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Abstract—Artificial intelligence and deep learning algorithms 

have become essential fields in medical science. These algorithms 

help doctors detect diseases early, reduce the incidence of errors, 

and decrease the time required for disease diagnosis, thereby 

saving human lives. Deep learning models are widely used in 

Computer-Aided Diagnosis Systems (CAD) for the classification 

of various diseases, including blood cancer. Early diagnosis of 

blood cancer is crucial for effective treatment and saving 

patients' lives. Therefore, this study developed two distinct 

models to classify eight types of blood cancer. These types include 

follicular lymphoma (FL), mantle cell lymphoma (MCL), chronic 

lymphocytic leukemia (CLL), acute myeloid leukemia (AML), 

and the subtypes of acute lymphoblastic leukemia (ALL) known 

as early pre-B, pre-B, pro-B ALL, and benign. AML and ALL 

are specific classifications for human leukemia cancer, while FL, 

MCL, and CLL are specific classifications for lymphoma. Both 

models consist of different phases, including data collection, 

preprocessing, feature extraction techniques, and the 

classification process. The techniques applied in these phases are 

the same in both proposed models, except for the classification 

phase. The first model utilizes the VGG16 architecture, while the 

second model utilizes DenseNet-121. The results indicated that 

DenseNet-121 achieved a lower accuracy compared to VGG16. 

VGG16 exhibited excellent results, achieving an accuracy of 

98.2% when classifying the eight classes. This outcome suggests 

that VGG16 is the most effective classifier for the utilized dataset. 

Keywords—Deep learning; convolutional neural networks 

(CNNs); leukemia; lymphoma; computer-aided diagnosis systems 

(CAD) 

I. INTRODUCTION 

According to a report by the World Health Organization 
(WHO), approximately 1 in 6 deaths worldwide is caused by 
cancer, making it the second leading cause of death globally. 
Among the various types of cancer, blood cancer holds 
significant prominence. It accounts for approximately 9% of all 
cancers and is now ranked as the fourth most common cancer 
in both men and women worldwide [1, 2]. As a result, 
researchers have shifted their focus towards applying artificial 
intelligence techniques to develop models that can assist in 
addressing this issue in the medical field. In the following 
section, we will provide a detailed description of the most 
prevalent types of blood cancer. 

A. Leukemia 

Leukemia is a type of cancer that affects the blood cells and 
can occur in individuals of all ages, including children and 
adults [3]. It is characterized by an abnormal proliferation of 
immature blood cells in the bone marrow, which leads to the 

replacement of healthy blood cells. In leukemia, a genetic 
mutation takes place in an immature blood cell, causing it to 
transform into a cancerous cell. These malignant cells do not 
function properly and multiply at a faster rate compared to 
normal cells, while having a shorter lifespan. Consequently, the 
presence of cancerous cells in the bone marrow displaces the 
healthy blood cells [4]. 

Leukemia can be categorized into two main types based on 
the rate of malignant cell growth. If the malignant cells grow 
rapidly, it is classified as acute leukemia, whereas if they grow 
slowly, it is classified as chronic leukemia [1]. As a result, 
there are four primary types of leukemia: Acute Myeloid 
Leukemia (AML), Acute Lymphoblastic Leukemia (ALL), 
Chronic Myeloid Leukemia (CML), and Chronic Lymphocytic 
Leukemia (CLL) [5]. 

 Acute Myeloid Leukemia: It is the most common type 
of acute leukemia. It occurs when the bone marrow 
produces abnormal blasts and immature white blood 
cells (WBCs). In some cases, it may also lead to the 
production of abnormal red blood cells (RBCs) and 
platelets. The symptoms of early-stage AML may 
resemble those of a common cold or other illnesses [6]. 

 Acute Lymphoblastic Leukemia: It is a type of cancer 
that primarily affects white blood cells and is 
commonly found in children. It is characterized by the 
uncontrolled growth and excessive production of 
immature white blood cells in the bone marrow. The 
symptoms of ALL, which include fatigue, weakness, 
and joint and bone pain, can resemble those of the flu 
and other common illnesses, making the diagnosis 
challenging. ALL is further classified into three 
subtypes: Early Pre-B, Pre-B, and Pro-B ALL[7, 8]. 

