(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

An Approach of Test Case Generation with Software
Requirement Ontology

Adisak Intana, Kuljaree Tantayakul, Kanjana Laosen, Suraiya Charoenreh
College of Computing, Prince of Songkla University, Phuket, Thailand

Abstract—Software testing plays an essential role in software
development process since it helps to ensure that the developed
software product is free from errors and meets the defined
specifications before the delivery. As the software specification is
mostly written in the form of natural language, this may lead to
the ambiguity and misunderstanding by software developers and
results in the incorrect test cases to be generated from this unclear
specification. Therefore, to solve this problem, this paper presents
a novel hybrid approach, Software Requirement Ontologies based
Test Case Generation (ReqOntoTestGen) to enhance the reliability
of existing software testing techniques. This approach enables a
framework that combines ontology engineering with the software
test case generation approaches. Controlled Natural Language
(CNL) provided by the ROO (Rabbit to OWL Ontologies Au-
thoring) tools is used by the framework to build the software
requirement ontology from unstructured functional requirements.
This eliminates the inconsistency and ambiguity of requirements
before test case generation. The OWL ontology resulted from on-
tology engineering is then transformed into the XML file of data
dictionary. Combination of Equivalence and Classification Tree
Method (CCTM) is used to generate test cases from this XML
file with the decision tree. This allows us to reduce redundancy of
test cases and increase testing coverage. The proposed approach is
demonstrated with the developed prototype tool. The contribution
of the tool is confirmed by the validation and evaluation result
with two real case studies, Library Management System (LMS)
and Kidney Failure Diagnosis (KFD) Subsystem, as we expected.

Keywords—Software testing; software requirement specifica-
tion; ontology; test case; equivalence and classification tree method

I. INTRODUCTION

Software testing is one of the most important stages to
detect errors in software development. The number of software
bugs are not mainly caused by the code or design. One of
the main causes of software bugs is from the specification
[1][2]. As software specification gathered from the user’s needs
is mostly written in common natural languages in the Soft-
ware Requirements Specification (SRS) document [3][4][5],
this leads unstructured requirements to be ambiguous and
misunderstood by software developers [4][6][7]. Furthermore,
in system and user acceptance testing, test cases are generated
from the SRS. This may result in incorrect test cases to
be generated from the unclear specification. Therefore, it is
necessary that the requirement specification needs to be very
clear and well-defined before generating test cases.

Ontology engineering has been applied in Requirements
Engineering (RE). An ontology is a formal representation of
entities and relationships in a domain of interest [8]. As the
semantics of concepts are formally defined, an ontology can be

used as a formal specification for a program. A domain vocabu-
lary, essential concepts with their taxonomy, relationships (and
constraints) between concepts, and domain axioms are defined
for specific program applications [8][9]. Thus, using ontologies
to express requirement specifications has implications for
advantage in managing complexity, contradictions, or detecting
ambiguity and incompleteness of requirements [4][10][11].
The application of ontology to requirement specification can
help to eliminate the problem of erroneous test case generation
from ambiguous, inconsistent, or incomplete requirements.
Thus, our challenge is to add value to software testing with
ontology modelling in requirement specification [12].

Therefore, in our previous work [13], we presented how
ontology engineering approach can enhance practical software
testing. We proposed a conceptual vision of framework called
ReqOntoTestGen (Requirement Ontology Testcase Generation)
that combines the benefit of ontology to represent the se-
mantics of requirement specification with Control Natural
Language (CNL) and Classification Tree Method (CCTM)
[14][15] testing technique to generate test cases. The ROO
(Rabbit to OWL Ontology Authoring) tool [16] is used by
this framework to design and develop an ontology with CNL
or Rabbit Language. This results in the complexity of require-
ments in natural languages to be reduced and the semantic
of requirements formally defined. The specific syntax of this
tool increases the structure and eliminates the ambiguity of
the requirement ontology. The result of this tool is an export
in Web Ontology Languages (OWL) format to transform
into a structured data dictionary, before it is considered with
decision tree to generate all possible test cases. Furthermore,
CCTM provided by ReqOntoTestGen framework also allows
the number of generated test cases to be minimized by reducing
the redundant test cases and the testing coverage that covers all
possible testing scenarios to be maximized. We demonstrated
manually the effectiveness of the framework with a real case
study, Library Management System (LMS).

