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Abstract—This paper studies the different unsupervised seg-
mentation algorithms that have been proposed and their efficacy
on thermal images. The scope of this research is to develop a
generalized approach to blindly segment urban thermal imagery
to assist the system in identifying regions by shape instead of
pixel values. Most methods can be classified as thresholding, edge-
based, region-based, clustering, or texture analysis. We explained
methods, worked before applying the methods of interest on
thermal images of 8-bit and 16-bit resolution, and evaluated the
performance. The evaluation section discusses where each method
succeeded, where it failed, and how the performance can be
enhanced. Finally, we study the time complexity of each method
to assess the feasibility of implementing a fast, and generalized
method of pixel labeling.
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I. INTRODUCTION

Image segmentation [1] is an area of focus primarily due to
its potential usefulness in numerous fields of application. Given
that images allow for the transfer of information, understanding
them and the associated methods of extracting information is
essential. Image segmentation often serves as the first step
in the process of image interpretation. It aims to change,
simplify, or partition the representation of an image into a
more meaningful collection of segments for enhanced analysis
[2], [3]. The importance and applicability of image processing
cannot be overemphasized. In practice, many image processing
algorithms do not focus on the entire image but only require
information from the image regions that share certain features.
For example, consider an application such as medical imaging
where surgery decisions need accurate information about the
images to either initiate or speed up patient recovery [4],
[5]. Image segmentation supplies the critical image processing
function of aiding object location and boundaries in patient
imagery in these situations. It effectively assigns labels to
every image pixel and enables necessary identifications such
as foreground and background regions and other objects of
interest in the scene [6].

As implied by the name, the outcome of an image seg-
mentation procedure is a set segment that, when combined,
covers the whole image. Each one of these individual segments
is called a mask [7]. Masks are pixels in a particular region
that share certain texture, color, and intensity characteristics.
Image segmentation converts images into sets of masks which
can then be interpreted as labeled images. Consequently, the
labeled regions produced by the segmentation allow one the

capability of only processing the important parts of an image
rather than processing the whole image [5].

So far, there has been a plethora of effective segmenta-
tion techniques developed for multiple applications and plat-
forms. These techniques include threshold segmentation [8],
region [9], and edge-based segmentation [10], clustering,
texture-based segmentation [11], and Partial Differential Equa-
tion (PDE) based segmentation [12]. There are a plethora of
segmentation approaches. However, the underlying question
becomes how does one identify the technique that offers the
best image analysis results and performance?

This paper will apply the aforementioned methods to long-
wave infrared images (LWIR) and analyze the results. We will
discuss each of these methods in general and provide variation
details concerning implementation, effect on accuracy, the
difference in performance on eight vs. 16-bit data, number of
tunable parameters, response to texture and uniform surfaces,
and lastly, their time complexities.

In this paper, we present a comprehensive review of
unsupervised segmentation techniques applied to long-wave
infrared (LWIR) images. The paper has main six sections, start-
ing with the motivation section and ending with the conclusion.
The motivation for this study arises from the growing need for
effective image analysis in LWIR applications. The literature
review section provides an overview of the existing research,
highlighting unsupervised segmentation techniques specifically
designed for LWIR images. The evaluation section presents
the comparative analysis results, showcasing the effectiveness
of each technique. The discussion section offers insights
into the findings, identifying trends and potential areas for
improvement. The conclusion summarizes the key takeaways
from the review, emphasizing the most promising techniques.
This review serves as a valuable resource for researchers and
practitioners in LWIR image segmentation, facilitating the
development of accurate and efficient segmentation methods.

II. MOTIVATION

LWIR is one of the three commonly defined wavelength
bands in which infrared imaging operates. The other two
are Medium Wavelength Infrared (MWIR) and Very Long
Wavelength Infrared (VLIR). LWIR infrared is commonly
defined as covering the wavelengths that range from 8,000nm
to 14,000nm (8um to 14x m) [13]. Generally, LWIR cameras
detect the thermal emissions of animals, vehicles, and people
as they stand out when the environment’s temperature differs
by an amount greater than the camera’s sensitivity. LWIR
imaging is commonly utilized as a solution for night vision,
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thermal imaging, and in degraded visual environments because
the longer wavelengths make it less susceptible to scattering
from obscurants, such as fog, rain, smoke, dust, and sand.
LWIR imaging is instrumental in distinguishing targets at night
since traditional imaging employs visible light and cannot
reveal sufficient information in these scenarios due to a lack
of signal.

The fields of computer vision and image processing are
responsible for developing many methods designed to re-
solve the problems arising in the image segmentation pro-
cess. However, for infrared/thermal images, the traditional
techniques face some additional restrictions, which result in
the segmentation being a more challenging problem. For
example, when attempting to apply pixel-based segmentation
methods to infrared images, the lack of disparity in pixel
intensities poses a challenge in grouping/defining the objects’
pixels with respect to their background. That can mainly
be due to insufficient temperature differences between the
object and the background. Another example occurs when
utilizing image gradients as edge indicators. In these cases, the
LWIR segmentation may fail to accurately identify appropriate
object boundaries within the scene due to the non-uniform
nature of the pixel intensities and the resulting the poor edge
identification.

In this study, we focus on evaluating traditional segmen-
tation algorithms and their feasibility in segmenting thermal
images. The challenges mentioned above will be the main
scope of this work to create a user-friendly tool to provide
labeled data with minimal human input. For some algorithms,
the human input will be selecting the number of thresholds,
clusters, or objects. Meanwhile, other methods, such as region-
growing, will take starting seeds as inputs. Texture segmenta-
tion takes sample texture patches as inputs. Ideally, the tool
will include a standalone method that will only require the
semantic labels from the user.

III. LITERATURE REVIEW

In this treatment, we have reviewed publications from the
last 20 years addressing image segmentation. This period can
be divided into the pre-popularization and post-popularization
of the deep learning era. The authors note that the deep-
learning methods are very efficient with RGB representations
of visible light images and are widely used due to this fact.
More importantly, the authors note that very few deep-learning
algorithms are applied to segment infrared images. This is most
likely due to the difficulties mentioned above associated with
infrared image segmentation.

The next sections present common methods used in un-
supervised segmentation. We discuss thresholding as the first
and most common pre-processing step, then discuss other
prevalent and promising segmentation techniques. Lastly, we
evaluate these techniques by visually analyzing the results and
providing quantitative performance evaluation, and discussing
scenarios where each method fails in the results sections.

This section explains the methods examined in this study,
including the different variations of the same general approach.
We begin with thresholding since it is an essential step in most
segmentation approaches. Section III-B discusses the various
edge detection approaches. Sections III-C, III-D, and III-F
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delve into region growing, clustering, and texture analysis,
respectively.

