
(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

286 | P a g e

www.ijacsa.thesai.org

Mobile Apps Performance Testing as a Service for

Parallel Test Execution and Automatic Test Result

Analysis

Amira Ali, Huda Amin Maghawry, Nagwa Badr

Information Systems Department-Faculty of Computer and Information Science, Ain Shams University Cairo, Egypt

Abstract—Now-a-days, numerous mobile apps are developed

daily that influence the lives of people worldwide. Mobile apps

are implemented within a limited time and budget. This is to

keep up with the rapid business growth and to gain a competitive

advantage in the market. Performance testing is a crucial

activity that evaluates the behavior of the application under test

(AUT) under various workloads. Performance testing in the

domain of mobile app development is still a manual and time-

consuming activity. As a negative consequence, performance

testing is ignored during the development of many mobile apps.

Thus, mobile apps may suffer from weak performance that badly

affects the user experience. Therefore, cloud technology is

introduced as a solution that emerges in the domain of software

testing. Based on this technology, software testing is provided as

a service (TaaS) that leverages cloud-based resources. This

overcomes the testing issues and achieves high test quality. In this

paper, a cloud-based testing as a service architecture is proposed

for performance testing of mobile apps. The proposed

performance testing as a service (P-TaaS) adopts efficient

approaches for automating the entire process. Efficient

approaches for test case generation, parallel test execution, and

test results analysis are introduced. The proposed test case

generation approach applies model-based testing (MBT)

technique that generates test cases automatically from the AUT’s

specification models and artifacts. The proposed P-TaaS lessens

the testing time and satisfies the fast time-to-release constraint of

mobile apps. Additionally, the proposed P-TaaS maximizes

resource utilization, and allows continuous resource monitoring.

Keywords—Performance testing; mobile apps testing; mobile

apps performance testing; automated testing; cloud computing;

TaaS; model-based testing

I. INTRODUCTION

The evolution of wireless technology and the development
of an immense number of smartphones led to the prosperity of
the mobile app development industry [1]. An enormous
number of mobile apps are developed and uploaded to
different app stores (e.g., Google Play Store) daily. Thus,
mobile app testing becomes an urgent matter that must be
performed to ensure the application under test (AUT)’s
functionality, quality, and reliability before it is released for
public use. However, mobile apps usually have a short
development life cycle [2]. Thus, many mobile apps are not
rigorously tested.

The performance of mobile apps is considered an
important concern to users. The prosaic performance of
mobile apps roughly affects the user experience [3].

Therefore, mobile app performance testing is considered an
indispensable activity. Mobile app performance testing refers
to the determination of the AUT behavior under various
workloads of concurrent users [4]. This ensures the AUT’s
responsivity to the concurrent users’ instructions as well as
discovering AUT vulnerability under various workloads.

At present, cloud computing with its virtualization
technologies has become a critical orientation in the
information technology industry [5]. The integration of cloud
technology with the software engineering domain led to an
evolution in the field of software testing. Therefore, the
expression of cloud testing appeared. The cloud-based testing
frameworks provide an on-demand TaaS for testing any type
of software app including mobile app testing [6]. TaaS is
defined as a service model that automatically carries out the
entire testing process in a cloud-based environment. Then, it
submits the test results to the end user. Consequently, the
TaaS architecture can be used to provide performance testing
as a service (P-TaaS) using cloud-based resources.

However, the challenges found in the literature [7-10]
related to performance testing and P-TaaS include the
following:

 The majority of researchers focus on discussing
functional testing in the context of cloud testing.
However, performance testing was relatively rare.
Thus, few researchers introduced a comprehensive
architecture for automating the entire performance
testing process and utilizing cloud-based resources.

 Most of the existing performance testing research
focuses on performance test case generation and
execution. Few works present systematic approaches to
automatically analyze the performance test results.

Therefore, the main contributions of this paper include
proposing the following:

 A performance testing as a service (P-TaaS)
architecture that automates the whole performance
testing process for hybrid mobile apps. Hybrid mobile
apps are web apps that are downloaded from mobile
app stores and need an internet connection to operate.

 An automated approach for performance test case
generation. Thus, no need for skillful testers to design
test cases that resemble real users’ scenarios when
using AUT under various workloads.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

287 | P a g e

www.ijacsa.thesai.org

 An approach for simultaneous test case execution on
multiple virtual nodes. This reduces the time required
for the test execution process.

 An automated approach for performance test results
analysis that can detect the performance bottleneck in
the AUT.

The rest of the paper is organized as follows: Section II
presents brief background information. Section III surveys the
most relevant work related to performance testing and P-TaaS
specifically. Section IV presents the proposed mobile app P-
TaaS architecture and a detailed explanation of the
functionality of each module. Section V shows the
experimental results. Section VI mentions the limitations of
the proposed P-TaaS and the differences between the proposed
P-TaaS and other relevant tools. The paper is concluded in
Section VII. Finally, the future work is presented in Section
VIII.

II. BACKGROUND

This section provides brief background information about
concepts that are utilized in the proposed mobile app P-TaaS
architecture (i.e. model-based testing and the OCL-based
UML diagrams).

The Model-based Testing (MBT) [11] is known as an
automatic testing technique that generates performance test
scenarios from the AUT specifications that are represented by
software models. Unified modeling language (UML) [12] is
one of the most widely used methods to model software apps.
MBT automatically generates test cases from the software
models that represent the behavior and the requirements of the
AUT. Then, the software models are converted into test
models (e.g., Finite State Machine (FSM)). FSM graph is
defined as a set of AUT states, where the inputs trigger each
transition and convert AUT from one state to another. FSM
graph is traversed to obtain paths. Each path represents a user
behavior when using AUT. Thus, FSM graph allows the
automation of test case generation.

OCL [13] stands for object constraint language. Generally,
OCL is used as a formal language for adding user-defined
constraints on the UML diagrams. The OCL as a formal
language includes three types of constraints: (i) invariant, (ii)
precondition, and (iii) post conditions. The invariant constraint
added to any object means that this constraint must be true for
the entire lifetime of that object. The precondition constraint
added to an operation shall be true before the operation
execution. The post condition added to an operation shall be
true just after the operation execution.

III. RELATED WORK

Many researchers were concerned with studying mobile
app performance testing in a cloud-based environment from
different perspectives. The benefits and challenges of mobile
app performance testing using cloud-based resources are
widely discussed in the literature [5], [6]. Ali et al. [14]
reviewed the most recent studies and research gaps related to
the performance testing using cloud-based resources. Section
III A discusses the most recent mobile apps performance
testing frameworks, as well as some of the performance

testing tools and services widely used in the market. Section
III B introduces relevant studies on the adoption of model-
based testing (MBT) techniques in mobile app testing. Section
III C discusses the performance test results analysis and
interpretation techniques. Finally, Section III D introduces
recent studies related to the resource utilization and scheduling
approaches adopted in the TaaS domain.

