing hyper-heuristics on the
problem domains presented in Table V were taken from the
paper [26]. The categories of the TS-ILS hyper-heuristic jointly

won seven out of the eight HyFlex problems. They
outperformed the other hyper-heuristics on the PFS, KP, and
QAP. The only problem domain where none of the categories
of the TS-ILS hyper-heuristic recorded the best µ-norm value
is SAT, where FS-ILS emerged as the best hyper-heuristic. The
AdapHH is the closest challenger to the top algorithm (TS-
ILS1) on the Knapsack problem. The three categories of the
TS-ILS hyper-heuristic dominated all others on the QAP and
MAC problems because they all constituted the top three
successful algorithms across the problem domains. The EPH
and SR-IE algorithms obtained the worst results on the MAC
problem. The overall performance in Table V further
consolidates the observation that the three categories of the TS-
ILS hyper-heuristic are general in their applications to HyFlex
v2.0 problems. Overall, the next best algorithms based on the
μ-norm score, after the three categories of the TS-ILS hyper-
heuristic, are AdapHH and FS-ILS, while the SR-AM
algorithm delivered the worst performance.

TABLE V. COMPARATIVE RESULTS USING µ-NORM ON EIGHT HYFLEX PROBLEMS, EXCLUDING PS

Problem TS-ILS2 TS-ILS3 TS-ILS1 AdapHH FS-ILS NR-FS-ILS EPH SR-IE SR-AM

SAT 0.0159 0.0184 0.0181 0.0276 0.0146 0.0238 0.0927 0.3787 0.8759

BP 0.0138 0.0316 0.0852 0.1828 0.1727 0.1581 0.1478 0.1769 0.9559

PFS 0.1676 0.1817 0.1263 0.2224 0.2059 0.1816 0.2671 0.7242 0.6223

TSP 0.0538 0.0556 0.0584 0.0677 0.0647 0.0626 0.0658 0.4993 0.5392

VRP 0.0623 0.0538 0.0731 0.0841 0.0687 0.0832 0.2186 0.2714 0.9347

KP 0.0315 0.0308 0.0276 0.0297 0.1513 0.0554 0.3625 0.3312 0.3970

QAP 0.0728 0.0795 0.0689 0.1089 0.1512 0.1396 0.1062 0.6363 0.1097

MAC 0.1018 0.0987 0.1112 0.2829 0.2585 0.5222 0.3772 0.7371 0.3946

Overall 0.0649 0.0688 0.0711 0.1258 0.1360 0.1533 0.2047 0.4694 0.6037

D. Comparison based on Boxplot Visualization of Median

ofvs

Fig. 1 presents the boxplots of the normalized ofvs of ten
hyper-heuristics in Table IV. The minimum–maximum
normalization scheme was applied to obtain the normalized
median ofv of a hyper-heuristic on a particular instance of a
problem domain [25]. The performances of the categories of
the TS-ILS hyper-heuristic were benchmarked against the
existing hyper-heuristics on HyFlex problems [26].

KP, The median score of the TS-ILS2 appears to be closest
to the base of the plot in Fig. 1(a) to indicate good
performance. A similar phenomenon can be observed for the
TS-ILS1 and TS-ILS3 categories. The TS-ILS2 and TS-ILS3
have smaller boxes than the TS-ILS1 category. The three
categories performed better than any of the other algorithms on
the HyFlex v1.0 problems. The gap in the performance of the
categories of the TS-ILS hyper-heuristic and other hyper-
heuristics is more glaring for the QAP, and MAC HyFlex v2.0
problems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

954 | P a g e

www.ijacsa.thesai.org

Fig. 1. Boxplots of the overall normalized median ofvs obtained by the hyper-heuristics in Table IV.