 Chronic Myeloid Leukemia (CML): It is a type of 
cancer that primarily affects white blood cells. In 
individuals with CML, there is uncontrolled growth of 
immature white blood cells, known as blast cells, in the 
body [4]. 

 Chronic Lymphocytic Leukemia: it is a haematological 
disease that affects B lymphocytes or B cells. It is more 
prevalent in adults and rare in children. CLL symptoms 
include weight loss, fever, sleep sweats, and frequent 
infection[6]. 
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B. Lymphoma 

Lymphoma is a type of blood cancer that occurs due to the 
abnormal development of white blood cells called 
lymphocytes. Lymphocytes are specialized cells that circulate 
throughout the body via the blood and lymphatic systems, 
playing a crucial role in the immune response to prevent 
infections [9]. Lymphoma is characterized by the clonal 
proliferation of malignant lymphocytes, which can be either T 
cells or B cells. The diagnosis of different types of lymphoma 
is typically based on the growth pattern and cytological 
features of the abnormal cells observed under light microscopy 
using Hematoxylin and Eosin-stained tissue samples. 
Lymphoma is classified into three main subtypes: follicular 
lymphoma (FL), mantle cell lymphoma, and Chronic 
Lymphocytic Leukemia (CLL) [10]. 

As mentioned in the previous section, the most prevalent 
types of blood cancer include FL, MCL, CLL, AML, and ALL, 
which encompass Early Pre-B, Pre-B, Pro-B ALL, and benign 
subtypes. The objective of this study is to develop a 
classification model for accurately categorizing images into 
these different disease categories. 

Blood cancer can be detected through manual counting 
using a heamatological analyzer, which involves the 
classification of cells based on their morphological 
characteristics. However, this method is often time-consuming, 
labor-intensive, and expensive. Moreover, manual analysis 

may yield inaccurate results in terms of leukocyte counts and 
classification. In order to address these challenges [9, 11], 
researchers have developed Computer-Aided Diagnosis (CAD) 
systems that utilize deep learning techniques to assist 
physicians in accurately identifying leukemia. 

Deep learning algorithms have gained significant 
popularity in Computer-Aided Diagnosis (CAD) systems. 
Among these algorithms, the convolutional neural network 
(CNN) is one of the most widely used approaches. CNN 
consists of three main layers: the Convolutional Layer, the 
Pooling Layer, and the Fully Connected Layer. Illustrated in 
Fig. 1, a CNN can learn hierarchical representations of data by 
extracting more general features in the initial convolutional 
layers and progressively capturing more specific features in the 
subsequent layers. The effectiveness of CNNs in medical 
diagnosis has been well-established [4, 12]. 

This study makes several contributions to the field of blood 
cancer diagnosis. Firstly, an image augmentation technique is 
applied as a preprocessing step to enhance the quality of blood 
cancer images. Secondly, a classification method using two 
different CNN architectures is employed to distinguish 
between eight different classes of blood cancer that have not 
been used before. The performance of the model is also 
thoroughly analyzed and compared with existing state-of-the-
art methods. Finally, mixed datasets are utilized to improve the 
accuracy of blood cancer classification. 

 
Fig. 1. Convolution neutral network architecture. 

II. RELATED WORK 

This section presents an overview of previous research 
conducted on blood cancer classification, focusing on the 
methods and techniques employed by researchers to accurately 
identify and classify various types of blood cancer. These 
studies have made significant contributions to the development 
of more effective diagnostic tools and have enhanced our 
understanding of this complex disease. 

In [4]  Maíla et al. (2022) developed a CNN-based model 
for the classification of leukemia. They utilized a dataset 
consisting of 3,536 images from 18 different sources, which 

were divided into four classes: healthy (1,434 images), ALL 
(881 images), AML (978 images), and other types (243 
images). To enhance the quality of the images, the study 
employed data augmentation techniques. By applying 
multilevel and ensemble CNN architectures to the four-class 
scenario, the researchers achieved accuracy rates of 94.73% 
and 94.59%. 

In [13], Amjad et al. (2018) developed a CAD for the 
classification ALL subtypes. The dataset utilized in their study 
consisted of images of ALL subtypes, including 100 images of 
L1, 100 images of L2, 30 images of L3, and 100 images of 
normal cells. The proposed system employed segmentation and 
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deep learning methods, utilizing the AlexNet convolutional 
neural network architecture. With this approach, an accuracy of 
97.78% was achieved. 