A. P-TaaS Frameworks and Widely Used Performance

Services in the Market

Mobile apps performance testing frameworks based on the
cloud-based environment were presented in the literature. For
instance, Prathibhan et al. [15] presented Android Testing as a
Service framework known as (ATaaS). The framework
depends on the emulators and Android Application Package
(APK) file of the AUT as input to execute test cases.
Performance test cases are generated manually by the testers,
then test cases are recorded to be executed several times under
various workloads. The author did not ensure the efficient
utilization of cloud-based resource. The presented ATaaS
framework focused only on test case execution and ignored
the rest of the performance testing activities.

There are cloud-based performance testing tools and
services that are adopted for both small and large businesses
with various pricing structures. SOASTA CloudTest [16],
LoadStorm [17], and Xamarin Test Cloud [18] were selected
from the list of the top 10 extremely used cloud-based
performance testing tools in 2020 [19]. SOASTA CloudTest
depends on manual test case generation and test results
analysis. LoadStorm generates a performance test results
analytics report that represents the performance metrics, such
as response time and error rate. LoadStorm does not support
automatic test case generation. It requires testers to record test
scenarios manually. Xamarin Test Cloud allows cross-
platform mobile app testing. It supports multiple tenets to
execute tests over thousands of devices. Xamarin Test Cloud
has limited access to open-source libraries.

B. Model-Based Testing Techniques for Mobile Apps

Model-based testing (MBT) techniques are widely adopted
in mobile app testing. Researchers introduced the MBT
approach for mobile app test case generation. For instance,
Usman et al. [12] adopted UML class diagrams and state
machine models in their proposed performance testing
approach. The proposed approach generates abstract test cases
automatically using UML class diagrams, state machine
models, and OCL constraints. The proposed approach was
experimented on two different Android apps. The results
showed that the proposed approach successfully estimates the
performance of apps under test. However, the author only
focused on conducting the performance testing of the code
related to the business logic code. Additionally, he ignored
testing the performance of the GUI.

C. Performance Test Results Analysis and Interpretation

Techniques for performance test results analysis and
interpretation were studied in the literature in the field of P-
TaaS. Researchers presented frameworks for the automatic
analysis of performance test results. Liu et al. [20] proposed a
framework for analyzing test results and detecting

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

288 | P a g e

www.ijacsa.thesai.org

performance bottlenecks. The proposed framework increased
the workload iteratively and monitored the AUT performance
metrics simultaneously. The proposed framework was based
on cloud infrastructure. However, the author did not discuss
issues related to conducting the performance test efficiently
using cloud resources. Additionally, the author ignored
mentioning the used approaches and tools in test case
generation, test execution, and workload generation.

D. Scheduling and Resource Utlization Techniques

There are many researchers presented scheduling
approaches to enhance resource utilization, especially in the
TaaS field. For instance, the fuzzy sets theory was applied to
schedule test cases in the TaaS platform by Lampe et al. [21].
The author applied the fuzzy sets theory as a solution to
address the difficulty of predicting the duration of test case
execution in advance. This is called uncertainty task
scheduling issue. Two algorithms were proposed by the author
to handle the uncertainty task scheduling issue. The proposed
algorithms are based on simulated annealing (SA). The author
used the Q-recent estimate for each test case to estimate the
average durations from the history of executions of a given
test case.

The metaheuristic methodologies were proposed by Rudy
[22]. The author applied metaheuristic methodologies to
schedule the parallel test case execution in the context of
TaaS. Genetic algorithm (GA) [23] is an example of the
metaheuristics methodologies that was used by the author. The
presented metaheuristic methodologies assume that the test
case execution time is unknown before the test execution. The
proposed metaheuristic methodologies have the following
drawbacks (i) it needs a long computation time; (ii) the
metaheuristics can operate on a limited number of test cases at
once (i.e., 300 for SA and 100 for TS and GA).These
limitations badly influence the quality of the solution.

Therefore, it observed from analyzing the previous related
work that there is no comprehensive framework that conducts
the whole performance testing process automatically and
leverages the cloud-based environment efficiently.

IV. THE PROPOSED MOBILE APP P-TAAS ARCHITECTURE

This paper proposes a P-TaaS architecture for mobile apps.
Tester submits a request to the proposed P-TaaS where the
entire performance testing process will be automatically
processed. The overall architecture of the proposed mobile
apps P-TaaS is shown in Fig. 1. The five main layers of the
proposed architecture are as follows (1) user interface layer;
(2) performance testing layer, (3) service management layer,
(4) infrastructure as a service (IaaS) layer, and (5) data
repository.

1) User interface layer: The user interface layer is the top

web-based layer of the proposed architecture. It is where the

testers can interact with the proposed P-TaaS architecture. The

tester submits the test input files to accomplish the

performance test. Then, the tester receives the test results

report through it.

2) Performance testing layer: The performance testing

layer is responsible for automatically accomplishing all the

performance test activities including test case generation,

parallel test case execution, test result analysis and

interpretation, and finally the test report generating. The

proposed approaches that are applied to each of these

activities are discussed in the consequent subsections IV A.

3) Service management layer: The service management

layer is concerned with managing, monitoring, and scheduling

the test execution tasks among the available resources. The

main modules of the service management layer are the

scheduler, runtime monitor, and resource allocator. A detailed

explanation of each module will be introduced in Section IV

B.

4) IaaS layer: The infrastructure as a service (IaaS) layer

includes virtual machines (VMs) where the testing process

physically occurs. The virtualization technology is applied to

provide all needed resources in the proposed P-TaaS

architecture.

5) Data repository: The data repository is where the

proposed mobile app P-TaaS architecture stores all generated

data during its operation. These data include the following: (1)

The test cases generated from the test case generation module,

(2) The performance measurements generated from the test

case execution module, (3) Information produced from the test

results analysis module, (4) The test reports obtained from test

report generation module, and (5) VMs status (i.e., on, off, or

idle) detected by the monitor module.

Fig. 1. Mobile apps P-TaaS architecture.

A. The Performance Testing Layer

The performance testing layer is the core layer of the
proposed mobile app P-TaaS architecture. In this section, the
proposed approaches employed in each module of this layer
will be briefly explained.

1) The test case generation module: The test case

generation module is responsible for the automatic generation

of AUT’s performance test cases. Generating test cases is an

essential activity of the entire testing process [12].

Performance testing requires a set of appropriate test cases

that can evaluate the responsiveness of the AUT under various

workloads of concurrent users’ accesses [3]. Generally, a

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

289 | P a g e

www.ijacsa.thesai.org

performance test case composes of a consecutive set of actions

exerted on the mobile app’s GUI widgets. Performance test

cases should resemble real user scenarios when using AUT.

Besides, they should achieve full coverage of all the AUT’s

GUI actions and activities [4]. Automating the process of

mobile app performance test case generation lowers the cost

and raises the efficiency of testing. Additionally, it can

improve the accuracy of test results.

In this paper, the proposed test case generation approach is
based on the MBT methodology. The proposed MBT
methodology depends on the OCL activity diagrams. Activity
diagrams are used to model AUT’s workflows in terms of
stepwise activities and actions. The OCL defines the
performance requirements formally. The OCL-based activity
diagrams become a good candidate for modeling user behavior
which allows automated mobile app performance testing.
OCL-based activity diagrams are used to represent the AUT
flow of actions as well as the performance requirements
associated with every GUI action. The proposed approach
targets interactive hybrid mobile apps. Interactive hybrid
mobile apps [24] perform the requests of users who interact
with the apps through the GUI through an internet connection.