The sizes of the boxes in Fig. 1(b) support the dominance
of the categories of the TS-ILS hyper-heuristic. The
interquartile range of the boxplots of each of the three
categories of the TS-ILS hyper-heuristic is a minimal value,
denoting low variability in their data. Combining the inter-
quartile range with the proximity of the boxes to the minimum
score means that the categories have enjoyed dominance over
other algorithms on almost all problem instances of Knapsack,
Quadratic Assignment, and Maximum-Cut. The categories can
be observed to generalize well across eight HyFlex problem
domains in sharp contrast to the other standard ILS hyper-
heuristics, like FS-ILS and NR-FS-ILS.

IV. EFFECTS OF LOW-LEVEL HEURISTICS CATEGORIZATION

ON HYFLEX PROBLEMS

The effects of LLHs on HyFlex problems have been
investigated in this work. The first TS-ILS1 hyper-heuristic
does not employ the double shaking strategy, but the other two
categories that respectively implemented four and six
perturbation configurations do. The problem domains of Bin
packing, Permutation flow-shop, Knapsack, Maximum cut,
Vehicle routing, and Quadratic assignment were chosen to
demonstrate the differences among the three categories of the
TS-ILS hyper-heuristic. The values in the config set have been
defined according to the entries in Table I. The parameter C1
represents the first option that applied two mutation heuristics
in succession before the application of the intensification
heuristic. The parameter C6 represents the application of only
one ruin-recreate heuristic before applying the intensification
heuristic. The heuristic calls were recorded throughout the
problem-solving process to obtain the boxplots. In addition, the
perturbation configurations applied at each iteration were
recorded accordingly. If a successful iteration of the best new
solution is produced, the selected tally of a configuration was
recorded. The log files of the top three runs for each problem
domain were congregated for each category of the TS-ILS
hyper-heuristic as shown in Fig. 2 to 4.

It is important to explain Fig. 2 to 4 to provide more clarity
before interpreting the results provided by the figures. The
multiple bar charts provide the success rates of the six different
perturbation configurations (C1 to C6) for the three TS-ILS
categories of TS-ILS1 (red), TS-ILS2 (blue), and TS-ILS3
(black). TS-ILS1 is a single shaking variant that utilizes the
two configurations of mutation only (C5) and ruin-recreate
only (C6) and therefore, it explains why only two red bars
appear in each of the charts. Similarly, TS-ILS2 utilizes four
configurations (C2, C3, C5, and C6) and it explains why only a
maximum of four blue bars can be seen on each chart. The
most successful configuration for both the TS-ILS2 and TS-
ILS3 is C6 using the BP9 instance of Fig. 2 as an example,
while the most successful configuration for TS-ILS3 is C4.
This means that the application of only the ruin-recreate
heuristic (C6) has found more best new solutions than any
other configuration during the run of TS-ILS1 and TS-ILS2.
However, for TS-ILS3, the application of two ruin-recreate
heuristics in succession before the intensification (C4) was
found to be the most productive option. Consequently, because
TS-ILS2 outperformed TS-ILS3 on the multiple trials on the
BP9 instance, it could be said that TS-ILS3 having so many
configurations (six) slowed down its performance on the BP9
instance when compared to the performance of TS-IL2.
Finally, the presence of the double shaking configuration (C2)
in both TS-IL2 and TS-ILS3 has made them superior solvers
than TS-ILS1 on the BP9 instance because the configuration
has contributed to almost 40% of the best solutions found
during the runs of TS-ILS2 and TS-LS3.

Most successful iterations were achieved with the
application of ruin-recreate heuristics for the TS-ILS1 on the
BP problem domain. This can be seen in the C6 column of the
TS-ILS1 which has the highest bar for all instances. The TS-
ILS2 and TS-ILS3 are better algorithms for solving the BP
problem. They utilize more pairing of heuristics, especially
with the pairing of Mut and RR (C2). Though, an exception is
observed in the BP10 instance, where a single application of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

955 | P a g e

www.ijacsa.thesai.org

RR is the most rewarding strategy. This phenomenon explains
why the TS-ILS1 category, which is the weakest algorithm on
the BP problem, outperformed its counterparts on the BP10
instance. The reason is that it could easily focus on the RR
among only two options with the second option of Mut (C5)
being a bad choice. The overall comparison of the
performances of the hyper-heuristics on the BP problem
domain has shown in Table II that the TS-ILS2 and TS-ILS3
are better than the TS-ILS1 across four of the five problem
instances. This can be traced to their heavy reliance on C2,
which cannot be observed for the TS-ILS1 category.

