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Abstract—Epilepsy can be referred to as a neurological 

disorder, categorized by intractable seizures with serious 

consequences. To forecast such seizures, Electroencephalogram 

(EEG) datasets should be gathered continuously. EEG signals 

were recorded by using numerous electrodes fixed on the scalp 

that cannot be worn by patients continuously. Neurostimulators 

can intervene in advance and ignore the seizure rate. Its 

productivity is increased by using heuristics such as advanced 

seizure prediction. In recent times, several authors have deployed 

various deep learning approaches for predicting epileptic 

seizures, utilizing EEG signals. In this work, an Automated 

Epileptic Seizure Detection using Improved Crystal Structure 

Algorithm with Stacked Auto encoder (AESD-ICSASAE) 

technique has been developed. The presented AESD-ICSASAE 

technique executes a three-stage process. At the initial level, the 

AESD-ICSASAE technique applies min-max normalization 

approach to normalize the input data. Next, the AESD-ICSASAE 

technique uses ICSA based feature selection method for optimal 

choice of features. Finally, the SAE based classification process 

takes place and the hyperparameter selection process is 

performed by Arithmetic Optimization Algorithm (AOA). To 

depict the enhanced classification outcomes of the AESD-

ICSASAE technique, series of experiments was made. 

Furthermore, the proposed method's results have been tested 

utilizing the CHB-MIT database, with results indicating an 

accuracy of 98.9%. These results validate the highest level of 

accuracy in seizure classification across all of the analyzed EEG 

data. A full set of experiments validated the AESD-ICSASAE 

method's enhancements. 

Keywords—Deep learning; EEG signals; epileptic seizure 

detection; hyperparameter tuning; stacked autoencoders 

I. INTRODUCTION 

Epilepsy is a disease of the central nervous system caused 
by irregularities in brain electricity [1]. Seizures occur often 
and often without notice, making this a diagnosis. Epilepsy 
manifests itself with episodes of temporarily diminished or 
suspended consciousness, brief periods of unconsciousness, 
and abrupt, severe convulsions [2]. Epilepsy has a significant 
effect on people's life since it may result in catastrophic events, 
mental decline, and restrictions on routine tasks. Patients with 
epilepsy would benefit more from a method to predict when 
they will have seizures so that they can avoid injury and begin 
treatment immediately [3]. In addition, it lays the way for 
seizure intervention mechanisms to be used to prevent 
impending seizures and individualized epilepsy treatment 
(tailored medicine with minimal side-effects). Numerous 

studies have recently shown that the onset of epileptic seizures 
may be predicted with some degree of accuracy [4], suggesting 
that individuals with epilepsy might benefit from seizure 
prediction methods. The EEG is now the most widely used 
instrument for seizure detection [5]. Examining pre-seizure 
EEG activity for specific patterns that signal future seizures 
was the key challenge, and this was overcome in the reported 
study [6]. Epileptic seizures lead to a rapid increase in 
electrical disturbances in brain of patients, which is measured 
utilizing the EEG approach [7]. Generally, EEG signal 
recordings were scrutinized by neurologists for determining 
different levels of epilepsy such as interictal (in-between 
seizures), ictal (on-going seizures), post-ictal (after seizure 
onset period), and preictal (just before seizure onset) [8]. But 
this process can be time-taking, and arduous, which results in 
the need for automated epileptic seizure predictive mechanism. 
Deep learning (DL) was another pattern in this regard, which 
can manage the large signal dataset produced by wearable IoT 
sensing gadgets such as EEG headsets for epilepsy [9]. The 
methods depend on DL methods solve the restrictions of 
conventional Machine Learning (ML) methods by providing 
less processing duration and ability of managing big data of 
multichannel biomedical signals. Accordingly, such methods 
serve promising roles in offering real time solutions in 
healthcare field [10]. 
 