The proposed test case generation approach depends on
representing each functionality in the AUT by a separate
OCL-based activity diagram. Each AUT’s functionality will
be modeled as an activity diagram. Besides, each activity
diagram will have OCL constraints associated with each
action in the activity diagram. Thus, the prerequisite inputs of
the proposed mobile apps performance test approach are
acquired from the analysis and design team. These inputs
include: (a) an activity diagram for each functionality in AUT;
(b) OCL constraints added to each activity diagram.

For each OCL-based activity diagram, which are submitted
by the tester through the user interface layer of the proposed
P-TaaS architecture, the steps of the proposed test case
generation approach go as follows:

 OCL Based Activity Diagram is parsed into an XM
Based Activity Diagram. This is considered the
primary step to automate the test case generation
process.

 All details included in each XML Based Activity
Diagram are extracted and inserted into a Predicate
Table. Each XML Based Activity Diagram is
converted to its corresponding Predicate Table. Each
element included in the XM Based Activity Diagram is
shown as a row in the Predicate Table.

 The following information about each element of its
corresponding XML Based Activity Diagram are
stored in the Predicate Table:

o Element name.

o Element type (i.e., action, decision, initial, and

final nodes).

o Performance constraints on this element (i.e.

represented with OCL constraints)

o List of all edges to this element.

o List of all edges out from this element.

Edges are used to represent the dependency between
elements. The dependency between elements is proved by the
existence of an edge out from an element which is the same as
the edge to the current element.

 A Finite State Machine (FSM) Graph [25] is
automatically created from each Predicate Table.

 The Depth First Search (DFS) [26] algorithm is applied
to the FSM Graph to find all available Independent
Path. The Independent Path refers to any path from the
start node to the terminal node of the FSM and has at
least one new edge that has not been traversed before.

 The Longest Common Subsequence (LCS) [27]
algorithm is applied to filter the previously generated
independent paths. LCS is an algorithm that eliminates
test paths that are included as a sub-path in another
path, to obtain basic paths. Applying the LCS
algorithm decreases the number of test paths and
ensures high test coverage. Additionally, it guarantees
the existence of each GUI component at least once in
the obtained basic paths. Thus, the LCS algorithm is
used as a test case selection and reduction method.

 Finally, the obtained basic paths as an output of the
proposed test case generation approach are considered
abstract test cases. Each abstract test case consists of a
set of GUI actions that resemble an actual user
scenario, as well as an analogy of an entire path inside
the AUT.

2) The test case execution module: Test case execution

module is responsible for the automatic execution of mobile

app performance test cases in a cloud-based environment. In

the proposed mobile app P-TaaS architecture, test cases are

executed simultaneously on multiple VMs. This leads to a

reduction in the overall testing time, cost, and effort. The input

to the test case execution module includes: (i) abstract test

cases; (ii) Android Application Package (APK) file of the

AUT. The tester submits these two inputs to the proposed P-

TaaS through the user interface layer. APK file is a file format

used by the Android operating system [28]. It assists in the

easy distribution and installation of Android apps. The

proposed P-TaaS architecture is based on using the APK file

of the AUT. Hence, there is no necessity for the AUT’s source

code.

The automatically generated abstract test cases are
converted to test scripts by the tester. The tester records these
abstract test cases using the capture and reply test
methodology [29]. Then, these test scripts will be executed to
measure the AUT performance characteristics and
responsivity toward the heavy load of concurrent users’
access. During the test case execution, performance response
time and error rate are measured. Response time is defined as
the time taken by the AUT to respond to a certain action.
Thus, response time is the total time between sending the
request and receiving the response [3]. The error rate is

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

290 | P a g e

www.ijacsa.thesai.org

defined as the ratio of failed requests with respect to the total
number of requests [3].

Generally, there are several mobile app performance
testing tools for test case execution. Apache JMeter [30] is an
open-source tool that is first used to test the performance of
web applications. Eventually, Apache JMeter expanded to
allow mobile app performance tests as well. Proxy is used by
the JMeter tool to record requests to mobile apps. The proxy
can be configured on a mobile device. Then, the request will
be captured by JMeter. Additionally, the JMeter tool allows
the scalability during the performance testing process by
providing any number of the virtual workload of concurrent
users. Therefore, the JMeter tool is selected in the proposed P-
TaaS to simulate different workloads and test the AUT under
heavy workloads to detect the performance bottlenecks in the
AUT.

The entire process of test case execution is shown in Fig.
2. The steps of the test case execution process are as follows:

a) Firstly, the test case execution module retrieves the

automatically generated abstract test cases from the data

repository.

b) The tester records the steps included in every abstract

test case using the capture and reply test methodology.

c) Test scripts are recorded by the JMeter recording

proxy. The recording proxy of the JMeter can record the

HTTP requests executed by the tester on mobile devices. This

is used for test script generation.

d) Test scripts are stored in the data repository.

e) The test case execution module submits the captured

test scripts and APK of the AUT to the assigned VMs to

execute test scripts in parallel on multiple VMs.

f) APK file will be installed on the assigned VMs.

g) Then, each test script is executed with a different

workload to test the responsivity of the AUT under various

workloads and reveal the AUT bottlenecks.

h) Finally, test results are stored in the data repository

for further analysis and interpretation.

Fig. 2. Test case execution.

3) Test result analysis module: The test result analysis

module is responsible for the automatic analysis of test

execution results. In this paper, an approach for performance

test results analysis is proposed. The proposed approach

collects the performance metrics values (i.e. response time and

error rate) under different workloads. Then, it interprets these

data to determine the performance critical turning point and

the heavy workload value. Performance critical turning point

refers to a point during the AUT execution under various

workloads, where the error rate suddenly increases and the

response time of the AUT increases exponentially [20]. This

indicates that the performance of the AUT descends sharply

and the AUT may crash. When the AUT reaches the

performance critical turning point, this implies that a

performance bottleneck occurs under this workload. Heavy

workload means the value of workload is more than or equal

to the workload where the performance critical turning point

occurs.

The required input to the proposed performance test results
analysis approach includes the minimum and the maximum
number of concurrent users defined by the tester. The tester
defines the minimum and maximum number of concurrent
users that simulate the expected minimum and maximum
workloads exposed to the AUT during its production. The test
shall consider the expected workloads during daily operations,
peak hours on the AUT, and the most popular days the AUT
will be used. The performance metrics are measured starting
from the minimum number of concurrent users’ accesses to
the AUT, until the maximum number of users’ accesses.
During test execution, the response time and error rate are
measured at each workload from the minimum to the
maximum workload values. Additionally, the Error_Threshold
refers to the maximum error rate value that is accepted by the
tester. The AUT is considered in an unstable state when its
error rate value reaches the Error_Threshold during the test
execution. The Error_Threshold is defined by the tester
during the proposed performance test results analysis
approach.