The single application of perturbation heuristics from the
Mut is the best strategy for solving the instances of the PFS
problem as evidenced in the plots of PFS3, PFS8, PFS10, and
PFS11. It is not surprising that the TS-ILS1 outperformed the
TS-ILS2 and TS-ILS3 categories. The six options available to
the TS-ILS3 have appeared to be noisy. The reason is that it
would take a considerable number of epochs for the TS
procedure to converge using only the Mut strategy (C5) while
solving the instances of the PFS problem. The double shaking
options available to the TS-ILS2 and TS-ILS3 somewhat mired
them from performing at a higher level for most instances of
KP2, KP5, and KP6 of the knapsack problem. Interestingly, the
four instances of KP1, KP2, KP5, and KP6 perfectly present
the TS-ILS2 with four options as the most balanced based on
the number of perturbation configurations. Observing the
behavior of the TS-ILS3 on the MAC problem instances, none
of the double shaking options of Mut + RR, RR + Mut, RR +
RR, and Mut + Mut have a lower bar than the single
perturbation options. This observation implies the importance

of pairing heuristics for solving these instances, and it explains
why the TS-ILS2 and TS-ILS3 outperformed the TS-ILS1 on
the problem. More interestingly, the performance of the TS-
ILS2 on the MAC problem diverges from the performance of
the other categories. Comparing their median ofvs across the
ten problem instances, the TS-ILS2 obtained a lower (better)
value across five problem instances while the TS-ILS3
managed to achieve the same feat in only three problem
instances. This means that the two double-shaking options
available to it are sufficient to make it excel in solving the
MAC problem instances.

The mutation heuristics are more appropriate for the VRP
problem because the column for the application of mutation
heuristics is way longer than the application of ruin-recreate
heuristics for the three categories of the TS-ILS hyper-
heuristic. It is innocuous to generally conclude that the TS-
ILS3 is a better solver of the VRP problem instances. This
assertion can be justified by comparing the figures for the TS-
ILS1, TS-ILS2, and TS-ILS3 on the VRP problem with their
median ofvs in Table II. The top two perturbation
configurations of the TS-ILS hyper-heuristic are the
application of Mut and Mut + Mut (Fig. 4). The latter may be
why the TS-ILS3 has performed better than the TS-ILS1 and
TS-ILS2 on the VRP problem according to the values
presented in Table V. This is because only the TS-ILS3
possesses the Mut + Mut option. The TS-ILS1 effectively
leveraged the effectiveness of mutation heuristics on the QAP,
while the plot for the TS-ILS2 and TS-ILS3 have demonstrated
their partial reliance on the Mut option only.

Fig. 2. The analysis of the perturbation configurations on the BP and PFS problems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

956 | P a g e

www.ijacsa.thesai.org

Fig. 3. The analysis of the perturbation configurations on the KP and MAC problems.

Fig. 4. The analysis of the perturbation configurations on the VRP and QAP problems.

V. DISCUSSION OF RESULTS

In this section, an extensive discussion of the results
computed by the three categories of the TS-ILS hyper-heuristic

is provided. The study results generally indicate why the TS-
ILS algorithm is effective using a component-based analysis of
the hyper-heuristic. In addition, a few areas where further

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

957 | P a g e

www.ijacsa.thesai.org

improvement of the TS-ILS hyper-heuristic is required are
highlighted in this section. The TS-ILS hyper-heuristics share
similarities with existing ILS-based hyper-heuristics like FS-
ILS [22]. The FS-ILS selects a single LLH heuristic during the
perturbation stage by engaging a heuristic selection metric
based on the ratio of the number of improvements made on an
incumbent solution by an LLH to the total amount of its
execution time when invoked. The TS-ILS hyper-heuristics use
the same procedure to select LLHs, but the perturbation actions
are governed by a Thompson sampling layer procedure that is
featured in Algorithm 1.