A. Thresholding

Thresholding image segmentation techniques have gained
significant attention due to their simplicity and effectiveness.
They are especially useful when dealing with images that have
distinct foreground and background intensities. The basic idea
behind thresholding [14] is to select a threshold value that sep-
arates the desired objects or regions from the rest of the image.
Thresholding is the simplest and probably the most common
image segmentation technique. The underlying principle relies
upon setting a number of pixel intensity thresholds to divide
the image pixels into multiple categories. Each category or
mask is intended to represent a region of the input image with
common features. Common features include color/grayscale
characteristics or other common transformation characteristics.
If the technique is based on a single threshold value, the
effective result is to change a grayscale image into a binary
one. If more than one threshold is desired, the thresholding is
referred to as multi-level. Binary segmentation and other multi-
level thresholding techniques all share the same core issue
of effectively selecting optimal thresholds based on certain
criteria [1]. Thresholding techniques can be categorized based
on global, local, or image histograms. Global Thresholding is
the simplest form of thresholding, where a single threshold
value is applied to the entire image. Pixels with intensities
above the threshold are classified as foreground, while those
below the threshold are classified as background. Local thresh-
olding, also known as adaptive thresholding, is a technique
used for image segmentation where different threshold values
are determined for different regions or pixels of an image.
Unlike global thresholding, which applies a single threshold
value to the entire image, local thresholding takes into account
the local characteristics of the image to handle variations in
illumination, contrast, and noise. In local thresholding, the
threshold value for each pixel is computed based on the
neighborhood around that pixel. The neighborhood can be
defined as a fixed window size or a variable size depending on
the algorithm or application. The threshold is calculated using
statistical measures such as the mean, median, or standard
deviation of the pixel intensities within the neighborhood. The
main advantage of local thresholding is its ability to adapt to
local variations in image properties. This makes it particularly
useful in situations where the lighting conditions or intensity
characteristics change across different regions of the image.
By adjusting the threshold values locally, local thresholding
can effectively segment objects or regions with varying il-
lumination or contrast levels. Image histogram thresholding
techniques analyze the histogram of the image to determine
the threshold values. These techniques can be either global
or local. They involve examining the distribution of pixel
intensities in the histogram and selecting appropriate threshold
values based on certain criteria or statistical measures. Exam-
ples of image histogram thresholding methods include Otsu’s
method, which finds an optimal threshold by maximizing the
between-class variance, and the Maximum Entropy method,
which selects the threshold that maximizes the entropy of the
image.

The most popular variable thresholding method is Otsu’s
maximum variance approach. Formulated by Nobuyuki Otsu,
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the Otsu method is also known as the variance threshold and
is a popular algorithm in image segmentation. The optimal
threshold is obtained by maximizing class variance functions
[5]. It partitions the input image grayscale levels into fore-
ground and background regions. The maximum inter-class
variance difference between the two is obtained when the
threshold is set to the “optimal” value. It is the preferred
method for real-world images based on shape measures and
uniformity. However, if the variances among classes differ
significantly, the Otsu method cannot offer suitable thresholds
for separating the classes [1]. Despite these shortcomings, the
Otsu method has a simple algorithm that makes it feasible,
convenient, and widely implemented. We will briefly summa-
rize the implementation steps. The first step is to determine
the highest grayscale intensity value in the image and denote
that level as L — 1. The threshold K is then calculated by
considering each gray level from O to L-1. Then the threshold
probability is calculated and summed by the weight.

The average gray level of the pixel p; is then calculated as
the following:

I
|
o~

3

M2

‘The overall gray value of the image p is given by p =
Z;;E ip;. Follow-on stages calculate the variance op and

finally the maximum threshold T.

o = wi(pr — p)? + walpe — p)? 2)

The optimal threshold is obtained by maximizing o2.

In multiple/bi-modal thresholding, multiple threshold
values such as TO, T1, T2, and T3 exist. Calculation of
these levels permits the subsequent multiple category image
representation. For example, if a segmented image containing
three levels is desired, the output image B(z,y) can be
obtained from the pixels of an input image A(x,y) using the
following formula:

m if A(z,y) > T
B(z,y)=<n if Top < A(z,y)< Ty 3)
0 if A(z,y) <Tp

Threshold values can be calculated from the peak values
of the image histogram when obvious differences exist in the
gray levels of the background and foreground. Both the object
and the background contribute to peaks in the histogram. The
boundary between them produces a valley. Image segmentation
yields perfect results when the segment threshold is at the
valley. The threshold method is advantageous because of its
simplicity and faster-operating speed. When both the target and
the background have high contrast, one can easily obtain the
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segmentation effect [5]. However, the technique is not without
limitations. First, this technique does not provide accurate
results for image segmentation when grayscale differences are
insignificant. The underlying reason is that it only considers the
pixel intensity information and ignores the spatial information
contained in the image. Its sensitivity to grayscale unevenness
and noise explains why it is fused with other methods to
process images [1]. Additionally, in cases requiring more than
two segments, the multiple threshold method is not applicable
for images with low cluster variances.

Although both the maximum variance and bi-modal
method take a short time, the former offers a more robust
algorithm because it can segment the foreground from the
background faster and more accurately when dealing with
images where image contrast is not obvious.

As mentioned above, another limitation of threshold-based
methods is that they tend to focus on intensity alone and ignore
the relationship among pixels. This is especially problematic
in cases where it is not immediately obvious that the identified
pixels are contiguous. There is also the possibility of including
extraneous pixels which are not part of the target region. Sim-
ilarly, one can easily miss isolated pixels in the target region.
The effects worsen as noise increases because the intensity
of the pixel does not necessarily depict normal intensity [15].
Thus, thresholding can lead to too much information loss or
the inclusion of an excess number of extraneous pixels. Over
and above, in global thresholding, changes in the illumination
may make some parts darker and others brighter in ways
unrelated to the objects within the image [16]. This challenge
is addressed by the inclusion of a variable threshold applied
across the image.

B. Edge-based Segmentation

Edge-based segmentation is an image processing method
based on identifying object boundaries or edges in an input
image. In almost all cases, this technique works by detect-
ing discontinuities in brightness [17]. The method effectively
detects and links edge pixels to form contours.

A major feature of an image is its edges. Edges are a
crucial aspect of many computer vision and pattern recognition
algorithms. As such, the detection of edges is an essential step
in image processing [15]. The process may be enumerated as
follows:

(1) The primary stage involves identifying edges present
in the thermal image. To achieve this, different algorithms de-
signed for edge detection, like the Canny edge detector, Sobel
operator, or Laplacian of Gaussian (LoG), can be employed.
However, when it comes to thermal images, only a limited
number of these algorithms produce satisfactory outcomes.
One such effective combination is the utilization of Gabor with
Histogram of Oriented Gradients (HOG) technique [18]. This
algorithm analyzes the gradients and extracts features of the
image to identify regions of rapid intensity changes, which are
indicative of edges.