Fig. 3 shows the pseudocode of the proposed performance
test results analysis approach. The steps of the proposed
performance the proposed performance test results analysis
approach go as follows:

a) Firstly, loop on the number of concurrent users

starting from the minimum number to the maximum number.

For each iteration, the workload value will be increased by 50.

b) For every workload value:

 Performance metrics (i.e., response time and error rate)
are measured.

 The measured performance metrics values are added to
Response_Time_Measurements, and Error_Rate lists.

 H_Respone_Time refers to the length of the
perpendicular line on the line connecting the first and
last value of response time at the minimum and the
maximum number of concurrent users, respectively.
Fig. 4 shows H_Respone_Time at a certain workload
value [20]. Equation 1 shows how to calculate
H_Respone_Time at a certain workload x.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

291 | P a g e

www.ijacsa.thesai.org

(1)

 A_RT refers to the length of the line between the
following two points: the coordinates of the first point
are (minimum workload, value of the measured
response time at minimum workload) and the
coordinates of the second point are (certain workload
x, value of the measured response time at this workload
x).

 B_RT refers to the length of the line between the
following two points: the coordinates of the first point
are (maximum workload, value of the measured
response time at maximum workload) and the
coordinates of the second point are (Certain workload
x, the value of the measured response time at this
workload x).

 C_RT refers to the length of the line between the
following two points: the coordinates of the first point
are (minimum workload, value of the measured
response time at minimum workload) and the
coordinates of the second point are (maximum
workload, and value of the measured response time at
maximum workload).

 Sin and Cos refer to the trigonometrical sine rule and
cosine rule, respectively.

 Equation 1 is used to calculate the length of the
perpendicular line H_Response_Time.

 The perpendicular line H_Response_Time which
corresponds to the workload value x. The performance
critical turning point [20] is the point with lonest
perpendicular line.

c) Secondly, the error rate value that exceeds the

Error_Threshold value is determined.

d) Thirdly, the workload value where the error rate

exceeds the defined threshold value is captured. The captured

workload value is called the Unstable_Workload. It is where

AUT starts to crash, and its behavior becomes unstable.

e) Fourthly, RT_Critical_Turning_Point is determined.

It refers to the maximum value of response time in the

H_Response_Time list. It has a workload value less than the

captured Unstable_Workload.

f) RT_Critical_Turning_Workload is captured. It refers

to the workload value at which the

RT_Critical_Turning_Point occurs.

g) Finally, the value of the

RT_Critical_Turning_Workload is obtained. This workload

value represents the

Performance_Critical_Turning_Workload.

h) Heavy_Load refers to any workload value more than

the value of the Performance_Critical_Turning_Workload.

Input: Min_of_Concurrent_Users, Max_of_Concurrent_Users,

Error_Threshold

Output: Performance_Critical_Turning_Workload, Heavy_Load,
Response_Time_Measurements, Error_Rate _Measurements

 Start

 For (x= Min_of_Concurrent_Users; x < Max_of_Concurrent_Users; x+=50)
 // Loop to execute the test cases on different workloads

{

Response_Time_Measurements [x] = Get_Response_Time (x)
// calculate the response time at workload x

Error_Rate_ Measurements [x] = Get_Error_Rate (x)
// calculate the error rate at workload x

}

 For (i=0; I < Error_Rate_ Measuremenst.Lenght; i++)
// Loop to determine the unstable workload where the AUT starts to crash

{

If (Error_Rate_ Measurements.Lenght >= Error_Threshold)

{

Unstable_Workload = i;

Break;

}

}

 For (i= Min_of_Concurrent_Users; i< Unstable_Workload; i++)

{

RT_Critical_Turning_Point = Max (H_Response_Time [i]);

RT_Critical_Turning_Workload = i;

}

Performance_Critical_Turning_Workload =

RT_Critical_Turning_Workload;

Heavy_Load is more than or equal to the RT_Critical_Turning_Workload

 End

Fig. 3. Performance test results analysis approach.

Fig. 4. Performance critical turning point.

4) Test report generation module: The final activity of the

performance testing process is to generate the test report and

submit it to the tester through the user interface. The test

report gathers test results collected from multiple virtual

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

292 | P a g e

www.ijacsa.thesai.org

nodes. The test report contains: (i) the automatically generated

test cases; (ii) the measured performance metrics (i.e.,

response time measurements and error rate measurements);

(iii) the information produced from test results analysis and

interpretation (i.e., performance critical turning point, and

heavy workload value). This can be valuable for testers to

determine the performance deviations and bottlenecks in the

AUT. Consequently, testers utilize this information to resolve

performance issues within the AUT.

B. Service Management Layer

The service management layer is responsible for managing
and optimizing the cloud-based resources and infrastructure.
The aim of this layer includes the following: applying a
suitable scheduling approach for simultaneous test case
execution; reducing the overall testing time; handling
uncertainty issues in scheduling the test case execution;
improving the resource utilization; monitoring the runtime
status of resources.

The service management layer includes three modules: (1)
runtime monitor, (2) scheduler, and (3) resource allocator. An
insightful explanation of the role of each module will be
mentioned in this section.

1) Runtime monitor module: The runtime monitor module

guarantees a high-reliability level. The monitor module is

implemented as a local service for tracking the runtime status

of all virtual nodes. Then, it stores a list of the available VMs.

Additionally, it determines the state of each virtual node (i.e.,

idle, busy, and fail). The list of available VMs is sent to the

scheduler and resource allocator modules, in order to assign

tasks to available VMs.

2) Scheduler module: The scheduler module is developed

as a local service for sorting and prioritizing test tasks

submitted to the proposed P-TaaS architecture [31]. This

module aims to achieve efficient utilization of the resources.

Test task duration is hard to predicate before the actual test
task execution. Additionally, test task duration varies from one
task to another. This is considered an uncertainty scheduling
issue [22]. The proposed approach considers the uncertainty
scheduling issue. The test task scheduling approach depends
on task waiting time and task deadline. Task waiting time is
the amount of time between task submission and the current
time. The task deadline is the time defined by the tester when
the task is submitted to the user interface of the proposed P-
TaaS architecture. The task deadline is the predefined time at
which the task must be finished and delivered before it.

The proposed scheduler approach goes as follows: firstly,
the scheduler module sorts tasks in ascending order according
to the task deadline. This means that tasks with an earlier
deadline will be executed earlier. Secondly, tasks with the
same deadline will be arranged according to their waiting
time. For tasks with an equal deadline, the task with a higher
waiting time will be executed earlier.

3) Resource allocator module: The resource allocator

module aims to achieve a high level of resource utilization and

load balance. The resource allocator module receives an

ordered list of test tasks from the scheduler module.

Additionally, the list of available virtual nodes is sent to the

resource allocator from the monitor module. Consequently,

the resource allocator module allocates test tasks to certain

virtual nodes, in such a way that guarantees the load balance

between virtual nodes.

The proposed resource allocation approach goes as
follows:

 Each virtual node in the proposed P-TaaS has a waiting
queue. It includes a list of tasks assigned to it.