Experimentation was set up to study the perturbation
behavior of FS-ILS, TS-ILS1, TS-ILS2, and TS-ILS3 to
reinforce the claim made in Section I about the need to control
the depth of a perturbation. The experimentation profiles how
these four hyper-heuristics solve cross-domain optimization
problems, with results showing the weakness of some
algorithms like FS-ILS, and why the successful categories of
TS-ILS hyper-heuristics have overcome this weakness by
varying perturbation control mechanisms. In the
experimentation, three instances BP9, KP1, and MAC6 from
three different problem domains were selected. The selected
instances were taken from the problem domains where FS-ILS
struggled to obtain good results to study if the perturbation
control mechanisms of TS-ILS algorithms were responsible for
their success. The four algorithms were run wherein each trial
lasted for 279 secs, and the starting solution of each hyper-
heuristics was initialized using the same seed. Tables VI, VII,
and VIII present the results of the experiments for BP9, KP1,
and MAC6 respectively.

There are seven trials for each algorithm, and the entries for
the second trial of BP9 can be seen in the row “BP9-2”. This
convention is used in all the tables for easy understanding. The
average values obtained for the four algorithms in the order of
appearance in the tables on the BP9 instance are captured in the
following set {0.01247419, 0.00565258, 0.00137980,
0.00400226}. Likewise, the average values for the KP1
instance are {-1235575.0, -1256610.9, -1249428.4, -
1250803.0} and finally, for MAC6, it is {-1330.3, -1348.3, -
1354.9, -1350.6}. Each entry in the last six columns (“Mut +
Mut” to “RR”) represents the number of times a configuration
was used during the run of a hyper-heuristic. For example, FS-
ILS invoked 8,834 ruin-recreate heuristics and 7,324 mutation
heuristics during its first trial as in row BP9-1 of Table VI.

The evaluation of the results presented in Table VI shows a
huge discrepancy in the perturbation behavior of the FS-ILS

and TS-ILS algorithms. It can be observed that while the TS-
ILS algorithms choose to use more ruin-recreate heuristics, FS-
ILS did not discriminate amongst the two categories of
perturbative heuristics, although it did slightly favor the ruin-
recreate heuristics. This explains why FS-ILS did not perform
well on Bin packing problems. The poor performance of FS-
ILS for the trials on the instance of KP1 can be blamed on the
issue that plagued it. Its relatively lower number of
perturbation-intensification cycles (sum of the invocations of
the number of perturbation and ruin-recreate heuristics) when
compared with the TS-ILS algorithms. For the first three trials
on KP1, FS-ILS completed an average of 173.3 cycles as
opposed to 1,019.7 cycles for TS-ILS, 1,074 cycles for TS-
ILS2, and 1,150 cycles for TS-ILS3. This means that FS-ILS
did not have enough opportunity to search the heuristic space
(and ultimately the solution space) unlike the TS-ILS variants.
The main reason for this problem of FS-ILS is its excessive
invocations of local search heuristics during the intensification
phase, as reported in a previous study [19]. Finally, on the
MAC6 instance, although the number of cycles completed by
FS-ILS is not too far from that of TS-ILS2 and TS-ILS3, it still
fell short in relative performance, as shown by its reported ofv
per trial in Table VIII. The other algorithms concentrated their
best perturbation efforts on invoking two perturbative
heuristics in succession before entering the intensification
phase. For example, the following phenomenon can be
observed in the behavior of TS-ILS2 during the last three trials
of Table VIII. The invocation of double shaking (Mut + RR or
RR + Mut) was more favored (71.8% of the time) than the
single shaking strategy.