In [3], Sara et al. (2019) proposed an automated deep 
learning method utilizing a hybrid approach for distinguishing 
between immature leukemic blasts and normal cells. The study 
employed two CNN architectures, namely MobileNet and 
VGG16. The ISBI 2019 dataset was utilized, consisting of 
7,272 images of ALL cells and 3,389 images of healthy cells. 
The proposed approach achieved an accuracy of 96.17%. 

In [6],  Nighat et al. (2020) employed the DenseNet-121 
and ResNet-34 Convolutional Neural Network architectures for 
leukemia subtype identification. Both ResNet-34 and 
DenseNet-121 utilized data augmentation techniques to 
analyze various image patterns. The study utilized the publicly 
available ALL-IDB and ASH image bank datasets for leukemia 
analysis. After augmentation, the dataset consisted of 1,079 
images for the ALL class, 1,194 images for the AML class, 
840 images for the CLL class, 1,243 images for the CML class, 
and 1,280 images for the healthy class. The accuracy rate 
achieved was 99.91% for DenseNet-121 and 99.96% for 
ResNet-34. 

In [11], Maneela et al. (2021) proposed a model for AML 
detection using the AlexNet and LeNet-5 Convolutional Neural 
Network architectures. The dataset utilized in this study 
comprised 4,000 images, with 1,000 images in the lymphocytes 
class, 1,500 images in the abnormal monocytes class, and 
1,500 images in the normal monocytes class. The data was 
obtained from a hospital in Peshawar, Pakistan. The AlexNet 
model achieved an accuracy of 98.58%, while the LeNet-5 
model achieved an accuracy of 96.25%. 

In [1], Arjun et al. (2022) developed a model for leukemia 
detection utilizing machine learning and deep learning 
techniques. The study introduced a novel dataset consisting of 
500 blood smear images, including images of normal cells, 
AML cells, and ALL cells. Both binary classification and 
three-class classification were performed in the study. The 

proposed approach achieved an accuracy of 97% using VGG16 
and 98% using DenseNet121, along with a support vector 
machine for binary classification. For the three-class 
classification, an accuracy of 95% was achieved using 
ResNet50. 

In [14], Laura et al. (2021) developed a predictive model 
for leukemia identification. The dataset used in this study 
consisted of 16,450 single cells. Various CNN architectures, 
including VGG16, ResNet101, DenseNet121, and SENet154, 
were employed to evaluate the model. The best performance 
was achieved by SENet154 and VGG16, both achieving an 
accuracy of 94.6%. 

In [15], Xiaoli et al. (2021) proposed a deep residual neural 
network model for the classification of three types of 
lymphoma: CLL, FL, and MCL. The dataset used in this study 
consisted of 374 lymphoma pathology images. The model 
achieved an accuracy of 98.63%. 

In [16], Nadia et al. (2019) developed a deep learning 
model to classify lymphoma subtypes, including CLL, FL, and 
MCL. The ResNet-34 architecture was utilized to evaluate the 
model, achieving an accuracy of 95.47%. The dataset used in 
this study consisted of 374 lymphoma images. 

In [17], Hiroaki et al. (2020) proposed an ensemble deep 
neural network model for classifying three types of lymphoma: 
FL, diffuse large B-cell lymphoma (DLBCL), and reactive 
lymphoid hyperplasia (RL). The dataset used in this study 
consisted of a total of 6,183 images. The model achieved an 
accuracy of 97%. 

III. PROPOSED MODEL 

The goal of this study is to build a model for blood cancer 
classification to help doctors and physicians diagnose blood 
cancer in its early stages and determine treatment to save 
human lives. This includes three main tasks: data collection, 
preprocessing, and finally, classification of blood cancer 
images using CNN architectures. The model is shown in Fig. 2. 

 
Fig. 2. Proposed model. 
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A. Dataset 

Due to the scarcity of medical data caused by privacy 
concerns, obtaining sufficient data for biomedical research can 
be challenging. In this study, we addressed this issue by 
combining three public datasets [18, 19] to create a larger and 
more comprehensive dataset for our blood cancer classification 
model. The dataset consists of 3,679 images across eight 
different classes. Table I provides a summary of the dataset 
used. 