In this paper, an Automated Epileptic Seizure Detection 
using Improved Crystal Structure Algorithm with Stacked Auto 
encoder (AESD-ICSASAE) technique has been developed. 
The presented AESD-ICSASAE technique executes a three-
stage process. The AESD-ICSASAE methodology begins with 
a min-max normalization stage to standardize the input data. 
After that, an ICSA-based feature selection methodology is 
used by the AESD-ICSASAE method to choose the best 
features. In the end, the SAE-based method of classification is 
carried out, and the AOA is the one responsible for carrying 
out the hyperparameter selection procedure. Multiple 
computations have been performed to show how the AESD-
ICSASAE technique improves classification accuracy. 

A. Key Contributions 

The work presented here introduces an automated system 
for identifying epileptic seizures termed AESD-ICSASAE. The 
methodology employed by the authors involves the utilization 
of deep learning methodologies, particularly stacked 
autoencoders (SAEs), for the purpose of examining EEG data. 
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Here we propose using the AOA to choose appropriate the 
hyperparameters and a modified version of the crystal structure 
algorithm (ICSA) to choose appropriate attributes. The AESD-
ICSASAE approach greatly enhances classification accuracy, 
providing a possible choice for real-time seizure forecasting 
and tailored epilepsy therapy, according to the experimental 
findings. 

The following outline describes how the remaining parts of 
this work are structured: Section II demonstrates current and 
significant work. The conceptual design of the proposed 
system is presented in Section III. Both findings and analysis 
of the simulations are discussed in Section IV. Challenges and 
limitations are discussed in Section V. The work is concluded 
in Section VI. 

II. RELATED WORKS 

In [11], Epilepsy convulsions using EEG recordings were 
detected using the wavelet transform and then classified using 
ML algorithms as either not a seizure or a seizure. In all, 48 
occurrences were selected from the collected EEG signals 
obtained via the CHB-MIT scalp EEG data. Hence, this data 
was segmented using Tuneable Q-Wavelet Transform 
(TQWT), and time-frequency characteristics like entropy were 
extracted. and temporal parameters were extracted to provide a 
huge dataset for accurately identifying epilepsy occurrences. 
Utilizing Random Forest (RF) and Support Vector Machine 
(SVM) classifiers, the dataset is further processed for 
classifying epilepsy. Jaiswal and Banka [12] proposed 2 
effectual methods including Subpattern related PCA (SpPCA) 
and cross-subpattern correlation-related PCA (SubXPCA) 
includes SVM for automated seizure recognition in EEG 
signals. Feature extraction has been executed utilizing 
SubXPCA and SpPCA. Both methods explore sub pattern 
relation of EEG signals, which aids in making decisions. 

By focusing on what makes seizures unique, Qureshi et al. 
[13] were able to develop a system for Epileptic Seizure 
Detection (ESD) that uses both traditional ML algorithms and 
fuzzy-based approaches. In this work, the raw input divides 
unknown EEG input segments into interictal and ictal groups. 
Bairagi and Harpale [14] introduced a novel technique, 
Singular Spectrum Empirical Mode Decomposition (SSEMD) 
for effectual categorization of Epileptic and Normal EEG 
Signals. For classifying EEG signals in normal and epileptic 
classes, high-performance ML classifiers were employed. In 
[15], an end-to-end ML method was modelled for recognition 
of epileptic seizures utilizing the pretrained deep 2D-CNN and 
concept of Transfer Learning (TL). 

In [16], a Principal component analysis (PCA) with Genetic 
Algorithm (GA) related ML method can be advanced for 
classifying binary epileptic seizures out of EEG dataset. The 
presented method leverages PCA for minimizing the count of 
attributes for binary classification of epileptic seizures and can 
be implemented in the prevailing ML techniques for assessing 
model performance compared with more features. In this study, 
GA was used for tuning the hyperparameters of ML methods to 
detect the optimal ML method. To find the best SVM 
parameters for categorizing EEG recordings, Subasi et al. [17] 
develop a hybrid strategy for ESD using GA and Practical 
Swarm Optimization (PSO). SVMs are one of robust ML 

approaches and were widely leveraged in several application 
zones. The kernel parameter‟s setting for SVMs in training 
effects the classifier accuracy. The authors employed GA- and 
PSO-related techniques for optimizing the SVM parameters. 