The experiments performed in this work have shed more
light on why the strategies of TS-ILS algorithms are effective.
Moreover, it has provided a deeper understanding of the
shortcomings of the previous ILS-based algorithms that do not
affect the TS-ILS algorithms. The ability of TS-ILS to
automate its perturbation behavior and utilize a local search
module that is mindful of excessive invocations of local search
heuristics elevated its performance and offered its better
generalization ability across the nine problem domains from
the extended HyFlex library. In future works, TS-ILS2 should
be used in conjunction with tabu search, hidden Markov, and
other adaptive perturbation strategies for performance
improvement. In addition, investigating the variations of TS-
ILS2 such as TS-ILS3 for different applications is an attractive
venture. In particular, it should be exciting to apply The S-ILS2
algorithm in the field of evolutionary dynamic optimization,
where perturbation strategy can assume an influential role.

TABLE VI. EXPERIMENTAL RESULTS OF PERTURBATION PROFILE ON BP9

Instance Algorithm Objective Function

Value

Mut + Mut Mut + RR RR + Mut RR + RR Mut RR

BP9-1

FS-ILS

TS-ILS1

TS-ILS2
TS-ILS3

0.01243285

0.00701407

0.00256314

0.00501827

66

2628
2899

70
537

7230

7324

452

521
71

8384

17674

12159
542

BP9-2

FS-ILS

TS-ILS1

TS-ILS2
TS-ILS3

0.01334600

0.00389196

0.00148164

0.00498399

134

7376
2059

622
489

8304

7612

1175

60
134

8311

16989

5550
1502

BP9-3

FS-ILS

TS-ILS1
TS-ILS2

0.01010801

0.00500537

0.00270674

2776

1441

7702

780
488

8139

15476
9560

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

958 | P a g e

www.ijacsa.thesai.org

TS-ILS3 0.00279360 108 3551 522 6030 109 2286

BP9-4

FS-ILS

TS-ILS1
TS-ILS2

TS-ILS3

0.01136454

0.00463139

0.00052194

0.00138283

344

8191

5168

180

102

5044

7035

176
374

272

7977

17709
4714

2625

BP9-5

FS-ILS

TS-ILS1
TS-ILS2

TS-ILS3

0.01116060

0.00484655

0.00053781

0.00495967

454

4068

1188

614

477

7388

7699

81
64

309

8526

15532
12111

2850

BP9-6

FS-ILS
TS-ILS1

TS-ILS2

TS-ILS3

0.01224321
0.00481612

0.00131507

0.00499338

121

7965

1222

76

1018

8292

7247
172

133

323

7933
16357

8121

2174

BP9-7

FS-ILS
TS-ILS1

TS-ILS2

TS-ILS3

0.01666414
0.00936258

0.00053226

0.00388404

70

6796

2530

346

108

6627

6847
480

378

111

7709
14971

7622

3881

TABLE VII. EXPERIMENTAL RESULTS OF PERTURBATION PROFILE ON KP1

Instance Algorithm Objective Function

Value

Mut + Mut Mut + RR RR + Mut RR + RR Mut RR

KP1-1

FS-ILS

TS-ILS1
TS-ILS2

TS-ILS3

-1245175.0

-1262316.0

-1254037.0

-1259804.0

99

115

100

391

181

109

117

659
348

586

63

109
376

57

KP1-2

FS-ILS

TS-ILS1
TS-ILS2

TS-ILS3

-1225378.0

-1262078.0

-1261056.0

-1247433.0

464

169

104

100

57

116

95

899
563

56

41

211
94

59

KP1-3

FS-ILS
TS-ILS1

TS-ILS2

TS-ILS3

-1260047.0

-1245069.0

-1256584.0

-1259408.0

97

116

206

68

117

61

150
863

758

922

54
318

124

59

KP1-4

FS-ILS

TS-ILS1

TS-ILS2
TS-ILS3

-1231437.0

-1258008.0

-1258850.0

-1259233.0

49

310
111

129
50

59

113

735

1034
546