(2) Edge Linking: Once the edges are detected, the next
step is to link or connect the individual edge segments to form
continuous boundaries. This can be done using techniques like
edge linking by Hough transform, region growing, or contour
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tracing algorithms. The goal is to create closed curves or
contours that represent the boundaries of the objects or regions
of interest.

(3) Edge Refinement: In some cases, the detected edges
may contain noise or artifacts. Therefore, edge refinement
techniques can be applied to enhance the quality and accuracy
of the edges. These techniques may involve smoothing or
filtering the edges, filling gaps, or removing small or spurious
edge segments.

(4) Region Segmentation: Once the edges are obtained and
refined, they can be used to segment the image into different
regions or objects. This can be achieved by performing opera-
tions such as region growing, active contours (snakes), or graph
cuts, which utilize the information provided by the detected
edges to partition the image into meaningful segments.

Given that images have many redundant data, Kaganami
and Beiji pointed in [19] out that the essential information is
on the edges of an image. They correspond to texture, object
boundaries, as well as changes in surface orientation [15]. In
essence, an edge usually corresponds to points in the image
wherein the grayscale values differ considerably from pixel to
pixel. For this reason, detecting edges helps to extract valuable
image feature information in regions in which there are sudden
and rapid alterations [20].

Finally, edge detection is an integral step toward under-
standing the characteristics of an image. Edges have important
features and contain information that is meaningful for de-
termining the spatial relationship of neighboring pixels. They
can be used to decrease significantly the amount of memory
required to store the image, filter out less pertinent information,
and preserve the vital structural properties of the image. We
will explore some edge detection methods in the following
sections.

1) Gradient Edge Detection Method: Various methods in
the literature use convolutional kernels to extract edge fea-
tures from images. However, most of them belong to two
groups: gradient-based—methods and Laplacian-based meth-
ods. Gradient-based methods, as Jahne mentioned in [15], de-
tect the edges of an image by searching for both the minimum
and the maximum values in the image’s first derivative. For
instance, the popular Sobel, Prewitt, and Roberts operators
detect horizontal and vertical edges of an image based on the
value of this derivative. Appropriate thresholding can be used
in separating sharp edges [19]. As an edge-detection method,
the Sobel edge operator shown in equation 4 carries out a
two-dimensional spatial gradient measurement on a particular
image and hence emphasizes regions of high spatial frequency,
which correspond to the image edges. This operator finds the
estimated absolute gradient magnitude at every point in an
input grayscale image [21]. Theoretically, the Sobel operators
are two 3 x 3 convolution kernels. One kernel is essentially
the other kernel rotated by ninety degrees. The Sobel operator
is illustrated in the following kernels:

+1 0 -1 +1 42 +1
Go=|+2 0 —2| andG,=|0 0 0 4)
+1 0 -1 -1 -2 -1
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The Prewitt operator computes the maximum response of a
set of convolution kernels to find the local edge orientations for
every pixel. It is suitable for estimating both the orientation and
magnitude of the edge of an image [20]. For this operator, one
kernel is sensitive to image edges in the horizontal direction
and the other to the vertical direction. The directional kernels
are illustrated below:

+1 0 -1 +1 +1 +1
G,=1|+1 0 —1] and Gy = |0 0 0 %)
+1 0 -1 -1 -1 -1

The Kirsch edge detector uses four filters to detect edges.
These filters are essentially a rotation of a basic compass
convolution filter [20]. Kirsch convolution kernels are shown
below:

+5 45 +5 +5 -3 -3
N=|-3 0 -3, W=|+5 0 -3

-3 -3 -3 +5 -3 -3

-3 -3 -3 3 3 45 ©
S=1|-3 0 -3|and, E=|-3 0 +5

+5 +5 +5 -3 -3 +5

The direction of the edge operator is defined by the mask
that produces the maximum edge results.

2) Laplacian Edge Detection Method: The Laplacian
method detects the edges by looking for zero crossings in
the second derivative of the image’s pixel intensity values.
Common approaches include the Laplacian-of-Gaussian (LoG)
and Marr-Hildreth [22].

To find the edges of an image, the Marr-Hildreth method
of edge detection will first filter the image with the LoG
filter matrix, which is calculated using the input value of
the standard deviation [19]. The standard deviation value
determines the filter matrix’s width. It also controls the amount
of smoothing that the Gaussian component produces. The LoG
filtering then smooths the image and enhances all of its edges.
The Laplacian of Gaussians response can be estimated by
convolving the image with the kernel 7.

0 -1 0 -1 -1 -1
[—1 4 —1] and [—1 8 —1] @)
0 -1 0 -1 -1 -1

As soon as filtering is completed, edge localization is pro-
cessed by finding zero crossings at every pixel for every
direction [21]. Overall, Marr-Hildreth edge detection is used
in finding edges through second-order differentiation. In most
edge-detection approaches, the main idea is to compute local
image change indicators, which include both first-order and
second-order derivatives. In image processing, the gradient is
the first-order derivative of choice, and it could be utilized in
detecting the presence of an edge in an image [21]. Conversely,
second-order derivatives are usually calculated with the use of
the Laplacian. Notably, the second derivative’s sign determines
if the pixel of an image is on the light or dark side of an edge
[22].

www.ijacsa.thesai.org

1307 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

3) Canny Edge Detection: Canny edge detection, which
was introduced by J Canny in [23] is a multi-stage approach
to detect edges in images using the gradient calculated by the
Sobel operator in the X and Y direction followed by non-
max suppression, double thresholds, and edge tracking by
hysteresis. As the case for any gradient operation, Gaussian
smoothing is a critical preprocessing step since all gradients are
sensitive to noise. Then the intensity of the edges is calculated
by finding the gradient in the image by convolving the Sobel
kernel in (4) in the x and y directions. The magnitude matrix
G and the gradient slope 6 is calculated as the following:

Gl = /12 + 1§ ®

0= arctan(%) )

€T

In the next step, non-maximum suppression uses the pair of
magnitude and direction of the gradient to find the most intense
pixel in the direction of the gradient #, and the rest of the
less-intense pixels are removed or set to zero. This will result
in thinner edges with varying edge intensities. The double-
threshold stage suppresses false-edge pixels, and eliminates
variations in edge intensities. In the final step, the edges pixels
are connected by applying hysteresis. Low intensity pixels that
fall between string edges are considered strong while the ones
with no neighboring edge-pixels are set to zero. This will result
in final edge array. Canny edges operate on grayscale images.
In the results section, we demonstrate how Canny edges are
highly sensitive to noise and shadowing effects in thermal
images.