The AESD-ICSASAE method represents a notable 
advancement over prior methodologies for the automated 
detection of epileptic seizures, exhibiting superior performance 
in multiple aspects. The approach employed involves the 
utilization of deep learning techniques, particularly stacked 
autoencoders (SAEs), to more efficiently capture intricate 
patterns present in EEG signals compared to conventional ML 
methods. The utilization of an enhanced crystal structure 
algorithm (ICSA) facilitates superior feature selection, thereby 
tackling the difficulty of discerning pertinent features from 
voluminous EEG datasets. Furthermore, the AOA facilitates 
the optimization of hyperparameter selection, thereby 
augmenting the efficacy of the overall model. The suggested 
system exhibits superiority over prior approaches due to its 
ability to achieve greater categorization accuracy, enhanced 
computational efficiency, and increased interpretability, all of 
which are attributed to the recent advances. 

III. THE PROPOSED MODEL 

A novel AESD-ICSASAE technique for reliable ESD on 
EEG data was developed in this paper. The presented AESD-
ICSASAE technique executes a three-stage process. 

 

Fig. 1. Structure of the AESD-ICSASAE scheme. 

As a first step, the AESD-ICSASAE method uses a min-
max normalization methodology to standardize the input data. 
After that, an ICSA-based feature selection strategy is used by 
the AESD-ICSASAE method to choose the most relevant 
characteristics. At last, the AOA with SAE based classification 
process takes place. Fig. 1 represents the workflow of AESD-
ICSASAE model. 

A. Data Normalization 

In the beginning, the AESD-ICSASAE method utilizes a 
min-max normalization strategy in order to standardize the 
input data. The process of Min-Max normalization involves 
applying a linear transformation to the original dataset. 
     and      represent the upper and lower bounds of 
attribute A, accordingly. The process of Min-Max 
normalization involves mapping the value of variable   to a 
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new value, denoted as   , within a specified range. This is 
achieved by computing the difference between the          
and           The threshold value for Min‐Max range was 
fixed as ,   - 

   
        

             
(                 )           

 (1)

B. Feature Selection using ICSA Technique 

The AESD-ICSASAE method currently employs an ICSA-
based strategy for selecting features. The mathematical 
modeling of CSA is developed where the aim is to utilize 
crucial modification [18]. Now, all the candidate solutions of 
optimization technique are considered as a single CSA in the 
space. CSA counts are determined at random for the 
initialization of iteration purposes. 
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In Eq. (2),   indicates the CSA count and   designates the 
problem dimension. The initial location of CSA can be 
determined at random in the searching space as follows: 
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Now,   
 
( )  correspondingly represents the initial CSA 

position,        
 

 and        
 

 shows the minimal and maximal 

permissible values for     variable of     solution candidate 
and   indicate random number within [0, 1].  All the CSA at 
the corner can be assumed as the main CSA related to the 
concept of „basis‟ in CSAlography, in which        is 
determined at random by assuming the initially made CSA. 
Note that arbitrary selection for every step can be determined 
by ignoring current   . The CSA with optimum formation can 
be determined as     while mean value of arbitrarily selected 
CSA is signified by     

In order to upgrade the location of solution candidate in 
searching space, fundamental principle was deliberated: 

a) Simple cubicle: 

                     (4) 

b) Cubicle with the best CSAs: 

               
          

     (5) 

c) Cubicle with the mean CSAs: 

                           (6) 

d) Cubicle with the best and mean CSAs: 

               
          

        
    (7) 

Now, the novel location is denoted by      , the older 
location can be represented by      , and           and    

denotes the random number. To provide the best possible 
results from the classifier, the CSO technique includes a fitness 
function (FF) whose values are skewed towards the positive to 
highlight the superiority of the candidates. 