TABLE I. SUMMARY OF USED DATASET 

Class Number of images Dataset Image size 

Benign 504 

Kaggle 

224 ×224 

Early ALL 985 224 ×224 

Pre-ALL 963 224 ×224 

Pro ALL 804 224 ×224 

CLL 113 1388 ×1040 

FL 139 1388 ×1040 

MCL 122 1388 ×1040 

AML 49 ASH 960 ×720 

B. Preprocessing 

We used pre-processing and augmentation techniques to 
improve the quality of visual information in each input image, 
thereby enhancing the visibility of essential structures. 

1) Resizing: As a result of using multiple datasets with 

different image sizes, all input images were processed by 

resizing them to 224×224 to fit the input of our model. 

2) Image augmentation: Image augmentation is utilized to 

train the model. It involves creating modified versions of the 

dataset images, thereby increasing the size of the training 

dataset. However, image augmentation serves a dual purpose: 

not only does it expand the dataset, but it also introduces 

variability to the data, enabling the model to generalize better 

to unseen data and address the issue of overfitting. 

Additionally, as the model is trained in slightly altered images, 

it becomes more robust and reliable. The preferred method of 

data augmentation is in-place or on-the-fly augmentation, 

implemented through Keras' ImageDataGenerator class [20]. 

This approach exposes the network to diverse variations in the 

dataset during each epoch of training. By creating additional 

versions of the original dataset images, the number of images 

used in each experiment is quadrupled, augmenting the data, 

and facilitating the classification process. 

Before applying any processing, the input is rescaled by a 
factor known as "rescale." The original RGB coefficients of the 
images range from 0 to 255, which would be too high for the 
models to effectively learn at a standard learning rate. 
Therefore, the original images are rescaled by a factor of 1/255. 
This rescaling involves multiplying the image data by this 
value, resulting in image values between 0 and 1. Additionally, 
three image augmentation techniques are employed: shear, 
zoom, and flipping. 

Shear is one of the image augmentation techniques 
employed by Keras' ImageDataGenerator, and it utilizes a 
shear range of 0.2. The shear angle is represented by a floating-
point number, indicating the degree of shear in the 
anticlockwise direction. 

The images are also enhanced through zooming. There are 
two zoom options available: zooming out of the image or 
zooming in on the image. The ImageDataGenerator class 
accepts a float value for the zoom range as input. The zoom is 
applied within the range [1 - zoom range, 1 + zoom range]. 
Alternatively, instead of providing a float number, a list with 
two values representing the lower and upper limits can be used 
[20]. When the value is less than one, the image zooms in, 
while any value greater than one causes the image to zoom out. 

Flipping an image involves reflecting it around its vertical 
axis, horizontal axis, or both axes simultaneously. This 
technique allows users to augment the number of images in a 
dataset without the need for any artificial processing [20]. In 
this study, random horizontal flipping is used. 

C. Classification 

Finally, the data was ready for the classification process. 
The model was trained using two CNN architecture models: 
VGG16 and DenseNet121. These classification architectures 
were implemented on Google Collaboratory. 

1) DenseNet121: It facilitates the training of deep learning 

models by solving the vanishing gradient problem, increasing 

feature reuse, and reducing parameter usage. It has achieved 

progressive performance in a variety of computer vision tasks 

[21]. The DenseNet architecture is shown in Fig. 3. 

2) VGG16: The VGG-16 network includes 16 convolution 

layers and a small receptive field of 3×3. It has a Max pooling 

layer of size 2×2 and 5 such layers in total. After the last Max 

pooling layer, there are three fully connected layer [22]. A 

schematic of VGG-16 architecture is illustrated in Fig. 4. 

3) Parameters: All the model's parameters are explained, 

including the activation function, loss function, optimizer, and 

metrics. 

a) Activation function: Another form of activation 

function applied in neural computing is the softmax function. 

It estimates the probability distribution from a vector of real 

numbers. The softmax function returns arrange of values 

between 0 and 1, with the total of the probability equal to 

1[23]. Softmax is shown in Eq. 1. The softmax function is 

used in multiclass models to produce probabilities for each 

class. 