56

142

144
102

KP1-5

FS-ILS

TS-ILS1

TS-ILS2
TS-ILS3

-1242785.0

-1258381.0

-1229977.0
-1250668.0

454

186
1188

551
477

7388

117

744

86
309

62

505

92
2850

KP1-6

FS-ILS

TS-ILS1
TS-ILS2

TS-ILS3

-1207909.0

-1251513.0

-1256018.0

-1250344.0

286

150

66

80

144

68

113

840
978

393

35

183
77

224

KP1-7

FS-ILS

TS-ILS1
TS-ILS2

TS-ILS3

-1236294.0

-1258911.0

-1229477.0

-1228731.0

252

338

80

246

79

252

90

729
79

80

39

126
274

83

TABLE VIII. EXPERIMENTAL RESULTS OF PERTURBATION PROFILE ON MAC6

Instance Algorithm Objective Function

Value

Mut + Mut Mut + RR RR + Mut RR + RR Mut RR

MAC6-1

FS-ILS

TS-ILS1

TS-ILS2
TS-ILS3

-1328.0

-1350.0

-1350.0

-1344.0

4796

7648
3065

6852
4220

2059

6343

11410

589
1489

10412

11894

2371
291

MAC6-2

FS-ILS

TS-ILS1
TS-ILS2

TS-ILS3

-1320.0

-1340.0
-1348.0

-1350.0

1407

4408

2491

7677

5584

2966

6734

4744
3209

2026

9871

19056
1889

3415

MAC6-3

FS-ILS

TS-ILS1
TS-ILS2

TS-ILS3

-1322.0

-1348.0
-1350.0

-1358.0

1635

11251

6021

5128

4021

5437

6286

14548
2348

344

10955

9450
405

2943

MAC6-4

FS-ILS
TS-ILS1

TS-ILS2

TS-ILS3

-1346.0

-1362.0

-1354.0

-1354.0

5292

10312

6626

6789

344

1055

6728
25825

356

2740

10178
8968

1135

3639

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

959 | P a g e

www.ijacsa.thesai.org

MAC6-5

FS-ILS

TS-ILS1
TS-ILS2

TS-ILS3

-1330.0

-1346.0

-1360.0

-1350.0

3148

9655

320

3989

4529

8014

6251

8292
2625

1003

10932

25385
4659

2698

MAC6-6

FS-ILS
TS-ILS1

TS-ILS2

TS-ILS3

-1336.0
-1346.0

-1358.0

-1348.0

4371

2309

318

8734

1912

7161

6208
18116

3611

1320

11061
11993

1875

3532

MAC6-7

FS-ILS
TS-ILS1

TS-ILS2

TS-ILS3

-1330.0
-1346.0

-1364.0

.1350.0

2553

14213

3022

2685

3167

4293

6223
8633

1525

483

10677
22889

2069

1574

VI. CONCLUSION

The objectives of the present work have been achieved
through the description of three categories of the TS-ILS
hyper-heuristic, experimentally comparing the three categories
against the existing benchmark algorithms and the
determination of the effects of LLHs categorization on HyFlex
COPs. The TS-ILS2 with {1, 2, 4, 5} subset configuration has
edged out the other categories across eight HyFlex problems. It
can be observed with a further granularity that the TS-ILS1 has
struggled to effectively solve the instances of the Bin packing
problem according to the comparison based on the μ-norm
scores. This observation can be ascribed to the lack of double
shaking or a stronger perturbation feature in its composition
because it uses only {4, 5} configuration subset. Although the
TS-ILS1 outshone the other categories on the problems of
Permutation flow-shop, Knapsack, and Quadratic assignment,
its weakness was badly exposed when it was applied to solve
the Bin packing problem. This eventually had a strong effect
on its overall performance when compared to the other
categories. The overall performances of the algorithms on the
HyFlex v2.0 problems suggest a close race among the three
categories after TS-ILS2 emerged as the overall best algorithm
based on formula one and μ-norm scores.

