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Abstract—Today's overpopulation and fast urbanization 

present a significant challenge for developing countries in the 

form of excessive garbage generation. Managing waste is 

essential in creating sustainable and habitable communities, but 

it remains an issue for developing countries. Finding an efficient 

smart waste management system is a challenge in current 

research. In recent years, robots and artificial intelligence have 

influenced a wide range of industries, especially waste 

management. This research proposes a waste segregation system 

that integrates the robot arm and YOLOv6 object detection 

model to automatically sort the garbage according to its type and 

achieve real-time requirements. The proposed algorithm utilizes 

the pros of the hardware-friendly architecture of YOLOv6 while 

keeping high detection accuracy in detecting and classifying 

garbage. Moreover, the proposed system creates a 3D model of a 

4 DOF robotic arm by CAD tools. A new approach based on a 

geometric method is proposed to solve the inverse kinematics 

problem in order to precisely calculate the proper angles of the 

robot arm's joints via a unique solution with less computational 

time. The proposed system is evaluated on a modified TrashNet 

dataset with seven garbage classes. The experiments reveal that 

the proposed algorithm outperforms the other recent YOLO 

models in terms of precision, recall, F1 score, and model size. 

Furthermore, the proposed algorithm consumes approximately 

fractions of a second for picking up and placing a single object in 

its proper basket. 

Keywords—Smart recycling; inverse kinematics; object 

detection; 4 DOF robotic arm; YOLOV6 

I. INTRODUCTION 

The amount of municipal solid garbage produced each year 
globally is 2.01 billion tonnes, with at least 33% of it needing 
to be handled in a way that protects the environment. 
Worldwide garbage is anticipated to increase worldwide to 
3.40 billion tonnes by 2050, more than double the population 
growth over that time. Even if there are many ways to dispose 
of the garbage gathered today, the ecological system's 
sustainability and safety are nevertheless negatively impacted. 
Reusing and recycling as much trash as you can is thus the best 
option. In certain nations, the sorting process is primarily 
manual. Human sorters are manually stationed beside the 
material-transfer conveyor belts to identify the material type. 
One of its typical issues is that manual sorting mainly relies on 
visually examining the mixed garbage moving on the 

conveyor. A material surge might occur, leaving a sorter with 
insufficient time to understand all of the items handed to them. 
Moreover, health concerns, including skin difficulties, are 
unavoidable [1]. Therefore, manual sorting suffers from low 
productivity and increased health risks. Recently, robotic 
technology has replaced the time-consuming human garbage 
sorting system with an automated one. The robot is integrated 
with deep learning technology for detecting and classifying 
recyclable objects on the conveyer belt and picking and placing 
these objects in the appropriate baskets. Different 
convolutional neural networks (CNN) have been proposed for 
waste classification. 

In [2], five deep learning architectures were applied for 
classifying Trashnet dataset, including:  DenseNet121, 
DenseNet169, InceptionResnetV2, MobileNet, and Xception. 
Currently, Gondal et al. proposed a hybrid technique for 
smartly classifying real-time waste [3]. This technique applied 
to two machine learning methods: a multilayer perception and 
a multilayer convolutional neural network (ML-CNN). The 
former classifies the waste into metal or non-metal waste, 
while the latter specifies the class of non-metal waste (paper, 
plastic, rubber, cotton, and wood). The camera is positioned in 
front of a conveyor belt to take an image of each trash item. 
After image categorization, an automatic holder is used to pick 
up the trash item and place it into the assigned bucket. 
Although some of these CNN models achieve better 
classification accuracy, they are limited to classifying one 
object per image. If the image has many objects as the images 
captured from the conveyer belt, CNN model classifies the 
most dominant object in the image. On the contrary, object 
detectors are used in this case to both localize and classify 
various objects in the same image. Several methods are 
proposed for object detection, and their designs are based on 
two approaches: one-stage object detection and two-stage 
object detection. One-stage detectors are distinguished by their 
high inference speeds because they consider computing speed 
and combine object localization and classification to output. 
However, two-stage detectors are characterized by high 
localization and identification accuracy because they employ 
independent calculations for object localization and 
classification, increasing the accuracy and speed calculations. 
SSD and YOLO are models of one-stage detectors, and RCNN, 
Fast RCNN, and Faster RCNN are models of two stages 
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detectors. In waste recycling applications, speed is considered 
essential for picking up many objects in real-time. Therefore, 
most of the research in this application applies the one-stage 
detectors in their systems. 

WEN MA et al. [4] propose a Lightweight Feature Fusion 
Single Shot Multibox Detector (L- SSD) algorithm for waste 
detection and classification. L-SSD is an enhanced SSD with a 
lightweight and a feature fusion module to improve its 
performance and detect waste with a small volume. The L-SSD 
is trained on a collected dataset consisting of five classes 
cardboard, glass, paper, plastic, and metal. Daniel Octavian 
Melinte et al. [5] fine tune the Single Shot Detectors (SSD) 
architecture with MobileNetV2 base network on the TrashNet 
dataset using appropriate training hyper parameters to be 
carried out on autonomous robot system. 