C. Region-based Segmentation

An image is partitioned into regions based upon the similar-
ity of the pixels. In essence, this technique groups sub-regions
or pixels into more prominent regions based on pre-set criteria.
The procedure usually begins with a set of seed points. New
regions are grown from these points by attaching to every seed
those adjacent pixels that have properties comparable to the
seed, for instance, particular ranges of gray level or intensity. In
other words, the region growing image segmentation approach
entails growing regions by recursively including nearby pixels
which are similar and linked to the seed pixel [24]. Notably,
connectivity is required to ensure that pixels do not connect
in different parts of the image.

In region growing, homogeneity of regions is the main
criterion for segmentation. The homogeneity criteria are as
follows: shape, texture, color, gray level, and model. Pixel ag-
gregation is the simplest of all the region growing approaches.
After one region has been fully grown by appending adjacent
pixels, another seed pixel that does not yet belong to any region
will be chosen and then begins the process once more. The
entire process continues until every pixel belongs to some
particular region [21]. It is a bottom-up approach. Region
growing approach requires human interference in choosing the
starting seeds.

1) Split-and-Merge Segmentation: The split-and-merge ap-
proach is the opposite of the region growing technique. This
approach entails separating the image into regions based on
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a particular similarity measure. The regions are then merged
based upon a different or the same similarity measure [25].
Another name of this technique is quadtree division. Initially,
some criteria for what is a uniform area are set. Then, the
whole image is split into four sub-images. Every sub-image is
checked, and if they are not uniform, they are divided into four
new sub-images. After every iteration, the adjacent regions are
compared. They are then merged if they are uniform as per
the similarity measure. The split-and-merge approach entails
splitting an image recursively into smaller and smaller parts
until every individual region is coherent and then merging them
recursively to produce more significant coherent regions [26].

When merging the regions, the approach can begin with
small regions, such as 4 x 4 or 2 x 2 regions, and regions which
have similar characteristics, for instance, variance or gray level
is then merged [24]. Splitting and merging are usually utilized
iteratively.

2) Watershed Segmentation: The term watershed is broadly
understood as a ridge that divides areas drained by a variety
of river systems. The geographical area that drains into a
reservoir or river is known as a catchment basin. Catchment
basins and watersheds have a connection to image processing
[27]. A watershed transform is a crucial tool that can be
used to solve image segmentation problems. The watershed
transform method grows regions of pixels around an image’s
local minima. It ensures that the boundaries of nearby areas
lie by the side of the crest lines of the gradient image. This
method of image segmentation combines features of both the
region-based and edge-based segmentation methods. An image
in watershed segmentation is considered as a topographic land-
scape that has valleys and ridges. The landscape’s elevation
values are defined by their gradient magnitude or gray levels
of the respective pixels. The watershed transform decomposes
a given image into catchment basins. A catchment basin, for
every local minimum, consists of all the points whose path
of steepest descent ends at this minimum [28] similar to the
previous example. Basins are separated from each other by
watersheds. The watershed transform decomposes an image;
hence it allocates every pixel to a watershed or a region.
Numerous small regions come up with noisy medical image
data, and this is typically referred to as the over-segmentation
problem [27]. It is the main drawback of the watershed
segmentation approach.

The advantage of region-based image segmentation is that
region-based methods are usually better in noisy images,
where detecting borders is complex. Moreover, region-based
image segmentation approaches tend to be more robust than
edge-based approaches because regions typically cover more
pixels than edges. Hence the scientist has more information
available to characterize his/her image. Furthermore, when
detecting a particular region, the scientist can utilize texture
which is difficult whenever one deals with edges [26]. In
addition, region growing techniques usually give good image
segmentation, which matches well with the observed edges.
However, the disadvantage is that the output of region-growing
methods is either too few regions (under-segmented), or too
many regions (over-segmented) [25]. Objects such as quantum
semiconductor dots, DNA micro-array elements, blood cells,
toner spots on a printed page, or any other type of object
that may span several disconnected regions cannot be found.
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Also, region-based segmentation algorithms are generally more
complex than edge-based approaches and multiple other image
segmentation methods [26]. The other shortcoming is that the
regions obtained in region-based segmentation strongly depend
on the initial pixel chosen and the order in which the border
pixels are examined. Furthermore, the results are susceptible
to the threshold value.

Visualizing the watershed: the image on the left can be
topographically represented as the image on the right.

D. Clustering-based Segmentation

Clustering is another powerful image segmentation tech-
nique. It is an unsupervised learning task that involves identi-
fying a finite set of clusters to classify the pixels in a digital
image. Cluster analysis entails partitioning an image data set
into several disjoint clusters or groupings [29]. During the
partitioning, two criteria must be maintained, namely low cou-
pling property and high cohesive property. When processing an
image, its features are first extracted and then put together into
properly-separated clusters based on each class of an image
[30]. Notably, the clustering algorithm aims at developing
the partitioning decisions based upon the first set of clusters
updated following every iteration [31]. The number of clusters
in these clustering-based approaches is referred to as priors,
and image pixels are classified into suitable clusters based upon
the principle of inter-cluster similarity minimization or intra-
cluster similarity maximization. There are two main categories
of clustering-based segmentation algorithms, namely soft or
fuzzy clustering and hard clustering.

E. Fuzzy C-Means

The Fuzzy C-Means (FCM) clustering algorithm was con-
ceptualized in the year 1981 by Jim Bezdek. It is undoubtedly
the most common soft clustering approach. It is a clustering
method that allows one piece of data to belong to at least two
clusters. It is an unsupervised clustering algorithm. Through
FCM, an image is segmented by grouping pixels with identical
or almost identical values into one cluster, in which every
group of pixel’s values belonging to one cluster are similar
to each other and differ from pixel’s values belonging to other
clusters [32]. The clusters represent the segments of the image
that has been segmented to indicate group membership. No-
tably, the FCM algorithm is an iterative method of clustering
which yields an optimal ¢ partition by reducing the weighted
within-group sum of squared error objective function [33]. The
algorithm is based upon minimization of the objective function
shown below:

N C
J:ZZu;}‘ | z; —c; ||> forl <m < oo (10)
i=1 j=1

In equation 10, m is a real number greater than 1, u;;
is the member of the pixel value x; in the cluster j. While
c; is the center of the cluster and x; is the pixel intensity
measured data. We use || * ||, to denote the p — th norm used
to express the similarity between the pixel intensity and the
center of the clusters [34]. The pixel intensity memberships
u;; are calculated as follows:
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While the centers of cluster values are calculated as the
following:

N
D1 ugy

In equation 11, k is the steps in the iteration. The procedure
will converge when the stopping criteria o is reached [33].

uij

12)

Cj =

o< |UFD gk (13)

To summarize, the FCM algorithm starts by initializing
membership matrix U (0), then calculates the cluster centers
vectors ¢;. It then updates the values of the membership based
on the new cluster centers using equation 11. The algorithm
then makes the decision stop if the stopping criteria are met,
otherwise calculate the new cluster centers, and begin the
process again.