 The length of the waiting queue of each virtual node is
calculated.

 Virtual nodes are sorted in descending order according
to the calculated waiting queue length.

 The virtual nodes with small waiting queue lengths will
be assigned to high-priority test tasks.

V. EXPERIMENTAL RESULTS

Experiments are carried out to assess the applicability of
the proposed P-TaaS. In the experiments, three virtual
machines are used to simulate a cloud-based environment and
support the simultaneous execution of test cases. The three
virtual machines are created using VMware workstation [32].
The VMware workstation allows the creation of multiple
virtual machines on the same physical machine. The
experiments are carried out on a machine with the following
specs: processor Intel Core i5, memory 8 GB, and Windows
10 operating system. Thus, three virtual machines are created
to suit the specs of this physical machine and allow the
simulation of simultaneous test execution of the cloud-based
environment. The JMeter performance testing tool [30] runs
on virtual machines. MS SQL is used to develop data
repositories that store the automatically generated test cases
and test results (i.e., performance measurements, test results
interpretation, and analysis information). The OCL-based
activity diagrams are drawn using the Enterprise Architect tool
[33]. In addition, the Enterprise Architect tool parses the
drawn OCL-based activity diagrams to XML-based activity
diagrams with their corresponding OCL constraints. The
experimental environment is the same for executing each task
using VMs with equivalent specifications.

Nowadays, Android dominates almost 88% of the mobile
device market worldwide [34]. Therefore, our experiments
depend on using Android apps as AUTs. The APK files of the
android AUTs are installed on the virtual node before the test
case execution starts. The objective of the proposed P-TaaS
architectures is testing the performance of hybrid interactive
mobile apps. Therefore, two hybrid mobile apps were chosen
for experiments. They are the SpeedTest app [35] and
GoodReads app [36]. GoodReads app looks like an online
bookstore, where users can read, browse, recommend, and
review books. It is a widely used app worldwide. It is the first
ranked app in the category of (Science and Education,
Libraries and Museums) in the United States. The total
number of visits to the GoodReads apps reached 119.7M [37].

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

293 | P a g e

www.ijacsa.thesai.org

SpeedTest app is an Android app that measures the speed of
the internet. It is the most used app for measuring the
upload/download speed of the internet. It is used by more than
45 billion times unparalleled. Therefore, GoodReads and
SpeedTest apps are selected as AUTs in the experiments.

A. Experimental Results of the Proposed Performance Test

Case Generation Approach

The purpose of this experiment was to evaluate the
proposed mobile app performance test case generation
approach. The proposed test case generation approach is
assessed in terms of action coverage, activity coverage, and
performance requirements coverage. The action coverage
refers to the percentage of actions included in the
automatically generated abstract test cases to all actions
included in the activity diagrams. Similarly, the activity
coverage. Performance requirements coverage refers to the
ratio between the performance requirements covered by test
cases and all performance requirements in the activity
diagrams. The proposed test case generation approach is

based on the black box MBT methodology. The experimental
results of applying the proposed test case generation approach
on the SpeedTest app and GoodReads app are presented in
Tables I and II, respectively.

As shown in Table I, the number of automatically
generated abstract test cases was 17. They were used to test
seven major functionalities of the SpeedTest app. The total
time required to automatically generate test cases using the
proposed approach was 3.055 seconds. It is observed from
Table II that the number of automatically generated abstract
test cases was 28. They were used to test 13 major
functionalities of the GoodReads app. The total time required
to automatically generate test cases using the proposed
approach was 6.325 seconds. Additionally, it is observed from
Tables I and II that the generated test cases for each
functionality cover 100 % of both activities and actions
exerted during each functionality. Therefore, it is considered
faster than the manual approaches, which need a long time to
design, write, and review the coverage of the test cases.

TABLE I. EXPERIMENTAL RESULTS OF THE PROPOSED PERFORMANCE TEST CASE GENERATION FOR SPEEDTEST APP

Functionality
Number of GUI

Activities

Number of

GUI Actions

Number of Test

Cases

Time Spend to

Generate Test

Cases

% of Covered

GUI Activities

% of Covered

GUI Actions

1. Measure download/upload speed 2 2 1 0.211 sec 100 % 100 %

2. Show or delete previous results 3 4 3 0.617 sec 100 % 100 %

3. Adjust app settings 3 3 3 0.614 sec 100 % 100 %

4. SpeedTest support 5 6 3 0.540 sec 100 % 100 %

5. Privacy and terms 8 8 5 0.651 sec 100 % 100 %

6. Test the speed of the video 4 4 1 0.211 sec 100 % 100 %

7. Generate map data 2 2 1 0.211 sec 100 % 100 %

Total 27 29 17 3.055 sec 100 % 100 %

TABLE II. EXPERIMENTAL RESULTS OF THE PROPOSED PERFORMANCE TEST CASE GENERATION FOR GOODREADS APP

Functionality

Number of

GUI

Activities

Number of

GUI Actions

Number of Test

Cases

Time Spend to

Generate Test

Cases

% of Covered

GUI Activities

% of Covered

GUI Actions

1. Search by book name or author name 2 2 1 0.214 sec 100 % 100 %

2. Search by book genre 4 9 2 0.376 sec 100 % 100 %

3. Browse recommended books 4 4 2 0.361 sec 100 % 100 %

4. Browse best-selling books 2 5 1 0.261 sec 100 % 100 %

5. Browse “The Books That Everyone

Should Read At Least Once” list
1 2 1 0.261 sec 100 % 100 %

6. Browse the featured list of books 4 4 10 2.59 sec 100 % 100 %

7. Adjust app settings 3 4 5 0.698 sec 100 % 100 %

8. Edit favorite genres 2 3 1 0.259 sec 100 % 100 %

9. Enter a reading challenge 2 4 1 0.266 sec 100 % 100 %

10. View past challenges 2 4 1 0.277 sec 100 % 100 %

11. Update reading progress 2 3 1 0.269 sec 100 % 100 %

12. Show the best books this year 2 3 1 0.255 sec 100 % 100 %

13. Add kindle notes and highlights 3 3 1 0.270 sec 100 % 100 %

Total 33 50 28 6.325 sec 100 % 100 %

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

294 | P a g e

www.ijacsa.thesai.org

B. Experimental Results of the Proposed Performance Test

Results Analysis Approach

This experiment focuses on executing test cases, then
analyzing the test results to detect the performance critical
point and heavy load of the AUT. The previously generated
test cases were executed. Then, the test results were analyzed
and interpreted. JMeter tool is used for test execution. The
value of the Thread Group variable (i.e., number of simulated
concurrent users) starts from 100 users. Then, the Thread
Group value increments iteratively by 50, until it reaches
1000. The minimum and the maximum number of concurrent
users are defined as a tester input to the proposed P-TaaS
architecture. The minimum and the maximum number of
concurrent users shall be defined according to the estimation
of the owner of the AUT. In the experiments, multiple trials
were made to choose the appropriate minimum number of
concurrent users. It was noticed that the error rate was 0 %
and the response time is very small at workloads less than 100.
However, the response time and error rate values began to
upsurge starting from 100 concurrent users. Thus, the test
results analysis experiments use 100 concurrent users as the
minimum number. The maximum workload is defined in the
experiments as the number of workloads where the AUT’s
behavior (i.e., fluctuation and instability) could be observed.
Thus, the maximum workload in the experiments was 1000
concurrent users, as shown in Tables III and IV.