Berardina De Carolis [6] detect and report the presence of 
abandoned waste through real-time analysis of video streams 
based on an improved YOLOv3. A new dataset containing four 
classes: garbage bag, garbage dumpster, garbage bin, and blob, 
is used to fine-tune the improved YOLOv3. Saurav Kumar et 
al. [7] apply YOLOv3 in the waste segregation application to 
detect six classes of trash objects (namely: cardboard, glass, 
metal, paper, plastic, and organic waste). Aria Bisma 
Wahyutama et al. [8] design a trash bin that is competent for 
automatically separating and collecting recyclable trash 
utilizing YOLOv4 object detection. The YOLOv4 model is 
installed on Raspberry Pi. As the trash object is detected, a 
servo rotates the trash bin cover to disclose the correct room 
for the user to throw away the trash. Additionally, the study [9] 
submitted a smart waste detection utilizing YOLOv3, 
YOLOv4, YOLOv3-tiny, and YOLOv4-tiny models. A nature-
inspired searching strategy was applied to fine-tune the 
learning rate of YOLO structures. The results reveal that 
YOLOv3 provides the best results. 

Anbang Ye et al. [10] propose a YOLO model with 
Variational Autoencoder (VAE) to increase the detection 
accuracy and decrease the model size for edge devices. The 
model has been trained on a generated dataset from the 2020 
Haihua AI Challenge (2020 HAC), a garbage sorting 
competition. Andhy Panca Saputra et al. [11] propose 
YOLOv4 and YOLOv4-tiny for garbage detection and train the 
model on a modified version of the TrashNet dataset with a 
smaller number of classes and a higher number of images. 

Deep Patel et al. [12] introduce a comparative study for 
applying five object detector techniques which are 
EfficientDet-D1, SSD ResNet-50 V1, Faster R-CNN ResNet-
101 V1, CenterNet ResNet-101 V1 and YOLOv5M on a 
custom garbage dataset collected from the internet. The 
comparison results demonstrate that YOLOv5M has reliable 
and precise predictions. Sylwia Majchrowska et al. [13] 
localize and classify the litter through two networks, 
EfficientDet-D2 for localization while EfficientNet-B2 for 
classification. The algorithm is applied to new benchmark 
datasets, namely detect-waste and classify-waste merged from 
different datasets annotated similarly for the seven waste 
categories. 

Other researchers, on the other hand, concentrate on the 
issue of designing and determining the angles of the joints of 

the robot arm manipulator. Indra Agustian et al. [14] propose 
the forward kinematics DH and the inverse kinematics 
Pseudoinverse Jacobian method to determine the right angle of 
each joint of the manipulator links. Adnan Rafi Al Tahtawi et 
al. [15] use inverse kinematics to design a small-scale three-
degree of freedom (3-DoF) robot arm for a pick-and-place 
mission. Lately, the robot development time has been 
shortened, and the speed and quality of the robot design have 
been improved by designing robots based on SolidWorks 3D 
CAD [16]. Doo Sung Ahn et al. [17] present a platform that 
integrates Solidworks and Simscape tools for designing control 
algorithms of robot manipulators. Simscape Multibody imports 
3D models and creates bodies, constraints, actions, and joints 
with parametrization by mathematical expressions described in 
MATLAB using data from SolidWorks. 

Over and above, some researchers are directed toward 
integrating the robot arm with object detection techniques for 
waste segregation. Xuebin Yue et al. [18] propose a 
lightweight object detection model YOLO-GD (Ghost Net and 
Depthwise convolution) for empty-dish recycling robots to 
recycle dishes in restaurants and canteens automatically. The 
catch point coordinates of the various types of dishes are 
extracted using a catch point computation based on image 
processing. The target dishes are recycled using the coordinates 
by manipulating the robot arm. Qisong Song et al. [19] propose 
an improved YOLOv5 to achieve more precise positioning and 
recognition of objects for grasping robots using the wooden 
block image dataset. Jinqiang Bai et al. [20] present a moving 
pick-up robot that automatically moves on grass for garbage 
cleaning. The robot is designed based on a navigation 
algorithm that uses SegNet and ResNet to segment, classify, 
and localize objects. If the trash is detected, the manipulator 
picks it up and places it in the trash container. Jaeseok Kim et 
al. [21] integrate deep learning with the industrial robotic arm 
to classify garbage according to its material. First, the points 
cloud is processed utilizing the Kinect. Following this step, 
grasping tools on the robot arm are used to grab the objects. 
The items are then seated in front of an RGB camera, which 
categorizes them, based on their composition, using a modified 
LeNet model into two main classes: carton and plastic. 
Eventually, all the collected items are put in a box beside the 
manipulator. 

Although all of the approaches mentioned above have made 
some progress in waste segregation, there is still the issue of 
satisfying high detection accuracy and real-time segregation 
simultaneously in practical applications. Thus, this research 
proposes a real-time waste segregation system for sorting 
garbage. The system is designed to integrate two modules: the 
waste segregation module and the robotic module. The waste 
segregation module exploits the advantages of the hardware-
friendly architecture of YOLOv6 [22] for detecting and 
localizing the garbage with high detection accuracy and in real-
time. In the robotic module, a robot arm is designed, and its 
design overcomes the inverse kinematics problem by 
accurately computing the angles of the arm's joints based on a 
simple geometric method. The advantage of this geometric 
method is to solve the inverse kinematics problem using a 
unique solution for each required joint configuration, which 
reduces the computational time and accelerates the response. 
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The robot arm architecture is created in CAD software 
(SolidWorks). The main contributions of this work can be 
summarized as follows: 

1) Design a waste segregation system for categorizing 

garbage with high precision and in real time. 