The main advantage of the FCM algorithm is that it
is capable of preserving a lot more information than other
clustering algorithms. Consequently, it also provides better
results than other algorithms such as K-Means.

algorithm and k-nearest neighbors (KNN) algorithm [32].
In addition, the algorithm is renowned for giving the best result
for overlapped data sets. Unlike the KM algorithm in which
a data point has to belong only to a single cluster center, a
data point in FCM clustering is allocated membership to every
cluster center, and hence data point can belong to multiple
cluster centers [33]. Finally, we mention that another major
advantage of the FCM algorithm is computational efficiency.
It is widely utilized in the medical field for soft segmentation,
such as brain tissue models.

We end this section by mentioning a few shortcomings
of the FCM method. First, the algorithm can be sensitive to
image noise. It does not consider the pixels’ spatial information
and therefore can produce excessive output result variance
in the presence of noise. The result is somewhat inaccurate
image segmentation [34]. Another shortcoming is that the FCM
algorithm is time-consuming due in large part to its iterative
nature. Moreover, Euclidean distance measures with the Fuzzy
c-means algorithm could unequally weigh underlying factors
[35]. Besides, although better results can be obtained with
lower values of o, these are obtained to the detriment of more
iterations [33]. A priori specification of the number of clusters
is also listed as a limitation of the method, so we repeat it here
to inform the reader.

F. Texture Based

A texture is broadly understood as the regular repetition
of a particular pattern or element on a surface. It represents
aspects of the surface pattern, including regularity, direc-
tionality, color, brightness, and coarseness[36]. It is utilized
in identifying dissimilar non-textured and textured areas in
an image, segmenting/classifying distinct texture areas in
an image, and extracting boundaries between major texture
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regions [37]. An image is partitioned into several regions
with dissimilar textures containing a comparable group of
pixels during texture segmentation. In essence, a textured
image is segmented into various regions that have similar
patterns. Segmentation of textures necessitates the choice of
good texture-specific features with excellent discriminating
power. In general, techniques for extracting texture features
could be categorized into three main classifications: spectral,
structural, and statistical. In spectral techniques, the textured
image, as Madasu and Yarlagadda pointed out in [38], is
changed into the frequency domain. After that, extract the
texture features can be carried out by assessing the power
spectrum. In structural-based feature extraction techniques, the
fundamental facet of texture, known as texture primitive, is
utilized in forming more intricate patterns of texture through
the application of grammar rules that stipulate how texture
patterns are generated. Lastly, in statistical techniques, tex-
ture statistics, for instance, the moments of the gray-level
histogram, are founded upon gray-level co-occurrence matrix
and are calculated for discriminating different textures [38].
Over the years, many different methods have been developed
for texture-based segmentation. The main ones include Gabor
filters, Markov random fields, and wavelets.

1) Gabor Filter: A Gabor filter essentially refers to a
combination of a sinusoidal term and a Gaussian filter. Dennis
Gabor conceptualized this method, and it is a linear filter. It is
notable that frequency and orientation representations of Gabor
filters are comparable to those of the human visual system and
are suitable for texture discrimination and representation [39].
A two-dimensional (2D) Gabor filter in the spatial domain is
a Gaussian kernel function modulated by a sinusoidal plane
wave. In 2D, a Gabor filter is as illustrated in equation 14.
22 + 4 2y2

S )005(271';—&—1/}) (14)

9N 0.0 (2, ) = exp(—

In this equation, \ represents the wavelength of the cosine
factor, 0 represents the orientation of the normal to the parallel
stripes of a Gabor function in degrees, 1) is the phase offset in
degrees, and +y is the spatial aspect ratio indicating the elliptical
nature of the Gabor function support, and o is the standard
deviation of the Gaussian that determines the (linear) size of
the receptive field.

While the sinusoidal component of the Gabor filter pro-
vides the directionality, the Gaussian provides the weights.
The impulse response of the Gabor filter, as Haralick pointed
out in [36], is defined by a harmonic function multiplied
by a Gaussian function. A Gabor filter applies to a wide
range of image-processing applications. Aside from texture
segmentation, it can also be applied to image representation,
retina identification, edge detection, and document analysis
[36]. One of the advantages of Gabor filters is that they satisfy
the minimum space-bandwidth product according to the un-
certainty principle. As such, these filters provide simultaneous
optimum resolution in both the spatial-frequency and space
domains. They are utilized in solving problems that involve
intricate images comprising textured regions [36]. Texture
segmentation with the use of Gabor filters involves three steps.
In the first step, a filter bank is used to decompose the input
image, using the equation 14.
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The second step is feature extraction. The following non-
linear sigmoidal function that saturates the output of the filters
is used in this step:

1— e—2at

tanh(at) = ( ) 15)

1 + e—2at

Where o is the standard deviation that determines the
receptive window size.

Lastly, the pixels in the Gabor responses are grouped
together using a clustering algorithm such as K-Means.

2) Markov Random Fields (MRF): Markov Random Fields
(MREF) is a highly sophisticated texture-based segmentation
method. It is a probabilistic model. Regions in natural images
are usually homogeneous. Pixel homogeneity means that ad-
jacent pixels often have similar properties. For instance, these
properties include common characteristics such as texture,
color, and intensity. MRF captures such contextual constraints.
MRF-based segmentation approaches have been extensively
utilized for classification and segmentation in remote sensing
applications [40]. MRF is extensively studied and also has
a solid theoretical background. According to [40], the MRF
segmentation can only be applied to a Markovian image. A
Markovian image is an image where the probability distribu-
tion of gray levels depends on the neighboring pixels’ gray
levels, and it is represented by Gibbs fields. The conditional
probability for the pixel Z; with a grey value of g; belonging
to a cluster of pixel values depends on the neighboring pixels
Z' with pixel values of g’. It is denoted as the following:

PR
P(Zi =i 2" = g') = ge~ ") (16)
and
G .
S=) e Hond) (17)

g=0

The partition sum S is calculated by summing the energy
function of the Markov random fields for the partition. This
characterization of the energy function is defined by the
parameter vector § = [bg,by.....]7. The parameter vector
is used for the segmentation and characterization of texture.

G. Deep Unsupervised Segmentation Models

In recent years, image segmentation has attracted interest
in computer vision research. Object detection, texture recogni-
tion, and image compression are some applications of image
segmentation. A set consisting of pairs of images and pixel-
level semantic labels, such as street or car, is used to train su-
pervised image segmentation. In contrast, unsupervised image
segmentation is used to predict more general labels. However,
there are no training images or ground truth labels for pixels
in unsupervised image segmentation. Therefore, once a target
image is input, the pixel labels and feature representations
are jointly optimized, and the gradient descent updates their
parameters. In [41], the proposed approach, label prediction
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and network parameter learning are alternately iterated to meet
the following criteria:

1)  Pixels of similar features should be assigned the same
label.