Generally, there are dependent and independent variables
in any experiment [38]. The goal of the experiment is to
monitor the effect of changing the value of the independent
variable on the dependent variable. In our experiments, the
independent variable is the workload value (i.e., number of
simulated concurrent users). The dependent variables are
response time and error rate. The value of the
H_Respone_Time is a dependent variable on the response
time and error rate.

Table III presents the detailed measurements of test
execution and result analysis for the first functionality of the
GoodReads App (i.e., Search by book name or author name
functionality). The first column in Table III includes the
number of concurrent users’ access to the AUT. The second
column includes the measured response time. The third
column includes the calculated H_Respone_Time value for
the corresponding workload and response time. The fourth
column includes the measured error rate value of the AUT
under a certain workload. Error rate value indicates the
percent of requests submitted to the AUT with error. The last
column includes the time spent on executing the test case
within the corresponding workload. It is observed from Table
III, that at the workload of 1000 concurrent users, response
time increases sharply and H_Respone_Time has the highest
value. During the test execution, it was noticed that the error
rate became 52.7% at the workload of 1000 concurrent users,
which exceeds the threshold error value. This implies that the
AUT becomes unstable and may crash at any workload of
more than 1000 concurrent users. Thus, it is interpreted that
the performance critical turning point occurs at a workload of
1000 concurrent users, a workload of more than 1000 will be
considered a heavy load. This leads to an exponential increase
in the error rate. Besides, the AUT becomes unstable and may

crash. Fig. 5 shows the response time measurement for a
different number of concurrent users’ accesses. It is observed
that when the number of concurrent users reaches 1000, the
response time increases sharply and reaches its peak.

TABLE III. EXPERIMENTAL RESULTS OF TEST EXECUTION AND ANALYSIS

FOR GOODREADS APP

Workload

Response

Time

(sec)

H_Respone_Time

Error

Rate

(%)

Test

Execution

Time (sec)

0 0 0 0 0

100 1,657 1599.1158 0 102

150 1,931 1866.810935 0.333 102

200 2,142 2075.136315 0.25 103

250 1,991 1940.209504 0.2 103

300 9,541 9177.330651 0.17 129

350 19,226 18482.24371 3.86 182

400 9,246 8899.692469 0.25 175

450 25,340 24358.72278 36.33 188

500 4,510 4379.667444 0.4 160

550 9,592 9243.143812 0.64 129

600 26,134 25125.38432 12 205

650 10,818 10426.99425 9.3 143

700 9,632 9296.884107 8.86 172

750 13,546 13050.01291 23.4 152

800 9,256 8950.281099 4.62 141

850 11,409 11014.08098 14.88 189

900 13,766 13275.02628 14.67 228

950 15,958 15379.26698 18.79 113

1000 78,602 71702.83435 52.7 610

Fig. 5. Response time measurement for several numbers of concurrent users’

accesses to the goodreads app.

Similarly, Table IV presents the results for the first
functionality of the SpeedTest App (i.e., Show
upload/download speed). It is observed from Table IV, that at
the workload of 850 concurrent users, the response time
increases sharply and the H_Respone_Time has the highest
value. During the test execution, it was noticed that the error
rate became 56.12 % at the workload of 850 concurrent users,
which is the highest error rate that occurred during the
experiment. Thus, it is interpreted that the performance critical

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000 1200

R
es

p
o
n

se
 T

im
e

(S
ec

o
n

d
s)

Number of Concurrent Users

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

295 | P a g e

www.ijacsa.thesai.org

turning point occurs at the workload of 850 concurrent users.
A workload of more than 850 will be considered a heavy load.
Fig. 6 shows the response time measurement for a different
number of concurrent users’ accesses. It is observed that when
the number of concurrent users increases, the response time
increases sharply and reaches its peak.

TABLE IV. EXPERIMENTAL RESULTS OF TEST EXECUTION AND ANALYSIS

FOR SPEEDTEST APP

Workload

Response

Time

(sec)

H_Respone_Time

Error

Rate

(%)

Test

Execution

Time (sec)

0 0 0 0 0

100 663 647.3549 0 99

150 685 681.4788 0 100

200 717 728.3722 0 100

250 609 653.1596 0 100

300 723 776.9281 0 101

350 675 759.3621 0 100

400 706 811.3094 0 101

450 767 889.2544 0 101

500 1,015 1128.796 0 105

550 1,184 1300.434 0 108

600 2,646 2639.006 0 116

650 3,749 3680.732 0 116

700 1,106 589.3899 0 106

750 13,978 13453.63 23.9 236

800 11,976 11538.09 27.12 190

850 20,647 19859.62 56.12 748

900 46,544 44749.01 78.37 258

950 17,977 17301.74 67.3 469

1000 23,779 22873.01 52.4 623

Fig. 6. Response time measurement for several numbers of concurrent users’

accesses to the speedtest app.

The experimental results presented in Tables III and IV,
and Fig. 5 and Fig. 6 were closely examined. The observations
revealed are as follows:

 There is a fluctuation in the response time, especially
with workloads lower than the detected heavy load.
The fluctuation means that the response time of the
AUT is faster than the preceding run. In the
experiments, the fluctuation appears more obviously in
Fig. 5 than in Fig. 6. For instance, in Fig. 5 the

response time was 9,541 seconds at 300 workloads, the
response time was 19,226 seconds at 350 workloads,
then the response time decreased to 9,246 seconds at
400 workloads. This fluctuation in the response time is
expected and is not considered as a problem during the
performance test execution. This fluctuation indicates
that the AUT does not clean up its resources. The
memory usage metric is used to confirm this. If the
memory usage remains high after the test is completed,
then this implies that the resources are not cleaned-up
at the AUT’s web server. Thus, there are many other
performance metrics (e.g., CPU usage, Memory usage,
DB response time) that affect the responsivity of the
AUT.

 The response time sometimes decreases under high
workloads. However, the error rate values increase
exponentially. This occurs despite the expectations of
high response time value due to the heavy workload.
For instance, in Table IV the response time was 46,544
seconds at 900 workloads and the error rate was
78.37%. However, the response time decreased to
17,977 seconds at 950 workloads and the measured
error rate was 67.3%. The reason is that 900 workloads
were defined as the heavy workload during the
experiment where the AUT became unstable. Thus, the
high error rate implies that a considerable percentage
of the requests returned failed immediately and the
average response time calculated by the JMeter
decreased.