2) Build a garbage dataset consisting of 3217 images 

divided into seven classes: cardboard, glass, metal, paper, 

plastic, battery, and foam. These classes are usually found in 

trash bins. 

3) Apply YOLOv6, which is characterized by its 

hardware-friendly design, low inference time and high 

detection accuracy for detecting and localizing garbage. 

4) Design a 3D model of a 4 DOF robotic arm using CAD 

software and adopts a simple geometric method to calculate 

the angles of the arm's joints for picking up and locating the 

objects in their dedicated basket with smooth motion 

trajectories in a slight time. 

5) Develop an automatic waste segregation robot system 

based on the designed robot arm and the proposed segregation 

system. 

II. PROPOSED SYSTEM ARCHITECTURE 

In this research, a waste segregation system is proposed to 
make the waste much easier to recycle, meaning less garbage 
goes to landfills and positively impacts health and the 
environment. The architecture of the proposed system consists 
of two modules: the waste segregation module and the robotic 
module. The waste segregation module comprises the 
YOLOv6 model for detecting the waste, while the robotic 
module picks up the objects according to their type and places 
them in their dedicated basket. The proposed system 
architecture is shown in Fig. 1. Moreover, the details of each 
module are described in the following subsections. 

A. The Waste Segregation Module 

This module is responsible for detecting various objects in 
the captured image and building a queue of information about 
each object identifying its current location and type. To 
perform this task, YOLOv6 is utilized. YOLOv6 is created for 
industrial applications with high-performance and hardware-
friendly architecture. It makes different improvements to the 
network architecture and the training plans of the conventional 
YOLOv5 [23]. Conventional YOLOv5 consists of three main 
parts: backbone, neck, and head. The backbone primarily 
affects how well features can be represented, but because it 
performs most of the computational cost, its structure 
significantly impacts inferences performance. The neck is 
responsible for combining the low-level and high-level 
semantic features to construct a pyramid feature map. Then, 
these combined features are fed to the head, which consists of 
several convolutional layers, to predict the objects. YOLOv6 
replaces the backbone and the neck networks in the 
conventional YOLOv5, which is designed based on CSPNet 
[24], with more efficient networks: EfficientRep as Backbone 
and Rep-PAN as Neck that is designed using RepVGG style 
[25]. The new network structure overcomes the drawbacks of 
increasing latency and decreasing the utilization of the memory 
bandwidth of the GPU. Second, YOLOv6 reduces the delay in 
the conventional YOLOv5 while preserving accuracy by 
designing an efficient and simplified decoupled head. Third, 
YOLOv6 attempt to improve the detection accuracy by 
improving the training strategies by using anchor free 
paradigm, SimOTA [26], as a label assignment method, and 
SIoU [27] and GIoU [28] as a bounding box regression loss 
function. In the next subsections, the networks architecture, 
and the training strategies of YOLOv6 will be explained in 
detail. 

 
Fig. 1. The proposed waste segregation system architecture. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

915 | P a g e  

www.ijacsa.thesai.org 

1) Backbone: The effectiveness and efficiency of the 

detection model are significantly influenced by the backbone 

network's design. EfficientRep is designed as a backbone in 

YOLOv6 to efficiently exploit the computational power of the 

hardware architecture to reduce the inference latency. The 

EfficientRep is designed based on the RepVGG structure to 

utilize the pros of multi-branch topology within the training 

process for achieving improved classification efficiency. 

However, this structure avoids the inference latency of the 

multi-branch topology by using the re-parameterization 

structure in the inference process to fuse the multi-branch into 

a single convolutional layer by converting its parameters 

within the deployment process. 

2) Neck: The Rep-PAN neck design is built upon the idea 

of a hardware-aware neural network by fusing the features at 

multiple scales. The PAN topology [29] used in YOLOv4 [30] 

and YOLOv5 is modified to be the base of the Rep-PAN. 

RepBlock [25] or CSPStackRep block is also used in place of 

the CSP- Block utilized in YOLOv5. 

3) Head: In YOLOv5 models, the classification and box 

regression heads share the same features. In YOLOx [26], the 

head is decoupled, which means that the network separates 

between the features of the classification and box regression 

heads and adds two additional 3x3 convolutional layers for 

each one. Although this has been empirically demonstrated to 

increase performance, it also causes a slight increase in 

network latency. Based on the Hybrid Channels approach, the 

decoupling head design of YOLOv6 has been streamlined, and 

a more effective decoupling head structure has been developed 

by eliminating the number of middle 3x3 convolutional layers 

to one. These changes result in lower processing costs and 

decreased inference delay. 