       (  )                     (  ) 

 
                               

                       
     (8) 

The fitness function (FF) employed in the ICSA method 
was developed to have a balance between classifier accuracy 
(maximum) and the number of chosen features in all solutions 
(min) obtained by using such selected features, Eq. (9) denotes 
the FF for evaluating solutions. 

           ( )   
| |

| |
 (9) 

Whereas    ( )  signifies the classifier error rate of 
presented techniques. | |  is total number of features in the 
dataset | | denotes the cardinality of the selected subset,   and 
  were two parameters that match the importance of subset 

length and classification quality. ∈ [1, 0] and        

In order to create the ICSA, the chaos theory was used in 
the design process. The evolution of chaos exhibits regularity, 
nonrepeat ergodicity, and unpredictability, and it is a nonlinear 
process that may be sensitive to the starting state. Such 
attributes enable particles to hasten the convergence speed of 
method, escape from local optimization, and establish good 
spatial distribution. To participate in population initialization, 
chaotic series related to Tent map was employed and it can be 
formulated below. 

 ( )  {
         
  (   )        

 (10) 

The formula of Tent map afterward Bernoulli transform can 
be expressed: 

 ( )  {
         
           

 (11) 

C. Seizure Recognition using Optimal SAE 

In this work, the SAE based classification process takes 
place. The SAE method obtains the feature vector as input to 
assign appropriate class labels. AE was a kind of unsupervised 
learning framework which has 3 states namely input, hidden 
states and output [19]. The process of AE trained includes 
encoded and decoded parts. Fig. 2 depicts the infrastructure of 
SAE. The encoded part is used for mapping the input dataset to 
hidden demonstration and decoded part is used to regenerate 
input dataset in hidden demonstration. To give the unlabeled 

source dataset *  +   
 , while            signifies hidden 

encoded vector analyzed in     and  ̂  indicates decoded vector 
of final state and encoder procedure can be defined in such a 
way: 

    (       ) (12) 
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Fig. 2. Architecture of SAE. 

While   represents the encoded operation,    stands for the 
weighted matrix associated with the encoded, and b1 displays 
the bias vector. This method of decoding may be characterized 
as follows: 

 ̂   (       ) (13) 

The decoded perform is denoted by g, while the weighted 
matrix of decoding are represented by W2, and the bias vector 
is denoted by b2. To reduce the amount of inaccuracy in the 
reconstruction, AE's collection of variables was fine-tuned. 

 ( )            
 

 
∑   

   (    ̂ ) (14) 

While L denotes a loss function  (   ̂)      ̂  . 

SAE uses a stacking technique to map   AEs to   hidden 
states using an unsupervised state-wise learning approach, 
before tuning using a supervised technique. Because of this, we 
may classify the SAE-based technique in the following ways: 

1) The first step was to train the first AE using the input 

dataset to produce a feature vector;  

2) The second phase was to use that feature vector as 

input for the next stage, and so on, until the process stopped. 

3) Afterwards, all hidden states are trained, and the BP 

technique is used to minimize the cost function and improve 

the weight using labelled trained sets to achieve tuning. 

Finally, the hyperparameter selection process is performed 
by the AOA resulting in enhanced performance. This 
optimization technique primarily relies on exploration and 
development stages [20]. The searching space for candidate 
solutions can be covered generally to break deadlock of 
method falling into search stagnation in exploration stage.  

In the preliminary step of AOA's optimized approach, the 
sequence of potential solutions was constructed randomly. 
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Before the AOA can put the optimized method into action, 
it must complete the searching phase based on the resultant 
value of the Math Optimizer Accelerated (MOA) functioning, 
which may be calculated using the formula below. 

   (      )             .
         

      
/ (16) 

We may see the function's value after       iterations by 
looking at    (      );        shows the existing iteration; 
       indicates the maximal iteration amount;     and     
stand for the minimum and maximum values of the accelerated 
function, respectively. 