2)  Spatially continuous pixels should be assigned the
same label.

3)  The number of unique cluster labels should be large.

In order to satisfy these criteria, Wonjik et al. present a
CNN-based approach that optimizes both feature extraction
and clustering functions at the same time [41]. They proposed a
novel end-to-end differentiable network of unsupervised image
segmentation, and in order to enable end-to-end learning of
a CNN, an iterative approach to predict cluster labels using
differentiable functions has been proposed. This study extends
the previous research published (ICASSP) [42]. In the previ-
ous work, superpixel extraction using simple linear iterative
clustering was employed for criterion (2) from the criteria
mentioned above. However, the previous algorithm had a
limitation that the boundaries of the segments were fixed in the
superpixel extraction process. In this study, a spatial continuity
loss is proposed as an alternative to mitigate the limitation
mentioned above. Moreover, they presented an extension of the
proposed method for segmentation with scribbles as user input,
which showed better accuracy than existing methods while
maintaining efficiency. In addition, they introduced another
extension of the proposed method: unseen image segmentation
by using networks pre-trained with a few reference images
without re-training the networks.

1) Differentiable Feature Clustering: The following is a
description of the picture segmentation problem that has been
solved. For the sake of simplicity, let ({}) denote ({}} = 1)
Unless otherwise stated, where N is the number of pixels in
input color image I = V,, € R3. Consider (f : R3 — R,)
be a function for extracting features. And (X,, € R,) group
of p-dimensional feature vectors of image pixels. By using
C, = G(X,,), cluster labels C,, € Z has been assigned to
all of the pixels, where g : Rp — Z is a mapping function.
G can be an assignment function that returns the label of the
cluster centroid that is closest to X, in this case. The equation
mentioned above is used to derive C,, in the scenario when f
and g are fixed. In contrast, if f and g are trainable but C,, is
fixed, the equation, as mentioned earlier, can be considered a
conventional supervised classification issue. If f and g are dif-
ferentiable, the parameters for f and g can be optimized using
gradient descent. Unknown C), are predicted in this work while
training the parameters of f and g in an entirely unsupervised
way. The following two sub-problems were addressed to put
this into practice: prediction of the optimal C, with fixed f and
g, and training of the parameters of f and ¢ with fixed C),. In
particular, the three criteria presented in Section I are mutually
exclusive and can never be ultimately achieved. Applying K-
means clustering to X, for criterion (a), performing graph cut
algorithm using distances to centroids for (b), and finding & in
K-means clustering using a non-parametric technique for (c)
is one feasible solution for tackling this problem utilizing a
traditional method (c). However, because these traditional ap-
proaches are only applicable to fixed X,,, the solution may be
suboptimal. As a result, a CNN-based algorithm is presented as
a solution. All of the requirements above are satisfied by jointly
optimizing the feature extraction functions for X,, and C},. An
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iterative strategy to forecast C), using differentiable functions
is suggested to enable end-to-end learning of a CNN. The
input image I was fed into the CNN to extract deep features
X, using a feature-extraction module. The response vectors
Rn of the features in g-dimensional cluster space were then
calculated using a one-dimensional 1D convolutional layer,
where ¢ = 3 in this example. The three axes of the cluster
space were represented by z1, 22, and z3. The response vectors
were then standardized across the cluster space’s axes using
a batch normalization method. Furthermore, cluster labels C,,
have been established by utilizing an argmax function to give
cluster IDs to response vectors. The feature similarity loss
was then computed using the cluster labels as pseudo targets.
Finally, the spatial continuity loss and the feature similarity
loss have been computed and backpropagated.

2) Superpixel Learning: llyas et al. propose a novel ap-
proach for unsupervised segmentation in using superpixels
within a CNN framework in [43]. Superpixels are the outcome
of perceptual pixel grouping, or, to put it another way, the
effect of image over-segmentation. Superpixels contain more
information than pixels and match with image borders better
than rectangular image patches. The local contrast and distance
between pixels in the image’s RGB color space are used by
superpixel extraction methods. In [43] the authors we extract
P superpixels that are more detailed and unique in the input
image. After that, each pixel in each superpixel is given the
same semantic name. The fewer iterations the CNN must do
to produce the final segmented image, the finer the pixels
generated by the technique. Too many generated categories
(superpixels) will cause the CNN to produce more iterations.
To avoid similar situations, input images are pre-processed
image by applying contrast enhancement and blurring. Many
structures use the simple linear iterative clustering (SLIC)
methodology to produce superpixels. However, Ilyas et al.
chose the Felzenswalb algorithm because it utilizes a graph-
based image segmentation method. In comparison to the other
algorithms, this one does an excellent job with image details.
Moreover, its time complexity is linear, and it is quicker than
the other available methods.

In their approach, Ilyas et al. computed the n-dimensional
feature vector from this RGB image through their network’s
N convolutional blocks. SE-ResNet (detailed later) is the first
block, followed by batch normalization and ReLu activation.
The dimensions with the highest value were then taken from
the feature vector output of the last convolutional block. As
a result, we were able to extract the labels from the resulting
feature vector. To achieve feature recalibration, we used the
bespoke squeeze and excitation networks (SE-Net) initially
developed by Jie Hu et al. In order to obtain a SE-ResNet
block. We chose to combine SE-Net with ResNet because of
its increased representational power. Moreover, we name it SE-
Block for simplicity of notation. CNN’s extract hierarchical
information from images using convolutional filters. Deeper
layers detect more abstract features and geometry of the objects
present in the images, whereas shallow layers find trivial
features from contexts such as edges or high frequencies. Each
phase extracts more and more critical information to complete
the work at hand at each phase efficiently. In SE-Net, each
output channel is weighted adaptively, which is the significant
difference between SE-Net and Normal convolutional net-
works. We add a single parameter to each channel and shift it
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linearly based on how relevant each channel is. This is done by
obtaining a global understanding of each channel by squeezing
the feature maps to a single numeric value using global average
pooling (GAP). The results go through the neural network’s
two fully connected (FC) layers, which produce a vector of
the same size as the input. Each original output channel may
now be scaled based on its relevance using this n-dimensional
vector. As the last step, we utilized K-means to eliminate noise
from the final segmented image. In order to apply K-means,
we have to find the number of K, which represents the number
of clusters. Because of the unsupervised scenario, we do not
know how many segmented areas will be in the final segmented
image. So, in order to solve this issue, we count the number
of disjointed segmented regions in the final segmented image
and assign that value to K.