4) Training strategies: 

 Anchor-free 

YOLOv6 reduces the delay results from transferring 
massive detections between the hardware stages by replacing 
Anchor-based detector with anchor-free detectors [26]. The 
anchor-free paradigm has recently gained significant popularity 
because of its superior generalization capabilities and 
simplicity. YOLOv6 adopts one of the anchor-free detectors 
called the anchor point-based paradigm, which predicts the 
distances from the bounding boxes' four sides to the anchor 
point. 

 SimOTA label assignment strategy 

One of the factors affecting the detection accuracy is the 
label assignment process. In this process, each predetermined 
anchor is assigned a label during the training phase. Previous 
YOLO versions used the static assignment method, which 
cannot be modified during network training. Recently, 
numerous techniques based on dynamic label assignment have 
emerged, allocating positive samples in accordance with the 
network output through the training procedure to enable the 
generation of more high-quality positive samples, which in turn 
improves the network optimization. YOLOv6 used one of the 
dynamic assignment methods which is SimOTA. This method 

finds the best match between the samples using the Top-K 
approximation technique, which significantly accelerates 
training speed. 

 SIoU bounding box regression loss. 

IoU, GIoU, and SIoU are proposed in recent researches as 
bounding box regression losses to adapt the network learning 
and improve the detection accuracy. These loss functions are 
calculated according to these aspects: the percentage of the 
overlap between the predicted and the target boxes, the aspect 
ratio, the distance between the center points, and the matching 
between the predicted and the target box directions. GIoU and 
SIoU loss functions are selected experimentally to apply to 
different versions of YOLOv6. 

B. The Robotic Arm Module 

Robots are used to handle complex, dangerous, and tedious 
tasks. The use of robotic arms also helps to relieve human 
workers of tasks that pose a risk of bodily harm [31]. Thus, 
pick-and-place robots are commonly used in modern industrial 
environments [32]. The pick-and-place process automation 
reduces cycle time, increases productivity, and decreases 
material handling costs [33]. Pick and place robots come in a 
variety of shapes and sizes. A two-degree-of-freedom robotic 
arm picks up and moves objects in a single plane. The 
Cartesian robotic arm works in multiple planes and moves 
along three orthogonal axes using Cartesian coordinates (X, Y, 
and Z). The Delta robot is frequently used in applications 
where robots pick items in groups and place them in assembly 
patterns or containers; they have heavy motors attached. 
Collaborative robots help humans by directing them to 
appropriate locations and guiding them through each task.  In 
this research, a Cartesian robot arm is designed to sort the 
waste according to the locations and types obtained from the 
segregation module. The robot arm design and its motion 
planning and execution are described in the following 
subsections. 

1) Solid 3D CAD Modeling of a robotic arm and its 

workspace: An autonomous robot platform based on 

SolidWorks, MATLAB Simulink, and Simscape Multibody 

software tools is utilized in this research to design the arm's 

structure and its workspace. The robot manipulator was 

initially created as a 3D CAD model using the SolidWorks 

tool to design and build the robot completely. It creates fast 

and accurate 3D models, which turn ideas into reality with the 

ability to run the concept design through many scenarios and 

make modifications as necessary in the design development 

process [34]. As shown in Fig. 2(a), the manipulator structure 

has four links and four revolute joints. Joint1 is used as a base 

joint, while joint2 connects link1 to link2. Joint3 connects 

link2 to link3, and joint4 is used for the robot end effector 

(robot hand). Fig. 2(b) depicts the simulated workspace which 

consists of various types of waste objects, an RGB camera 

placed in front of the robot arm's starting location, ultrasonic 

sensor, and a group of baskets for collecting categorized 

items. In order to control the motion of the arm, the robot 

assembly is imported into a Simscape Multibody model to 

simulate the multi-object systems by utilizing blocks that 
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describe system parts, joints, forces, and external restrictions 

[34]. The bodies are distinguished by their geometry. 

Accordingly, inertial properties, forces and moments can be 

applied to bodies. Besides, contact constraints can be defined. 

Moreover, the object's CAD model can be imported with all 

its physical properties and the dynamics of the system can be 

observed. Simscape Multibody software's primary use is to 

analyze and visualize system functioning and control design in 

Simulink [35], [36]. Fig. 2(c) shows the block diagram of the 

robotic arm in Simscape Multibody to be utilized for 

simulation trials in evaluating the proposed algorithm. 

2) Robotic arm task scheduling: This research proposes a 

planning process to address the issue of computing the robot 

arm's movements during the object picking and placing 

assignment. Fig. 3 illustrates the complete cycle of the robotic 

arm pick and place task. Depending on the type of object 

material, the robot's destination is specified and modified 

dynamically. The motion plan is constructed based on several 

factors depending on the relation between the end-effector, the 

target destination, and the object's current location. The 

motion phases are summarized as follows: 

 Object reaching: the manipulator moves to place the 
end-effector at the first object of the received queue. 

Once the end-effector has arrived at the (x, y) position 
of the object on the horizontal plane, the ultrasonic 
sensor is activated to determine the height that the end-
effector needs to descend to reach the object. 