The exploration phase is realized mainly by the two 
operators namely Division (D) and Multiplication (M). In 
mathematical computation, these two operators are 
accomplished tremendously distributing value, for the 
considerable amount of candidate solutions were covered. In 
exploration technique, the position of candidate solution can be 
considerably upgraded by the following expression: 
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    (  )      (       )                
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Now     (        )  denotes the     location of     

solution in (        )   iteration;   represents the small 
value; The    and    indicate the maximum and minimum 
possible distances to a proposed solution;    is applied to 
regulate exploration stage that was set to 0.5. 
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The variable   is utilized to establish the degree of 
effectiveness of the exploitation process during each iteration, 
where   is assigned a value of 5. The utilization of the 
exploitation process is contingent upon two operators, 
specifically Addition (A) and Subtraction (S), which are 
conducive to minimizing dispersion in candidate solutions and 
can be implemented through extensive search techniques with 
a heightened likelihood of approximating the best possible 
solution. 

    (       )  
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Algorithm 1: Pseudo code for AOA 

Populace size (N) and maximum iterations (T) are set to their 

default values. 

The starting position of each individual searching agent, 

  (         ) 

Input values are           , and       
While (   ) 
Assess the fitness of every search agent, Upgrade best Fitness, 

   
Assess the MOP 

Assess the     

For every search agents 

If          

Upgrade position 

Else 

Upgrade position 

End if  

End for 

      
End While 

Return best Fitness,    

The flexible changes between the exploration and 
utilization steps enable the AOA approach to finding the best 
answer and remain to offer a wide range of options for a broad 
search. 

IV. RESULTS AND DISCUSSION 

In this section, we verify the AESD-ICSASAE technique's 
experimental outcome evaluation on a dataset [21,22], of 
40000 observations and two categories of classes, illustrated in 
Table I. The AESD-ICSASAE method has chosen a set of 7 
features out of 23 features. 

TABLE I.  A COMPREHENSIVE OVERVIEW OF THE DATASET 

Type of Classes Total number of Observations 

Seizure 20,000 

NonSeizure 20,000 

Overall Observations 40,000 

In Fig. 3, the confusion matrices of the AESD-ICSASAE 
model are demonstrated. The results demonstrated that the 
AESD-ICSASAE model has shown accurate classification of 
seizure and no seizure class samples. 

Table II presents the comprehensive outcomes of detecting 
seizures achieved by the AESD-ICSASAE approach, utilizing 
60% of the Training set (TR) and 40% of the Testing set (TS) 
records. The AESD-ICSASAE method's brief findings for 
classification using 60% of the TR dataset are shown in Fig. 4. 
Samples belonging to the seizure and no seizure classes were 
correctly recognized using the AESD-ICSASAE methodology. 
In addition, it is noticed that the AESD-ICSASAE model at 
training phase has attained overall accu_bal of 98.70%, prec_n 
of 98.70%, reca_l of 98.70%, F_score of 98.70%, AUC_score 
of 98.70%, and MCC of 97.41%. 

 

Fig. 3. Confusion matrix of the AESD-ICSASAE approach for the training 

(TR) and testing (TS) databases with a ratio of 60:40 and 70:30, respectively. 

TABLE II.  PRESENTS THE FINDINGS OF DETECTING SEIZURES USING THE 

AESD-ICSASAE APPROACH WITH A 60:40 RATIO OF TRAINING TO TESTING 

DATABASES 

Training / Testing (60:40) 

Class                            
Score of 

AUC 
MCC 

Training Set 

Seizure 98.10 99.30 98.10 98.70 98.70 97.41 

NoSeizure 99.30 98.10 99.30 98.70 98.70 97.41 

Average: 98.70 98.70 98.70 98.70 98.70 97.41 

Testing Set 

Seizure 98.08 99.21 98.08 98.64 98.66 97.33 

NoSeizure 99.23 98.14 99.23 98.68 98.66 97.33 

Average: 98.66 98.67 98.66 98.66 98.66 97.33 

 

Fig. 4. Average outcome of AESD-ICSASAE approach under 60% of TR. 