IV. PRE-EVALUATION
A. Dataset

For this study, we will be using the ADAS dataset pro-
vided by FLIR. This dataset contains 8-bit and 14-bit LWIR
images and non-annotated RGB images of the same scenes for
reference. The dataset was collected by mounting an infrared
camera next to a true color camera with center lines approxi-
mately 2 inches apart [44]. The two cameras were mounted on
a vehicle driving around, collecting synced segments of video
and images in Santa Barbra, CA streets and highways. The
image capture rate is two frames per second, and the rate of
the video is at 30 fps. The infrared frames have a resolution
of 640 x 512 with a 45-degree horizontal field of view and a
37 vertical field of view. The RGB images have 1280 x 1024
with a field of view set to match the infrared camera. The
dataset contains 10,228 synced frames and includes a variety
of categories/labels, such as, persons, cars, bicycles, dogs. The
demonstrated test cases in the results table are selected by
the dynamic pixel value range. for example, the road image
has very low dynamic range i.e. all pixel values are limited
to a very small number of bins in the histogram while other
images have wider ranges. The FLIR dataset contains labels
of bounding boxes of several object used for training object
detection models. However, we do not employ any of the
bounding box labels or details. the dataset is merely chosen
since it provides pairs of RGB and thermal images with
relatively high resolution. to that point there is also the KIAST
dataset and several other face datasets.

B. Preprocessing

First, the image was sharpened to give each item in the
image a clear border in order to make a higher-quality image.
The image then applied to bilateral filter which reduced un-
necessary noise while maintaining the sharpness of the object
edges. The filter can be applied in a variety of sizes n X n.
We avoid using a values higher than n = 5, since this would
result in extreme smoothing and leads to lose a lot of useful
information.

C. Evaluation Methods

In the field of image processing, evaluating the perfor-
mance of a segmentation algorithm is a crucial step. The
primary key in evaluating segmentation algorithms is how each
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method performs in a system or a specific application. For
example, in some object detection and tracking applications,
the evaluation of how well the segmentation algorithm per-
forms is determined by how well the approach can distinguish
the target object from the rest image being considered the
background. After extracting the object from the image, the
image is furtherly processed . In this case, the target is
measured and compared with the ground truth, and the result
is evaluated. In their paper, Zhang et al. classify and discuss
assessment methods of image segmentation [45]. Additionally,
the difference between supervised and unsupervised evaluation
methods is examined in detail. In [46], a thorough study about
the evaluation approaches in different applications is provided.
In this paper, we will provide a qualitative evaluation of the
segmentation results for each algorithm and visually compare
the results. Furthermore, we will provide a quantitative and
analytical evaluation of each algorithm using a semi-supervised
approach.

The results reported in this study are calculated using the
Dice index, Specificity, Sensitivity, and the Jaccard index as
demonstrated in equations Equations (18) to (21).

Dice =2 x TP/(2x TP+ FP+FN) (I8
Specificity = TN/(TN + FP) (19)
Sensitivity = TP/(TP + FN) (20)
Jacc=TP/(TP+ FN + FP) (21

The Dice index is the intersection between the generated
segmentation and the ground truth given in 18. The specificity
19 is the correctly assigned pixels in the image. The sensitivity
is the number of uniformly distributed pixels object pixels
can be calculated as shown in equation 20. Equation 21
is the Jaccard index which is the relation between the two
segmentations, the predicted and the ground truth.

V. EVALUATION
A. Threshold

Even though we already know that threshold or image
“binarization” does not make sense for this application, we
have implemented it as an essential step compared to the other
segmentation techniques investigated in this study. The optimal
number of thresholds for each image is determined by counting
the number of peaks in the histogram. Here, we assumed that
our objects have uniform temperatures and that this results in
constant pixel values across a single object. This assumption
means that the significant peaks will determine the optimal
number of thresholds in the image. In order to standardize
the peak finding process, a median filter was applied to the
frames to provide a uniform range of pixel values. Since
all the different techniques of locating the thresholds in the
histogram returned close results, we will discuss and calculate
the accuracy Otsu’s approach since it is the commonly used
approach and the most robust.
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While determining the optimal number of thresholds, we
assumed that objects with uniform temperatures create homo-
geneous regions or segments. Realistically, objects normally
do not have consistent surface temperatures. This temperature
discrepancy and environmental and sensor noise lead to the
common characteristic of thermal images not containing well-
defined regions. Therefore, it causes the thresholding process
to often fail when dealing with a histogram with a small
variance or a histogram with its peaks concentrated in a small
portion. sample result is demonstrated in Fig. 1.

Fig. 1. This histogram has two major peaks and several local peaks which
will cause the thresholding process to fail.

In Table I, we demonstrate more examples of the binarized
images using Otsu’s thresholds.

B. Region and Edge-based Segmentation

When applying edge detectors to thermal images, we notice
the overlapping objects, although not at the same depth, with
the same pixel values are grouped and have no separating edges
between them, as demonstrated in the Fig. 2.

Fig. 2. Over-lapping objects of different depths.

In the case of applying the Canny edge detector, in the
active regions of the image, the detector returns many false
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positives due to the variation in pixel intensities. In Fig. 3,
the brick road forms multiple closed regions where it could
be mistaken for multiple local regions when in reality, they
belong to the same object.

Fig. 3. Over-segmentation of the brick road due to visible gradient in the
temperatures.

Watershed segmentation relies on finding the topographic
elevation in the image intensities. We notice that watershed
segmentation provides the best results when there is a sig-
nificant disparity within a region that contains two objects of
similar pixel intensities. But it also causes over-segmentation in
other cases where the same object contains prominent edges.
As shown in Table I, watershed generates qualitatively best
results in terms of assigning a uniform labels to objects with
respect to their edges and their local maxima.

C. Clustering

Both K-means and Gaussian mixtures play an essential
role in unsupervised machine learning. They offer simple and
intuitive approaches to clustering and are straightforward to
implement. Typically, they are included in any significant ma-
chine learning software package. When K-means was applied
to the set of test images, it returned results similar to those
achieved by multi-modal thresholds. When K -means fails,
GMM comes in. Since K-means can do good enough on most
images, we use GMM only for those cases where K-means
cannot detect good boundaries. We use all the cluster centers
calculated by K-means to initiate the GMM model for the
same number of mixtures. Then for each given image, we
calculate the probability. We then threshold and normalize
them to create a black and white image similar to what we
get from K-means. FCM has the disadvantages of sensitivity
to initial cluster values, sensitivity to noise, and the solution
provided does not consider any relevant spatial information
from neighboring pixels. Applying fuzzy clustering on pixel
values without any additional features will result in better
segmentation when compared to the results from K-Means and
multi-modal thresholds, as demonstrated in Fig. 4.