The comparative results show that the TS-ILS3 recorded
the best performance on three problem domains while the TS-
ILS2 gave the best performance on the remaining problems.
The uncanny fact is that the TS-ILS2 outperformed the TS-
ILS3 on all but one of the problem domains. The TS-ILS2
recorded a better performance than the TS-ILS3 on the KP and
MAC problems according to the formula one score, while the
TS-ILS3 fared better than TS-ILS2 on the same problem
domains based on the µ-norm scores. The reasonable
explanation for this scenario is that the TS-ILS3 with more
strategy options can sometimes obtain poor runs because of the
convergence of the Thompson sampling module on the sub-
optimal selection. Hence, this will affect its median ofv on the
problem domains, but it has failed to perform better than TS-
ILS2 in certain situations. In conclusion, the TS-ILS2 has a
good balance between “single shaking” and “double shaking”
configurations and emerged as the best hyper-heuristic
algorithm for solving COPs.

ACKNOWLEDGMENT

The authors thank the Directorate of Research of Covenant
University (CUCRID) for providing financial support for the
publication of this article.

REFERENCES

[1] S. P. Adam, S.-A. N. Alexandropoulos, P. M. Pardalos, and M. N.
Vrahatis, “No Free Lunch Theorem: A Review,” in Approximation and
Optimization, I. C. Demetriou and P. M. Pardalos, Eds. Cham: Springer,
2019, pp. 57–82.

[2] J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, “Recent advances in
selection hyper-heuristics,” Eur. J. Oper. Res., vol. 285, no. 2, pp. 405–
428, 2020.

[3] A. Kheiri, A. Gretsista, E. Keedwell, G. Lulli, M. G. Epitropakis, and E.
K. Burke, “A hyper-heuristic approach based upon a hidden Markov
model for the multi-stage nurse rostering problem,” Comput. Oper. Res.,
vol. 130, p. 105221, 2021, doi: 10.1016/j.cor.2021.105221.

[4] H. B. Song and J. Lin, “A genetic programming hyper-heuristic for the
distributed assembly permutation flow-shop scheduling problem with
sequence dependent setup times,” Swarm Evol. Comput., vol. 60, p.
100807, 2021, doi: 10.1016/j.swevo.2020.100807.

[5] G. Mweshi and N. Pillay, “An improved grammatical evolution
approach for generating perturbative heuristics to solve combinatorial
optimization problems,” Expert Syst. Appl., vol. 165, p. 113853, 2021,
doi: 10.1016/j.eswa.2020.113853.

[6] A. Dantas, A. F. do Rego, and A. Pozo, “Using deep Q-network for
selection hyper-heuristics,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2021, pp. 1488–1492. doi:
10.1145/3449726.3463187.

[7] N. R. Sabar, S. L. Goh, A. Turky, and G. Kendall, “Population-based
iterated local search approach for dynamic vehicle routing problems,”
IEEE Trans. Autom. Sci. Eng., pp. 1–11, 2021, doi:
10.1109/TASE.2021.3097778.

[8] Y. Zhang, R. Bai, R. Qu, C. Tu, and J. Jin, “A deep reinforcement
learning based hyper-heuristic for combinatorial optimisation with
uncertainties,” Eur. J. Oper. Res., vol. 300, no. 2, pp. 418–427, 2022.

[9] B. S. Ahmed, E. Enoiu, W. Afzal, and K. Z. Zamli, “An evaluation of
Monte Carlo-based hyper-heuristic for interaction testing of industrial
embedded software applications,” Soft Comput., vol. 24, no. 18, pp.
13929–13954, 2020, doi: 10.1007/s00500-020-04769-z.

[10] G. Guizzo, F. Sarro, J. Krinke, and S. R. Vergilio, “Sentinel: A Hyper-
Heuristic for the Generation of Mutant Reduction Strategies,” IEEE
Trans. Softw. Eng., pp. 1–16, 2020, doi: 10.1109/TSE.2020.3002496.

[11] Y. Zhou, J. J. Yang, and L. Y. Zheng, “Multi-Agent Based Hyper-
Heuristics for Multi-Objective Flexible Job Shop Scheduling: A Case
Study in an Aero-Engine Blade Manufacturing Plant,” IEEE Access,
vol. 7, pp. 21147–21176, 2019, doi: 10.1109/ACCESS.2019.2897603.