 Picking up the object: the end-effector gets in touch 
with the object using a suction force to pick it up. The 
manipulator must continue to provide a suction force to 
hold the object until it reaches the proper basket. 

 Lifting: the object is lifted vertically away from the 
table after the end-effector sucks it, enabling it to move 
as they are rigidly connected. 

 Basket reaching: Depending on the object type, the 
manipulator moves to the appropriate basket location 
while holding the object. 

 Placing the object: the suction force is switched off to 
release the object into the basket once the manipulator 
reaches it. 

 Arm reset: the robot returns to the beginning state 
(home position) for starting another task when the 
object queue becomes empty. 

  
(a)         (b) 

 
(c) 

Fig. 2. Robot arm manipulator (a) arm structure (b) robotic workspace (c) Simscape Multibody block diagram of robotic arm. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

917 | P a g e  

www.ijacsa.thesai.org 

Move to 

object 

Position

Pick up 

and 

Lift

Move to correct

Basket and 

Place the obj.

Initiate Robot 

Arm for next 

Cycle

Objects 

Queue

Select an 

object

 
Fig. 3. Complete cycle of pick and place task. 

3) Robot motion planning: Fig. 4 illustrates how the 

robotic arm motion is controlled from its starting point to 

various goals. First, the object is picked by a suction gripper 

with force chosen based on the heaviest expected waste object. 

The time for switching on/off this force is calculated from the 

generated trajectory. After that, trajectory planning is carried 

out to find a suitable route for the robot movement in an area 

free of obstacles. A robotic motion task is defined by 

determining a path for the robot to follow. A path is a set of 

points that can be defined in task coordinates (end-effector 

coordinates) or joint coordinates. The problem of trajectory 

generation is to compute the desired reference joint or end-

effector variables as functions of time for the control system 

so that the robot follows the desired path [37]. In this study, a 

cubic polynomial trajectory that is constructed based on 

chosen waypoints and their associated time points is used to 

calculate the appropriate route between the source and 

destination. Waypoints are chosen so that the arm can move 

smoothly while considering the joint angle limitations. Inverse 

kinematics is proposed to calculate the appropriate joint 

configuration (joint rotation angles) for moving the robotic 

arm from its starting position to various destination points. 

TimePoints

Waste Baskets 

Positions

Inverse 

Kinematics

 Algorithm

Suction

Force

Arm & Env. 

Simulator

Waypoints & 

TimePoints 

Creation

Polynomial

Trajectory

planning

Waste Objects 

Positions & 

Types

clock

 
Fig. 4. Motion planning and movement execution process. 

 Proposed Geometric Inverse Kinematics 

The study of motion without considering its causes, such as 
forces and torques, is known as kinematics. Using kinematic 
equations, inverse kinematics (IK) can predict how a robot will 
move to arrive at a specific place [38]. Fig. 5 declares the 
concept of forward and inverse kinematics approach. Inverse 
kinematics is a transformation method from Cartesian space to 
joint space. Nevertheless, it is a somewhat complex nonlinear 

problem. In addition to its nonlinearity, the kinematics matrix's 
sine and cosine functions also have non-unique solutions, 
which makes the issue worse [39]. This study proposes a 
geometric analytical solution idea to compute the inverse 
kinematics of 3D space. The system will then follow the 
intended route determined by the trajectory of the end effector. 
The geometric solution is much more efficient during 
calculation (when compared to iterative methods). 

Joints Angles

q1, q2, q3, q4 End Effector Pose 

(x, y, z)

Inverse Kinematics (IK)

Forward Kinematics (FK)

 
Fig. 5. Inverse kinematics vs forward kinematics. 

The proposed method for determining the joints 
configuration (joints rotation angles) in 3D space for the 
designed four-link robot arm relied on a novel geometric 
notion. Since the numerical solution of inverse kinematics 
yields, a less accurate result, the analytical solution of inverse 
kinematics is preferred. The target point is indicated by the 
Cartesian coordinates P (x, y, and z) in the generalized case of 
the robot arm. The position of the target point can be converted 
to cylindrical coordinates (Ɵ, ρ, and z). If the base joint is 
turned at an angle Ɵ, as indicated in Fig. 6, the robot arm 
construction coincides in the x-z plane. The second joint 
position at point "a" is connected to the end-effector joint pose 
at point "p" by the line "c".  Line "k" is thus drawn parallel to 
line "c" from the location of the base joint. The angles of the 
joints are obtained by applying the cosine formula as shown in 
equations (1–5). The polar coordinates of the target point 
projection in the x-y plane are determined by Equation (1). 

2 2x y  
    ,   

1tan ( )y x 
  (1) 

The length of the line "c" is calculated as: 

2 2

1( )c z l   
  (2) 

Equation (3) calculates the angle between line "k" and the 
x-axis. 

1

1tan (( ) )z l  
  (3) 

The following equations explain the angles α and β in the 
triangle (a-P-d). 

2 2 2
1 2 3

2 3

cos ( )
2

l l c

l l
   


  (4) 

2 2 2
1 2 3

2

cos ( )
2

l c l

l c
   


  (5) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

918 | P a g e  

www.ijacsa.thesai.org 

In order to move the arm's end-effector to a target point, the 
joints rotate at the angles calculated in equations (6-9) 
considering that the rotation angle of each joint frame is 
measured w.r.t. the previous link frame and counterclockwise.   