D. Texture Analysis

The results shown provide some insight into how these
texture-based feature extraction techniques are performed. The
Gabor method performed decently in the given segmentation
tasks, although more processing was required to achieve accu-
racy. Additionally, the Gabor method takes several parameters
as initial input to the program, and these parameters require a
lot of experimentation and errors. However, the Gabor param-
eters that have always made the most significant contribution
to the method’s output were the window sizes. Whether it was
the size of the moment mask, the size of the Gabor filter,
or the smoothing window after the activation function had
been applied, these window sizes caused drastic changes in
the results of the segmentation results.
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TABLE 1. SEGMENTATION RESULTS

Watershed K-Means

Superpixel

-~

—' ]
3

FCM Gabor MRF DFC
,:i

(a) Thermal image (b) K-means

(c) GMM

(d) Fuzzy C-Means

Fig. 4. Comparison between clustering methods K-means, GMM, and FCM.

The MRF model did not segment the image properly. Possi-
bly, because exploiting only pixel values does not give enough
segmentation power to the model. However, incorporating
complex labels of each class’s mean and variance provided
more accurate segmentation for the labeled classes. Therefore,
the aggregate four features: pixel intensity, mean, variance,
and the sum of the log of the intensities of neighboring pixels,
are used on the MRF model satisfying segmentation. Fig. 5
demonstrates the difference in the performance between the
unsupervised segmentation and the hard-labeled segmentation.

E. Unsupervised Deep Learning Models

As shown in the qualitative and quantitative results, un-
supervised deep learning models provide similar results to
the classical clustering algorithms. This poor performance can
be due to the lack of feature representation in the images.
If the feature representation is not well-suited to the task or

(a) Blind MRF

(b) Labeled MRF

Fig. 5. The difference in the performance after providing hard labels for
MREF segmentaion. The left image is the blind segmentation result without
providing labels while the right image is the result when providing sample

segments for each label.

too limited in scope, the model may struggle to accurately
segment the image. Another reason would be due to having
these models need to be fine-tuned to the dataset used in
this study. Also, the choice of hyperparameters would affect
the overall performance of these models. There are several
hyperparameters involved in unsupervised segmentation mod-
els, such as the learning rate, regularization, and optimization
method. If the hyperparameters are not chosen correctly, the
model’s performance can suffer (Table II).

VI. DISCUSSION

This paper reviewed the most common approaches for
providing labels for training purposes using unsupervised
segmentation algorithms. The first three sections covered the
theory behind each approach. In the results section, we quan-
titatively and visually analyzed each approach and discussed
cases where the method failed and the reasoning for the failure.
The results indicated that we could not rely solely on pixel
values for segmentation, even for such low-rank images as
thermal images. Segmentation methods such as thresholds or
clustering performed poorly in more complicated scenes with
several objects of the same temperature in the scene. Therefore,
extra information must be incorporated in the segmentation
approach to producing a more accurate result. Approaches
that rely on edges to separate different objects fail due to the
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TABLE II. QUALITATIVE AND QUANTITATIVE RESULTS

8-bit Images 16-bit Images RGB Images
Dice Spe  Sens Jacc Dice Spec  Sens Jacc  Dice Spe  Sens  Jacc
Otsu’s 033 080 079 020 0.68 0.43 024 063 061 052 055 041
Watershed  0.60 034 092 049  0.77 047 017 0.11 071 084 092 067
KM 037 032 014 023 0.37 032 014 023 040 0.61 9.14 033
GMM 037 032 0.14 023 0.71 012 031 078 042 0.67 9.14 031
FCM 034 093 098 021 0.34 0.93 098  0.21 049 054 098 030
Gabor 036  0.31 0.55 02 039 030 021 0.9 052 039 055 035
MRF 035 096 0.88 021 0.32 0.63 052 020 046 060 088 023
DFC 036 031 0.55 0.15 0.31 0.55 020 0.71 044 022 071 020
Superpixel 035 096 088  0.21 0.26 088 021 086 058 019 086 047

TABLE III. PERFORMANCE EVALUATION OF STUDIED METHODS FOR
ALL THREE TYPES OF INPUT IMAGES

H Approach Time complexity ”
Otsus O(N + L?)
Watershed O(K x N)
K-Means O(K X N xT)
FCM O(K x N xT)
GMM O(N x K x D?%)
Gabor O(M? x N?)
MRF O(N x M x K xT)

lack of depth information. This issue comes in when there
are several overlapping objects with the same temperature in
the scene. Finally, we see that texture analysis often delivers
the best performance since they consider the spatial relations
between neighboring pixels. In the case of Gabor segmenta-
tion, this approach requires empirical determination of several
parameters to return better results. It is worth mentioning
that the enhanced results produced by these texture-based
methods are not without significant increases in computational
requirements, algorithmic complexity, and significant barriers
to real-time implementation.

A. Time Complexity

Table III lists the time complexities for each of the studies
algorithms. Where N is number of pixels in the image, L
is histogram length, K number of clusters, 7' is the time to
calculate the distance between two objects, D is the problem
dimension, and M is the window size. We notice that texture
analysis is more complex and require more analysis than
thresholding or clustering. It is evident that in order to build
a labeling GUI using any of those algorithms, it would need
high computing capabilities to make the GUI easy to use and
provide results quickly.

VII. CONCLUSION AND FUTURE WORK

In conclusion, this paper has provided a comprehensive
review of unsupervised segmentation techniques for long wave
infrared (LWIR) images. Through the evaluation and analysis
of various methods, several key findings have emerged. Firstly,
it is evident that unsupervised segmentation techniques play a
crucial role in extracting meaningful information from LWIR
images, despite the challenges posed by noise, low contrast,
and temperature variations. The reviewed techniques have
shown varying degrees of effectiveness in segmenting LWIR
images, with some demonstrating superior performance in
specific scenarios.

Moving forward, there are several avenues for future re-
search in this domain. Firstly, further investigation is needed
to explore the combination of multiple unsupervised segmen-
tation techniques to enhance the overall segmentation accuracy
in LWIR images. Fusion methods that leverage the strengths
of different algorithms could potentially yield superior results.
Additionally, incorporating domain-specific knowledge and
priors, such as thermal physics, object characteristics, and con-
text information, may further improve segmentation accuracy
and robustness. Furthermore, the evaluation of unsupervised
segmentation techniques on LWIR video sequences warrants
attention. Temporal consistency and motion information can
be leveraged to improve the accuracy of segmentation results
over time. Investigating the use of unsupervised segmentation
techniques for real-time applications, such as tracking and
object recognition, is another area of interest.

In conclusion, this review has shed light on the current
landscape of unsupervised segmentation techniques for LWIR
images. While notable progress has been made, there is ample
room for further exploration and improvement. By addressing
the identified research gaps and leveraging emerging tech-
nologies, we can advance the state-of-the-art in LWIR image
segmentation, ultimately facilitating more effective and reliable
analysis in LWIR applications such as surveillance, target
detection, and autonomous systems.
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