Table II presents the comprehensive outcomes of detecting 
seizures achieved by the AESD-ICSASAE approach, utilizing 
60% of the Training set (TR) and 40% of the Testing set (TS) 
records. Fig. 5 presents the detailed classification outcomes of 
the AESD-ICSASAE method with 40% of TS database. The 
AESD-ICSASAE technique has properly identified the seizure 
and no seizure class samples. Moreover, it is visible that the 
AESD-ICSASAE methodology at testing phase has attained an 
average         of 98.66%,       of 98.67%,       of 
98.66%,        of 98.66%,          of 98.66%, and MCC of 
97.33%. 
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Fig. 5. Average outcome of AESD-ICSASAE approach under 40% of TS 

database. 

Table III provides an overview of the AESD-ICSASAE 
method's detection findings for seizures using 70% of TR and 
30% of TS datasets. The AESD-ICSASAE approach's quick 
classification results using 70% of the TR dataset are shown in 
Fig. 6. The AESD-ICSASAE technique has properly 
recognized the seizure and no seizure class samples. Also, it is 
noted that the AESD-ICSASAE method at training phase has 
acquired average         of 98.92%,       of 98.93%,       
of 98.92%,        of 98.92%,          of 98.92%, and MCC 
of 97.85%. 

TABLE III.  SEIZURE DETECTION OUTCOMES OF AESD-ICSASAE 

APPROACH UNDER 70:30 OF TR/TS DATASET 

Training / Testing (70:30) 

Type of 

Class 
                           

Score of 

AUC 
MCC 

Seizure_Training Set 

Seizure 99.32 98.55 99.32 98.93 98.92 97.85 

NoSeizure 98.53 99.31 98.53 98.92 98.92 97.85 

Average 98.92 98.93 98.92 98.92 98.92 97.85 

Seizure_Testing set 

Seizure 99.21 98.46 99.21 98.83 98.85 97.69 

NoSeizure 98.48 99.22 98.48 98.85 98.85 97.69 

Average 98.85 98.84 98.85 98.84 98.85 97.69 

Fig. 7 portrays brief classification outcomes of the AESD-
ICSASAE methodology with 30% of TS database. The AESD-
ICSASAE technique has properly identified the seizure and no 
seizure class samples. Additionally, it is noted that the AESD-
ICSASAE technique at testing phase has achieved average 
        of 98.85%,       of 98.84%,       of 98.85%,        
of 98.84%,          of 98.85%, and MCC of 97.69%. 

 

Fig. 6. Average outcome of AESD-ICSASAE technique under 70% of TR 

database. 

Examining the AESD-ICSASAE approach's Training 
Accuracy (TACC) and Validation Accuracy (VACC) for 
seizure detection efficiency is shown in Fig. 8. The graph 
shows that greater TACC and VACC values result in greater 
efficiency for the AESD-ICSASAE method. The AESD-
ICSASAE model is clearly the most successful in terms of 
TACC results. 

 

Fig. 7. Average outcome of AESD-ICSASAE approach in 30% of TS 

database. 

 

Fig. 8. Depicts the TACC and VACC analyses of the AESD-ICSASAE 

approach. 

In Fig. 9, the TLS and VLS of the AESD-ICSASAE model 
is put to the test in terms of their ability to identify the onset of 
a seizure. Based on the graph, it seems that the AESD-
ICSASAE method performs better when TLS and VLS are 
kept to their absolute minimums. It has been shown that the 
AESD-ICSASAE method leads to diminished VLS results. 

 

Fig. 9. TLS and VLS analysis of AESD-ICSASAE approach. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

485 | P a g e  

www.ijacsa.thesai.org 

Fig. 10 presents the results of a clear precision-recall 
analysis of the AESD-ICSASAE database used to evaluate the 
tested methods. The results showed that the AESD-ICSASAE 
method improved precision-recall values across the board. 

Fig. 11 displays the results of a comprehensive ROC 
analysis performed on the AESD-ICSASAE test database. That 
number meant the AESD-ICSASAE algorithm had 
successfully clustered together a number of different types. 

 

Fig. 10. Precision-recall analysis of AESD-ICSASAE method. 