1q 
    (6) 

2 270q    
   (7) 

3 180q  
   (8) 

To keep the end-effector pointed vertically 

4 90 ( )q      
,   (9) 

where, q1, q2, q3, and q4 are the angles values needed to 
rotate each joint to change the configuration of the joints such 
that the end effector reaches the desired position. 

θ 

l2

x

a

z

y

l3

b

l4

P(x,y,z)

ρ 

ρ 

(z-l1)

α 

β 

l1

d

c

k

δ 

δ 

 
Fig. 6. The schematic diagram of the proposed geometric inverse kinematics 

approach. 

III. EXPERIMENTS AND RESULTS 

This section presents the conducted experiments and shows 
the results of the proposed methodology for waste segregation 
and robotic modules. In the following subsections, each 
module's outcomes are described in detail. 

A. Waste Segregation Module 

In this module, YOLOv6 is evaluated numerically and 
compared to recent YOLO models: YOLOv7 [40] and 
YOLOR [41]. The dataset, performance metrics, and training 
parameters are also comprehensively explained. 

1) Dataset: The proposed waste segregation performance 

model is assessed by conducting different experiments on a 

modified version of the TrashNet dataset. The TrashNet 

dataset [42] consists of 2527 images of waste divided into six 

classes: 501 glasses, 594 paper, 403 cardboard, 482 plastic, 

410 metal, and 137 other trashes. The trash class is omitted in 

the modified version of the dataset, and two new classes are 

added, foam and battery. The authors also attempt to balance 

the number of the other classes' images by adding new ones. 

The new images are downloaded using Google Images 

Download software [43]. Then, some augmentation techniques 

are applied, namely: flipping, rotation, and resizing.  

Afterwards, the images are annotated using Ybat software 

[44], then the duplicated ones are deleted. At the end of the 

preprocessing and the annotation process, the dataset becomes 

3217 images divided into seven classes: cardboard, glass, 

metal, paper, plastic, battery, and foam. The description of the 

modified TrashNet is presented in Table I, and samples from 

each class are shown in Fig. 7. 

2) Performance metrics:To evaluate the performance of 

pre-trained YOLO models, three evaluation metrics namely, 

precision (AP), recall (AR), and the F1 score (F1) are applied 

on the model’s detection output. Mathematically, precision, 

recall and F1 can be calculated as: 

Precision
TP

TP FP


   (10) 

Re
TP

call
TP FN


   (11) 

     
Precision         

Precision         
  (12) 

where, TP is the number of true positives, FP is the number 
of false positives, and FN is the number of false negatives. 
Therefore, precision measures the ratio of the correctly 
detected objects to the total number of detected objects. Recall 
measures the percentage of true predictions among the total 
number of class objects, and F1 evaluates the model's 
performance based on the harmonic mean of the precision and 
recall. 

TABLE I. IMAGE CLASSES DISTRIBUTION AND DESCRIPTION IN THE 

DATASET 

Class (type) Description Quantity 

Glass bottle, jar, cups 500 

Paper plates, posters, envelopes, receipts 591 

Cardboard 
packing box, mailing box, cardboard 

sheet 
457 

Plastic 
bottles, boxes, jars, medicine packs, 

food packs 
479 

Metal 
soft drink cans, food cans, foil 

sheets, plates 
468 

Foam packing box, food box, plates, cups 382 

Battery AA, AAA, C, D, 9 volts 326 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 6, 2023 

919 | P a g e  

www.ijacsa.thesai.org 

    
Class 1: Battery 

    
Class 2: Cardboard  

    
Class 3: Foam 

    
Class 4: Glass 

    
Class 5: Metal 

    
Class 6: Paper 

    
Class 7: Plastic 

Fig. 7. Sample images from the modified TrashNet dataset with their corresponding class. 

3) Training : The modified TrashNet dataset is split into 

70% train, 30% for validation and test. Thus, according to 

these percentages, the number of images is 2239 in the 

training set, 541 in the validation set, and 423 in the test set. 

Training the model from scratch with randomly initialized 

parameters results in under-fitting due to the small number of 

images in the dataset. Therefore, the pre-trained YOLOv6 

model, which is trained on the COCO dataset, is fine-tuned on 

the modified TrashNet dataset to exploit the advantages of 

transfer learning. Stochastic gradient descent (SGD) is used 
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during the fine-tuning process to optimize the network 

parameters. The number of epochs, the initial learning rate, the 

batch size, the weight decay, and the momentum are set as 

300, 0.0032, 16, 0.00036, and 0.843, respectively. The 

confidence score is selected empirically, and a confidence 

score of 0.6 gives the best model performance. All the 

experiments are conducted on an Intel(R) Core (TM) i7-

11800H. 

4) Simulation results: The performance of the YOLOv6 

model is compared with the recent YOLO models, which are 

YOLOv7 and YOLOR, in terms of the F1, precision, recall, 

inference time, and model size. YOLOv7 and YOLOR are 

trained on the COCO dataset and fine-tuned on the modified 

TrashNet. In the proposed research, two model architectures 

of YOLOv6 are used, in which the architectures vary 

considering the model size for a better accuracy-speed trade-

off. The model size of YOLOv6n is smaller than YOLOv6s. 