C. Experimental Results of the Effect of Utlizing the

Simulated Cloud-based Environment in the Proposed P-

TaaS

An experiment was conducted to evaluate the effect of
utilizing the simulated cloud-based environment in the
proposed mobile app P-TaaS. This experiment measures the
time spent executing the automatically generated test cases
sequentially on one virtual machine. Then, it measures the
time spent executing the automatically generated test cases
simultaneously on multiple virtual nodes. The experimental
results for sequential and simultaneous test execution for the
GoodReads app and SpeedTest app test cases are shown in
Table V. The sequential execution for GoodReads app test
cases takes 25 hours and 52 minutes, but the simultaneous
execution only takes 8 hours and 37 minutes. The sequential
execution for SpeedTest app test cases takes 18 hours and 18
minutes, but the simultaneous execution only takes 6 hours
and 6 minutes. From the results, applying the proposed
mobile app P-TaaS shows a vast reduction of time in case of
simultaneous test execution.

TABLE V. EXPERIMENTAL RESULTS FOR SEQUENTIAL AND

SIMULTANEOUS TEST EXECUTION FOR SPEEDTEST AND GOODREADS APPS

TEST CASES

Test Case Execution

Approach

SpeedTest GoodReads

Total Time Total Time

Sequential Execution
18 hours and 18

minutes

25 hours and 52

minutes

Simultaneous
Execution

6 hours and 6 minutes 8 hours and 37 minutes

0

10000

20000

30000

40000

50000

0 200 400 600 800 1000 1200

R
es

p
o
n

se
 T

im
e

(s
ec

o
n

d
s)

Number of Concurrent Users

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

296 | P a g e

www.ijacsa.thesai.org

VI. DISCUSSION AND LIMITATIONS OF THE PROPOSED P-

TAAS ARCHITECTURE

This section discusses the difference between the proposed
P-TaaS architecture and other frameworks presented in
literature and are mentioned in Section III. These comparisons
show that the proposed P-TaaS architecture fulfill the
contributions and handle challenges mentioned in Section I.
Additionally, this section discusses the limitations of the
proposed mobile app P-TaaS architecture.

The proposed P-TaaS architecture is compared with
similar cloud-based performance testing frameworks
discussed in literature as well as widely used tools in the
market. The comparison includes the following criteria:
automatic test case generation with high test coverage,
simultaneous test execution on multiple virtual nodes in the
cloud-based environment, automatic test result analysis,
automatic test report generation that includes the performance
metrics (i.e., response time and error rate) collected during the
test execution at different workloads, and efficient scheduling
and resource utilization. The comparison is shown in Table
VI. The first five criteria are related to automating the whole
performance testing process. The last criterion in Table VI is
related to the efficiency of utilizing cloud-based resources.
From the comparison, the proposed P-TaaS is considered a
comprehensive framework that conducts the whole
performance testing process automatically. Moreover, the
proposed P-TaaS leverages the cloud-based environment
efficiently.

Table VII shows that the proposed scheduling approach
achieves efficient resource utilization. Besides, it guarantees
the uncertainty of test execution, load balance between
resources, and low complexity. Although, the fuzzy sets
theory-based approach proposed by Lampe et al. [21] did not
address the issue of uncertainty of test execution time. Lampe
et al. [21] depend on knowing the test execution time in
advance before starting the test, which is difficult to predict
before the test started. Metaheuristic methodologies proposed
by Rudy et al. [22] are very complex to implement. Besides,
both approaches proposed by Rudy et al. [22] and Lampe et al.
[21], have high computation time. The three approaches
presented in Table VII balance the load between the available
resources. The load balance between resources avoids the
downtime and reduces the possibility of losing task
productivity.

However, the limitations of the proposed mobile app P-
TaaS architecture include: (i) not experimenting with other
platforms such as iOS; (ii) not conducting the experiment on a
cluster of distributed VMs; (iii) the experiments are conducted
on VMs with the same capabilities and configurations using
the same performance test tool (i.e., JMeter). However,
performance testing is environment dependent. The test
environment of the AUT shall mimic the real deployment
environment of the application. Changing any factor (e.g., test
execution tool, VM capabilities) during the test execution may
change the test results.

TABLE VI. COMPARISON BETWEEN THE PROPOSED P-TAAS AND PERFORMANCE TESTING TOOLS IN LITERATURE AND IN THE MARKET

Performance Testing

Framework

Automatic Test

Case Generation

Simultaneous Test

Execution

Automatic Test

Result Analysis

Automatic Test

Report Generation

Efficient Scheduling and

Resource Utilization

The Proposed Mobile Apps P-
TaaS

Yes Yes Yes Yes Yes

ATaaS Framework by

Prathibhan et al. [15]
No Yes No No No

SOASTA CloudTest [16] No Yes No No o

LoadStorm [17] No Yes Yes Yes Yes

Xamarin Test Cloud [18] No Yes No Yes Yes

TABLE VII. COMPARISON BETWEEN THE PROPOSED SCHEDULING APPROACH AND OTHER APPROACHES IN THE LITERATURE

Approach
Uncertainty of Test Execution

Time

Load Balance Between

Resources
Computation Time

The Proposed P-TaaS Schedule Approach Exists Exists Simple and Low Computation Time

Fuzzy Sets Theory-Based Approach
Proposed by Lampe et al. [21]

Not Exists Exists Long Computation Time

Metaheuristic Methodologies Proposed by

Rudy et al. [22]
Exists Exists Complex and Long Computation Time

VII. CONCLUSION

The performance of mobile apps is significantly important.
Performance testing assesses and guarantees the reliability and
stability of mobile apps when exposed to different workloads
of concurrent users’ accesses. The lack of performance testing
may lead to degradation in mobile apps. Therefore, more
attention from the industrial and academic communities is
directed to performance testing as a service (P-TaaS). This
paper introduced mobile app performance testing based on the
TaaS architecture. It accomplishes the entire performance
testing process automatically. The proposed P-TaaS adopts

efficient approaches for test case generation, simultaneous test
execution, test results analysis, and scheduling of test tasks.
The experimental results on two different mobile apps prove
the effectiveness of the proposed P-TaaS.

VIII. FUTURE WORK

In future work, the proposed mobile apps P-TaaS can be
extended to include many directions such as: (i) allowing the
performance testing of different types of mobile applications
running on different platforms, (ii) including more types of
testing as: security testing and regression testing., (iii) using a

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

297 | P a g e

www.ijacsa.thesai.org

real cloud-based environment for simultaneous test execution
on many VMs (e.g., Amazon EC2).

REFERENCES

[1] Iqbal, Muhammad Waseem, Nadeem Ahmad, Syed Khuram Shahzad,
Irum Feroz, and Natash Ali Mian. "Towards adaptive user interfaces for
mobile-phone in smart world." International Journal of Advanced
Computer Science and Applications 9, no. 11 (2018).

[2] Arif, Khawaja Sarmad, and Usman Ali. "Mobile Application testing
tools and their challenges: A comparative study." In 2019 2nd
International Conference on Computing, Mathematics and Engineering
Technologies (iCoMET), pp. 1-6. IEEE, 2019.