 

Fig. 11. ROC curve analysis of AESD-ICSASAE method. 

Finally, the AESD-ICSASAE strategy superior accuracy 
may be verified at the ending phase through a comparative 
analysis, as depicted in Table IV and Fig. 12. The depicted 
figure indicates that the AESD-ICSASAE approach has 
exhibited enhanced efficacy, achieving an accu_y of 98.92%. 

TABLE IV.  COMPARISON OF THE AESD-ICSASAE SYSTEMS TO 

ALTERNATIVE METHODOLOGIES 

Methodology used       (%) 

AESD-ICSASAE 98.92% 

DCAE-MLP 98.17% 

SVM Model 82.39% 

LR Model 81.32% 

ResNet-152 90.63% 

Inception-V3 Model 91.89% 

EESC Model 93.92% 

 

Fig. 12. Comparative analysis of AESD-ICSASAE system with other 

approaches. 

In contrast, the existing models such as DCAE-MLP, SVM, 
LR, ResNet-152, Inception-v3, and EESC models have 
demonstrated certainly reduced accu_y of 97.17%, 82.39%, 
81.32%, 90.63%, 91.89%, and 93.92% respectively. These 
results assured the supremacy of the AESD-ICSASAE model 
on seizure detection and classification. 

V. CHALLENGES AND LIMITATIONS OF PROPOSED WORK 

There are currently a number of restrictions and difficulties 
in the area of automated epileptic seizure identification. 
Several challenges arise in the application of EEG data 
analysis, such as inter-individual variability, the trade-off 
between sensitivity and specificity, poor generalization of 
current methods across different datasets and patient groups, 
the requirement for immediate implementation with high 
accuracy, interpretation of deep learning models, and a lack of 
data for training and evaluation purposes. To surmount these 
obstacles, it is necessary to undertake investigation efforts that 
are geared towards developing the applicability of findings, 
minimizing erroneous positive and negative outcomes, refining 
instantaneous being processed, augmenting comprehensibility, 
and broadening the availability of varied and inclusive datasets. 

VI. CONCLUSION 

This paper presents the AESD-ICSASAE algorithm, a 
novel method for performing precise ESD on EEG data. The 
described AESD-ICSASAE method is a three-step procedure. 
The first step of the AESD-ICSASAE method is to normalize 
the input data using a min-max normalization strategy. After 
that, an ICSA-related feature selection procedure is used by the 
AESD-ICSASAE method to choose the best features. Finally, 
improved performance is achieved by the AOA's 
hyperparameter selection process and categorization of SAE-
related data. Experiments were conducted to illustrate the 
improved classification results achieved using the AESD-
ICSASAE method. The simulations covered every possible 
scenario, ensuring that the AESD-ICSASAE method would 
improve. To boost the efficiency of the AESD-ICSASAE 
method, a fusion system based on ensemble voting may be 
developed in the future. 
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Additionally, there exist numerous elements that could be 
examined in the work. Initially, an inquiry into the 
generalizability of the AESD-ICSASAE methodology across 
diverse datasets and patient cohorts would offer valuable 
perspectives on its potential utility above the particular dataset 
employed. Furthermore, conducting an analysis of comparison 
with established methodologies could simplify an analysis of 
the merits and limitations of the suggested approach. 
Improving the comprehensibility of the outcomes through the 
identification of the influential characteristics or trends could 
improve its medical significance. Enhancing the real-time 
validity of the approach could be achieved through enhancing 
its efficiency in computing, particularly in managing 
substantial amounts of EEG data. Performing verification tests 
on additional data sets would confirm the efficacy and 
dependability of the aforementioned. Ultimately, an evaluation 
of the viability of executing the proposed methodology in real-
time will determine its practicability in facilitating prompt 
seizure forecasts and strategies. Incorporating considerations 
related to generalization, effectiveness, comprehension, 
productivity, verification, and real-time accessibility would 
enhance the effectiveness of the AESD-ICSASAE 
methodology. 
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