[12] Y. Yao, Z. Peng, and B. Xiao, “Parallel Hyper-Heuristic Algorithm for
Multi-Objective Route Planning in a Smart City,” IEEE Trans. Veh.
Technol., vol. 67, no. 11, pp. 10307–10318, 2018, doi:
10.1109/TVT.2018.2868942.

[13] G. Ochoa et al., “HyFlex: A benchmark framework for cross-domain
heuristic search,” in European Conference on Evolutionary Computation
in Combinatorial Optimization, 2012, pp. 136–147.

[14] S. S. Choong, L. P. Wong, and C. P. Lim, “Automatic design of hyper-
heuristic based on reinforcement learning,” Inf. Sci. (Ny)., vol. 436, pp.
89–107, 2018.

[15] A. Aslan, I. Bakir, and I. F. Vis, “A dynamic Thompson sampling hyper-
heuristic framework for learning activity planning in personalized
learning,” Eur. J. Oper. Res., vol. 286, no. 2, pp. 673–688, 2020, doi:
10.1016/j.ejor.2020.03.038.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

960 | P a g e

www.ijacsa.thesai.org

[16] M. Lassouaoui, D. Boughaci, and B. Benhamou, “A multilevel synergy
Thompson sampling hyper-heuristic for solving Max-SAT,” Intell.
Decis. Technol., vol. 13, no. 2, pp. 193–210, 2019, doi: 10.3233/IDT-
180036.

[17] M. Scoczynski et al., “A selection hyperheuristic guided by Thompson
sampling for numerical optimization,” in GECCO 2021 Companion -
Proceedings of the 2021 Genetic and Evolutionary Computation
Conference Companion, 2021, pp. 1394–1402. doi:
10.1145/3449726.3463140.

[18] S. A. Adubi, O. O. Oladipupo, and O. O. Olugbara, “Configuring the
Perturbation Operations of an Iterated Local Search Algorithm for
Cross-domain Search: A Probabilistic Learning Approach,” in 2021
IEEE Congress on Evolutionary Computation (CEC), 2021, pp. 1372–
1379.

[19] S. A. Adubi, O. O. Oladipupo, and O. O. Olugbara, “Evolutionary
Algorithm-Based Iterated Local Search Hyper-Heuristic for
Combinatorial Optimization Problems,” Algorithms, vol. 15, no. 11, p.
405, 2022, doi: 10.3390/a15110405.

[20] R. Tinos, M. W. Przewozniczek, and D. Whitley, “Iterated local search
with perturbation based on variables interaction for pseudo-boolean
optimization,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2022, pp. 296–304.

[21] N. R. Sabar and G. Kendall, “An iterated local search with multiple
perturbation operators and time varying perturbation strength for the
aircraft landing problem,” Omega, vol. 56, pp. 88–98, 2015.

[22] S. Adriaensen, T. Brys, and A. Nowé, “Fair-share ILS: A simple state of
the art iterated local search hyperheuristic,” in Proceedings of the 2014
annual conference on genetic and evolutionary computation, 2014, pp.
1303–1310.

[23] A. I. Hammouri, M. S. Braik, M. A. Al-Betar, and M. A. Awadallah,
“ISA: a hybridization between iterated local search and simulated
annealing for multiple-runway aircraft landing problem,” Neural
Comput. Appl., vol. 32, no. 15, pp. 11745–11765, 2020, doi:
10.1007/s00521-019-04659-y.

[24] A. Kheiri and E. Keedwell, “A sequence-based selection hyper-heuristic
utilising a hidden Markov model,” in GECCO 2015 - Proceedings of the
2015 Genetic and Evolutionary Computation Conference, 2015, pp.
417–424.

[25] A. Almutairi, E. Özcan, A. Kheiri, and W. G. Jackson, “Performance of
selection hyper-heuristics on the extended hyFlex domains,” in
International Symposium on Computer and Information Sciences, 2016,
pp. 154–162.

[26] S. Adriaensen, G. Ochoa, and A. Nowé, “A benchmark set extension and
comparative study for the HyFlex framework,” in 2015 IEEE Congress
on Evolutionary Computation, CEC 2015, 2015, pp. 784–791.