F(yi)  
     

∑  
    

 

   (1) 

Where y is input vector. 

b) Loss function: The loss function is employed to 

evaluate the network's effectiveness [24]. The Categorical 

Cross-Entropy loss, also described as softmax Cross-Entropy 

loss (CE), is employed in this research. It is employed in 

multi-class classification. the Categorical Cross-Entropy loss 

function is showed as in Eq. 2. 
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Fig. 3. DenseNet architecture. 

 

Fig. 4. A schematic of VGG-16 architecture. 

Where    represents the score for the positive classes in 
CNN. 

c) Optimizer: In the training data, adaptive moment 

estimation (Adam) is used to correctly update the network 

weights iteratively. It employs first and second gradient 

descent computation to fit the learning rate parameter for each 

weight in the neural network, the first moment represents the 

mean, and the second represents the uncentered variance, The 

learning rate is the percentage by which weights are updated; 

the default learning rate is 0.001. High values accelerate 

learning before the rate is changed, and lower values slow 

learning in training [25]. 

d) Evaluation metrics: The model is evaluated based on 

accuracy (Acc) metrics; accuracy is a common metric used to 

evaluate the performance of a classification model. It 

measures the proportion of correct predictions made by the 

model compared to the total number of predictions. To 

calculate accuracy, we typically use a confusion matrix. A 

confusion matrix is a table that summarizes the performance 

of a classification model by showing the counts of true 

positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) predictions. Each row of the matrix represents 

the instances in a predicted class, while each column 

represents the instances in an actual class as shown in Fig. 5. 

Eq. 3 Illustrates accuracy function. 

 True Positive (TP): The model correctly predicted 
instances as positive when, they were positive. These 
are the correctly classified positive instances. 

 True Negative (TN): The model correctly predicted 
instances as negative when they were negative. These 
are the correctly classified negative instances. 

 False Positive (FP): The model incorrectly predicted 
instances as positive when they were negative. These 
are the instances of the model mistakenly classified as 
positive. 

 False Negative (FN): The model incorrectly predicted 
instances as negative when they were positive. These 
are the instances of the model mistakenly classified as 
negative. 

Acc = 

     

           
      (3) 
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Fig. 5. Confusion matrix. 

IV. RESULT 

VGG16 and DenseNet121 CNN architectures were utilized 
to classify 8 types of blood cancers. The models were trained 
for 20 epochs with a batch size of 64. The dataset comprised a 
total of 3,679 images, with 2,733 images allocated for training 
and 946 images for testing. Fig.6 displays samples of the blood 
cancer images. The models were evaluated using unseen data 
to assess their generalization capability. The accuracy of the 
models was measured, and the results revealed impressive 
accuracy rates. VGG16 achieved an accuracy of 98.2%, while 
DenseNet121 achieved an accuracy of 98.1%, as presented in 
Table II. 

The plot diagram when using 20 epochs and DenseNet121 
architecture is shown in Fig. 7, plot between train accuracy and 
validation accuracy is shown in Fig. 7(a), plot between train 
loss and validation loss is shown in Fig. 7(b). The plot diagram 
when using 20 epochs and VGG16 architecture is shown in 
Fig. 8, plot between train loss and validation loss is shown in 

Fig. 8(a), plot between train accuracy and validation accuracy 
is shown in Fig. 8(b). 

A. Comparison with the State-of-the-Art 

In this section a comparison between the proposed model 
and the state of the art is presented as shown in Table III. 

 
Fig. 6. Samples of the blood cancers images. 

TABLE II. RESULTS OBTAINED BY VGG16 AND DENSNET121 CNN 

ARCHITECTURES 

Model #Of epochs Accuracy Batch size 
Time for each 

epoch 

VGG16 20 98.2% 64 21 s 

DensNet121 20 98.1% 64 21 s 

  
(a)      (b) 

Fig. 7. The plot diagram when using 20 epochs and DenseNet121 architecture. 

  
(a)      (b) 

Fig. 8. The plot diagram when using 20 epochs and VGG16 architecture. 
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TABLE III. COMPARISON BETWEEN THE PROPOSED MODEL AND THE STATE-OF-THE-ART 

# Research Year Model #Classes #Images Accuracy 

1 [4] 2022 ensemble CNN architectures 4 3,536 94.73% 

2 [13] 2018 Alexnet 4 330 97.78%. 