The training process of the four models is performed several 

times according to different data shuffles, and the results are 

presented in Table II. It can be seen from the table that the 

highest precision value is for YOLOv7 in the third run, 

whereas the best recall and F1 values are for YOLOv6s in the 

first run. However, the recall and F1 values for YOLOv7 in 

the third run are less than that of YOLOv6s in the first run, 

while the precision value of YOLOv6s is slightly less than that 

of YOLOv7. Thus, YOLOv6s from the first run is adopted in 

this work. Besides, Table III compares the YOLOv6s versus 

the other models regarding precision, recall, F1, inference 

time, and model size. The presented values of precision, 

recall, and F1 are the average values of the three runs. It can 

be noticed from Table III that the YOLOv6s model has better 

performance with reference to the average values of precision, 

recall, and F1. 

Furthermore, it can be observed that YOLOv6n is the 
smallest model size, and YOLOR is the largest model size and 
inference time. Thus, YOLOv6 has better performance and 
meets the real-time requirements. Using YOLOv6s or 
YOLOv6n depends on the application's requirements; if the 
application needs high accuracy, YOLOv6s is the best choice. 
However, if the application needs a small-size model with 
acceptable accuracy, YOLOv6n is recommended. Fig. 8 
presents the predictions of YOLOv6 on real images captured 
by the authors using the RGB camera of the Samsung Galaxy 
S20 with 12 MP for testing the model's performance. It can be 
seen from the figure that the model predicts all the objects with 
high confidence scores. 

On the other hand, the incorrect classifications on the test 
set are also statistically investigated to find the reasons behind 
the model misclassifications for some objects. Table IV 
analyses the classification output based on the confusion 
matrix. It can be observed from Table IV that there is a slight 
confusion between cardboard and paper, and also, there is 
confusion between plastic, glass and paper. This confusion is 
because, in some cases, the plastic and glass bottles or cups are 
very similar in shape; similarly, the supermarket flyers in paper 
category and the box packaging in the cardboard type. It can be 
observed from Table V that plastic has the lowest recall value, 
90% because plastic is misclassified as the other categories 
multiple times. It can be noticed from the confusion matrix that 
foam and battery are not misclassified; however, their precision 
and recall values are not 100%. Some foam and battery objects 
are undetected, or the background is classified as foam or 
battery. Moreover, the glass and paper categories have the 
lowest precision, meaning several objects are misclassified as 
glass and paper. Furthermore, experimental results find that the 
number of undetected and misclassified objects is 39 objects 
for YOLOv7 and 32 objects for YOLOR from 508 objects in 
the test set compared to 19 objects for YOLOv6. Fig. 9 
visualizes some illustrations of the classification results for 
YOLOv6, YOLOv7, and YOLOR. As can be noticed, 
YOLOv6 outperforms YOLOv7, and YOLOR in most of the 
cases. 

TABLE II. THE EFFECT OF THE DATASET SHUFFLING ON THE MODEL’S 
PERFORMANCE 

 Models Precision Recall F1-score 

1st train 

YOLOR 94.82 93.7 94.26 

YOLOv6n 95.19 93.5 94.34 

YOLOv6s 96.07 96.26 96.17 

YOLOv7 94.75 92.32 93.52 

2nd train 

YOLOR 95.31 95.11 95.21 

YOLOv6n 95.05 93.9 94.47 

YOLOv6s 95.48 94.7 95.01 

YOLOv7 95.87 94.5 95.18 

3rd train 

YOLOR 95.65 94.48 95.06 

YOLOv6n 95.63 94.07 94.85 

YOLOv6s 95.67 94.68 95.17 

YOLOv7 96.47 94.89 95.67 

 

TABLE III. THE AVERAGE PERFORMANCE COMPARISON OF THE YOLOV6 VERSUS YOLOV7 AND YOLOR 

Models F1-score Precision Recall Inference time weight size 

YOLOR 94.84 95.26 94.43 24 sec 289 M 

YOLOv6n 94.55 95.29 93.82 14 sec 9 M 

YOLOv6s 95.45 95.74 95.2 13 sec 37 M 

YOLOv7 94.79 95.7 93.9 11 sec 73 M 
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TABLE IV. CONFUSION MATRIX FOR EVALUATING THE CLASSIFICATION ACCURACY OF EACH MATERIAL TYPE 

  Predicted 

 
 

Glass Paper Cardboard Plastic Metal Foam Battery 

A
ct

u
al

 

Glass 64 0 0 1 0 0 0 

Paper 0 78 0 0 0 0 0 

Cardboard 0 3 58 0 0 0 0 

Plastic 3 3 0 57 0 0 0 

Metal 2 0 0 1 71 0 0 

Foam 0 0 0 0 0 60 0 

Battery 0 0 0 0 0 0 101 

TABLE V. THE PERFORMANCE OF YOLOV6 FOR EACH CATEGORY IN THE DATASET IN TERMS OF PRECISION, RECALL AND F1 

Class Type Precision Recall F1 

Glass 93 98 95 

Paper 92 100 96 

Cardboard 100 95 97 

Plastic 95 90 92 

Metal 99 95 97 

Foam 98 94 96 

Battery 97 99 98 

   
(a) 