[3] Torres-Sanchez, Elisa Marlen, Jania Astrid Saucedo-Martinez, Jose
Antonio Marmolejo-Saucedo, and Roman Rodriguez-Aguilar. "Multi-
criteria Decision-Making for Supplier Selection Using Performance
Metrics and AHP Software. A Literature Review." In The International
Conference on Artificial Intelligence and Applied Mathematics in
Engineering, pp. 735-743. Springer, Cham, 2023

[4] Fernandes, Thiago Soares, Álvaro Freitas Moreira, and Érika Cota.
"EPE‐Mobile—A framework for early performance estimation of mobile
applications." Software: Practice and Experience 48, no. 1 (2018): 85-
104.

[5] Khan, Habib Ullah, Farhad Ali, and Shah Nazir. "Systematic analysis of
software development in cloud computing perceptions." Journal of
Software: Evolution and Process (2022): e2485.

[6] Shaqrah, Amin. "Cloud CRM: State-of-the-Art and Security
Challenges." International Journal of Advanced Computer Science and
Applications 7, no. 4 (2016).

[7] Ya’u, Badamasi Imam, Norsaremah Salleh, Azlin Nordin, Norbik
Bashah Idris, Hafiza Abas, and Ali Amer Alwan. "A systematic mapping
study on cloud-based mobile application testing." Journal of Information
and Communication Technology 18, no. 4 (2019): 485-527.

[8] Ya’u, Badamasi Imam, Norsaremah Salleh, Azlin Nordin, Norbik
Bashah Idris, Hafiza Abas, and Ali Amer Alwan. "A systematic mapping
study on cloud-based mobile application testing." Journal of Information
and Communication Technology 18, no. 4 (2019): 485-527.

[9] Bertolino, Antonia, Guglielmo De Angelis, Micael Gallego, Boni
García, Francisco Gortázar, Francesca Lonetti, and Eda Marchetti. "A
systematic review on cloud testing." ACM Computing Surveys (CSUR)
52, no. 5 (2019): 1-42.

[10] Kumar, Pawan, and Rakesh Kumar. "Issues and challenges of load
balancing techniques in cloud computing: A survey." ACM Computing
Surveys (CSUR) 51, no. 6 (2019): 1-35.

[11] Kocatas, Alper Tolga, and Ali Hikmet Dogru. "Enhancing UML
Connectors with Behavioral ALF Specifications for Exogenous
Coordination of Software Components." Applied Sciences 13, no. 1
(2023): 643.

[12] Usman, Muhammad, Muhammad Zohaib Iqbal, and Muhammad Uzair
Khan. "An automated model‐based approach for unit‐level performance
test generation of mobile applications." Journal of Software: Evolution
and Process 32, no. 1 (2020): e2215.

[13] Maschotta, R., N. Silatsa, T. Jungebloud, M. Hammer, and A.
Zimmermann. "An OCL Implementation for Model-Driven Engineering
of C++." In International Conference on Software Engineering Research
and Applications, pp. 151-168. Springer, Cham, 2022.

[14] Ali, Amira, Huda Amin Maghawry, and Nagwa Badr. "Performance
testing as a service using cloud computing environment: A survey."
Journal of Software: Evolution and Process 34, no. 12 (2022): e2492

[15] Prathibhan, C. Mano, A. Malini, N. Venkatesh, and K. Sundarakantham.
"An automated testing framework for testing android mobile
applications in the cloud." In 2014 IEEE International Conference on

Advanced Communications, Control and Computing Technologies, pp.
1216-1219. IEEE, 2014.

[16] SOASTA CloudTest:

https://www.akamai.com/us/en/products/performance/cloudtest.jsp
[17] LoadStorm: https://loadstorm.com/performance-testing-tool/

[18] Xamarin Test Cloud: https://testcloud.xamarin.com/

[19] https://www.softwaretestinghelp.com/cloud-testing-tools/

[20] Liu, Xiaolong, Ruey‐Kai Sheu, Win‐Tsung Lo, and Shyan‐Ming Yuan.
"Automatic cloud service testing and bottleneck detection system with
scaling recommendation." Concurrency and Computation: Practice and
Experience 32, no. 1 (2020): e5161.

[21] Lampe, Paweł. "Fuzzy job scheduling for testing as a service platform."
In Smart Innovations in Engineering and Technology, pp. 25-33.
Springer, Cham, 2017.

[22] Rudy, Jarosław. "Online multi-criteria scheduling for testing as a service
cloud platform." In Smart Innovations in Engineering and Technology,
pp. 34-52. Springer, Cham, 2017

[23] Saad, Mohamed, Ali El‐Moursy, Oruba Alfawaz, Khawla Alnajjar, and
Saeed Abdallah. "Wireless link scheduling via parallel genetic
algorithm." Concurrency and Computation: Practice and Experience 34,
no. 6 (2022): e6783.

[24] Ali, Amira, Huda Amin Maghawry, and Nagwa Badr. "Model-Based
Test Case Generation Approach for Mobile Applications Load Testing
using OCL Enhanced Activity Diagrams." In 2021 Tenth International
Conference on Intelligent Computing and Information Systems
(ICICIS), pp. 493-499. IEEE, 2021.

[25] Ural, Hasan, and Hüsnü Yenigün. "Regression test suite selection using
dependence analysis." Journal of Software: Evolution and Process 25,
no. 7 (2013): 681-709.

[26] Enriquez, Nathanaël, Gabriel Faraud, and Laurent Ménard. "Limiting
shape of the depth first search tree in an Erdős‐Rényi graph." Random
Structures & Algorithms 56, no. 2 (2020): 501-516.

[27] Deorowicz, Sebastian. "Solving longest common subsequence and
related problems on graphical processing units." Software: Practice and
Experience 40, no. 8 (2010): 673-700.

[28] Talha, Kabakus Abdullah, Dogru Ibrahim Alper, and Cetin Aydin.
"APK Auditor: Permission-based Android malware detection system."
Digital Investigation 13 (2015): 1-14.

[29] Armaly, Ameer, and Collin McMillan. "Pragmatic source code reuse via
execution record and replay." Journal of Software: Evolution and
Process 28, no. 8 (2016): 642-664.

[30] Apache JMeter: https://jmeter.apache.org/download_jmeter.cgi

[31] Ali, Amira, Huda Amin Maghawry, and Nagwa Badr. "Automated
parallel GUI testing as a service for mobile applications." Journal of
Software: Evolution and Process 30, no. 10 (2018): e1963.

[32] VMware workstation:

https://www.vmware.com/mena/products/workstation-pro.html

[33] Enterprise Architect Tool.

https://sparxsystems.com/products/ea/downloads.html.

[34] Toffalini, Flavio, Jun Sun, and Martín Ochoa. "Practical static analysis
of context leaks in Android applications." Software: Practice and
Experience 49, no. 2 (2019): 233-251.

[35] SpeedTest app: https://www.speedtest.net/apps/android.

[36] GoodReads app: https://www.goodreads.com/blog/show/1307-
introducing-the-all-new-faster-goodreads-android-app-includes-rereads.

[37] https://www.similarweb.com/website/goodreads.com/#overview.

[38] Andreas Jedlitschka, Marcus Ciolkowski, Dietmar Pfahl: Reporting
Experiments in Software Engineering. Guide to Advanced Empirical
Software Engineering 2008: 201-22.