3 [3] 2019 hybrid CNN architectures 2 10,661 96.17%. 

4 
[6] 2020 

DenseNet-121 
4 5591 

99.91% 

5 ResNet-34 99.96%. 

6 
[11] 2021 

AlexNet 
3 4000 

98.58% 

7 LeNet-5 96.25%. 

8 

[1] 2022 

VGG 16 
2 

500 

97% 

9 DenseNet121 98% 

10 ResNet50 3 95% 

12 [15] 2021 residual neural network 3 374 98.63%. 

13 [16] 2019 ResNet-34 3 374 95.47%. 

14 [17] 2020 ensemble deep neural network 3 6,183 97%. 

15 Proposed model 2023 
VGG16 

8 3,679 
98.2%, 

DenseNet121 98.1%. 

V. DISCUSSION 

This study has made significant progress in the field of 
blood cancer research by classifying eight different types of 
blood cancer using deep learning algorithms. Previous studies 
did not classify these eight types of blood cancer. Two 
different CNN architectures, namely VGG16 and 
DenseNet121, were employed for the classification process. 
The softmax activation function was used to calculate the 
probabilities of each class, ranging from 0 to 1, based on the 
CNN outputs. The highest probability corresponds to the 
predicted class for a given input. The effectiveness of the 
network was evaluated using the Categorical Cross-Entropy 
loss function, which measures the dissimilarity between the 
predicted probabilities and the actual target values, enabling 
the assessment of model performance. During the training 
process, the Adam optimizer was used to iteratively update the 
network's weights. The optimizer aims to find the optimal set 
of weights that minimize the loss function, thereby improving 
classification accuracy. The results of the classification process 
indicate that the VGG16 model achieved the highest accuracy 
among the two architectures, with a value of 98.2%. This 
means that the VGG16 model correctly classified 98.2% of the 
instances in the dataset. On the other hand, the DenseNet121 
model achieved a slightly lower accuracy of 98.1%. These 
accuracy values suggest that both models performed 
exceptionally well in classifying the eight types of blood 
cancer, with VGG16 demonstrating slightly better performance 
compared to DenseNet121.However, the study encountered 
several challenges. Acquiring sufficient high-quality data 
proved to be a major hurdle as blood cancer datasets were often 
limited in size and lacked diversity, posing challenges in 
developing a robust and accurate model. Ensuring data 
accuracy and reliability was crucial for obtaining meaningful 
results. Another significant challenge was the interpretability 
and explainability of deep learning models. In the context of 
medical research, interpretability is vital for gaining insights 
into the underlying factors contributing to the classification. 

Developing methods to explain the model's predictions and 
provide interpretable results was a significant undertaking. 
Furthermore, the study required substantial computational 
resources and time to train complex models on large datasets. 
Access to high-performance GPUs and collaboration with 
medical experts were essential for effective model training and 
evaluation. Bridging the gap between deep learning expertise 
and domain-specific knowledge posed additional challenges, 
emphasizing the need for collaboration with experts in blood 
cancer pathology, diagnosis, and treatment. Addressing these 
challenges was crucial in developing an accurate and reliable 
blood cancer classification model that aligns with clinical 
practices and aids in advancing diagnosis and treatment 
strategies. 

VI. CONCULSION 

This work presents the classification of blood cancer types 
using state-of-the-art deep learning techniques. Leukemia and 
lymphoma are hematological diseases and types of blood 
cancer that cause abnormal behavior in blood cells. In this 
study, we propose VGG16 and DenseNet121-based models to 
classify two types of leukemia and three subtypes of lymphoma 
and compare their performance. Data augmentation techniques 
are also employed to address the issue of overfitting, resulting 
in improved results. The proposed models are evaluated using 
unseen images that were not included in the training phase. The 
VGG16 architecture achieves the highest accuracy of 98.2%, 
while DenseNet121 exhibits slightly lower accuracy. 

In future work, we plan to expand the classification to 
include other types of blood cancer, such as myeloma and 
chronic myeloid leukemia. Additionally, we aim to evaluate 
the proposed dataset using various deep learning algorithms to 
compare their performance in this field of research. 
Furthermore, an online Internet of Things (IoT) application 
will be developed to collect and analyze a larger volume of 
blood data. 
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