   
 (b) 

Fig. 8. YOLOv6 waste detection results (a) test images (b) the model predictions. 
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 undetected  

   
 Undetected  

   
Undetected Undetected Missclassified 

   
 Missclassified  

   
  Missclassified 

   
 Missclassified  

   
Missclassified  Missclassified 

   
 Missclassified  

   
 Missclassified  

(a) (b) (c) 

Fig. 9. Success and failure classifiction results of different test waste objects 

(a) YOLOv6s (b) YOLOv7 (c) YOLOR. 

B. Robotic Arm Simulation Results 

In the robot module, the location and material types of the 
waste objects that were detected in the waste segregation 
module are sent to the robotic arm for motion planning and 
execution. The proposed algorithm finds a solution for all four 
phases and moves the robot arm within its structure limits 
(joints and links limits) to the target position. The robot begins 
at its default position and the camera captures an image of the 
workspace. The image is sent to the computer for processing 
and detecting the objects to define their locations and material 
types. Then this data is formed in a queue and sent to the robot. 
The proposed algorithm utilizes these objects information to 
compute the appropriate joint configurations, allowing the arm 
simulator to perform all required tasks. Fig. 10 shows the 
motion sequence to place the objects in the right destination.  
Fig. 10(a) depicts the robot in its initial state while it is waiting 
to receive data from the object detection module. The 
necessary joints configuration is computed using the previously 
mentioned equations in Section II, then the robot successfully 
navigates to the chosen item (in this case, the red cylinder), and 
then the controller triggers the suction force to pick up the 
object, as illustrated in Fig. 10(b).  The robot lifts the object 
and defines the position of the dedicated basket based on its 
type. The basket position is considered the new target point for 
the robot arm; thus, the trajectory and the correct joint angles 
are computed using inverse kinematics. When the arm reaches 
above the basket, the controller turns off the suction force to 
drop the object in the basket. Afterward, the next object is 
selected (in this case, the yellow disc), the arm considers its 
position to be the new target, computes the required joints 
rotation angles once more, and executes the pick and place 
task. The process is repeated until all objects are placed in their 
proper baskets; thus, the robot returns to its initial state. Fig. 11 
shows the timeline of the process and the execution times for 
each task, such as the time the robot takes to go to the object's 
location, lift it, and finally drop it in the designated basket. It 
can be noticed from the figure that the processing time of 
delivering one object is 0.8 sec. Further, the trajectories of 
motion in joint space for the previous process sequences are 
illustrated in Fig. 12, pointing out that all trajectories are 
smooth, and there hasn't been any rapid damage or significant 
change made to the arm's rotation joints. The complete 
modeling and simulation of a robotic arm pick and place 
system with MATLAB Simscape Multibody and Solidworks is 
shown in Fig. 13. 
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(a)   (b)   (c)   (d) 

  
(e) (f) 

Fig. 10. The motion sequences required to complete the mission. (a) intial state (b) pick up object1 (c) place object1 in the dedicated basket (d) pick up object2 (e) 

place object2 in its basket (f) repeat the process for all objects in queue. 

Time (sec.)0 0.1 0.2 0.3 0.4

 Obj.1         Basket              pick obj.1    

0.5 0.6 0.7 0.8 0.9

           Place obj.1 Obj.2                Pick obj.2

1 1.1 1.2 1.3 1.4 1.5 1.6

          Basket                    Place obj.2

  ..

Initial state

 
Fig. 11. Time line of pick and place mission for multi-objects. 

  
(a)      (b) 
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(c)      (d) 

Fig. 12. The joints angles trajectories (in rad ) (a) q1 (b) q2 (c) q3 (d) q4 

 
Fig. 13. The overall motion control robotic arm system simulator. 

IV. CONCLUSION 

This paper presents an automated waste segregation 
technique relying on blending an object detection system and 
robotic arm design. YOLOv6 is applied to detect and classify 
waste items. Over and above, CAD software is employed to 
design the robot arm that strives towards utilizing a simple 
geometric approach to compute the angles of the arm's joints 
accurately. To signify the efficacy of the proposed system, a 
TrashNet dataset has been modified and exploited for 
assessment. The suggested system proved high effectiveness in 
detecting and segregating waste items into distinct categories. 
Moreover, the system revealed high efficiency in picking the 

waste items, controlling the robot arm movement to the 
appropriate basket location, and placing the object in the proper 
basket. Furthermore, the adopted object detection approach is 
compared to the recent YOLO models: YOLOv7 and YOLOR. 
The obtained results illustrate that the submitted technique 
surpasses these techniques regarding F1, precision, recall, 
inference time, and model size. Over and above, the designed 
robot arm has been proven to consume a fraction of a second 
for picking up and placing a single object in its appropriate 
basket. In future work, new items will be added to the modified 
dataset, and the proposed simulation robot arm will be 
practically implemented. 
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