The work of this paper is extended from the previous
work [13]. This paper proposed a semi-automatic approach
for test case generation from the requirement specification
ontology based on use case-based requirement specification.
To demonstrate the practical implementation of the approach,
we developed a prototype tool according to ReqOntoTestGen
framework in which the ontology engineering and test case
generation algorithm is implemented in the tool. Control
Natural Language (CNL) enabled by the ROO tool is used
to be a guideline and build conceptual ontologies from the
requirement specification. To generate test cases, the result
from the ROO tool, the ontology represented in terms of OWL
format, is transformed into the XML file of data dictionary.
The OWL and XML transformation rules were designed and

www.ijacsa.thesai.org

1005 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

implemented into our prototype tool for this data dictionary
transformation. CCTM techniques were implemented in the
tool for automatic test case generation purposes. The XML
file of decision tree specifying the constraint of test case
generation is considered with the XML file of data dictionary
to generate test cases. Moreover, the validity, effectiveness
and accuracy of the approach and tool were guaranteed by
two different case studies formulated from real-world systems,
Library Management System (LMS) and Kidney Failure Diag-
nosis (KFD) Subsystem. We compared the actual result of test
case generation from these case studies by the tool with the
expected test cases calculated manually by the practical testers.
Furthermore, the satisfaction level of the proposed approach
and tool was evaluated by practical specialists for future use.

The remainder of the paper is organised as follows. Firstly,
Section II explains an overview of the necessary background
and related work, before the proposed approach and the real-
world case studies for experimenting the effectiveness of the
approach are described in Section III. In Section IV, the proof
of concept of our proposed approach are demonstrated through
the evaluation of the implemented prototype with the case
studies. Section V discusses the lesson learned experienced
from the study result. Finally, the conclusion and future work
are described in Section VI.

II. RELATED WORK

Several research studies have been interested in using
ontology in the software development process to increase the
efficiency of developed products. For instance, [17] proposed
the software process automation ontology (Sponto) that applied
the ontology-based approach to generate a set of artefacts
for the software development process such as user stories
for requirement specification and SQL for database scripts.
Another example is the work of [18] which introduced the
mechanism for transforming security requirements described
in the form of the natural language into a structured ontology.
The inconsistencies of security requirements were also checked
by this mechanism.

However, most studies focus on using ontology to represent
the conceptualisation and knowledge information regarding
software development domains. [19], for example, proposed
the application of ontology to define the information and
knowledge semantics in RE. Instead of using ontology to rep-
resent the semantic of the requirement itself, this work focused
on the use of ontology to describe the way of structuring
requirements in the SRS document. Similar to this, [20], [21]
and [22] proposed a domain ontology for software requirement
change management, requirement classification and use story
assessment in requirement artefacts respectively. In [23], they
proposed ROoST (Reference Ontology on Software Testing)
that builds a set of interrelated ontology patterns related to
the software testing concepts including its process, activities,
artefacts and testing techniques for test case design in order
to associate semantics to a large amount of test information.
Similar to this [24], [25] and [26] applied the ontology-
based method to represent the knowledge related to software
testing activities. The common well-established vocabulary for
testing is used in the ontology application. Their developed
ontologies influence the benefit of knowledge sharing among
the development team.

Vol. 14, No. 8, 2023

Furthermore, some studies focus more on the application
of requirement ontologies to generate test cases in practice.
[23], for instance, presented a combined inference to software
requirement ontology to generate test cases based on software
requirement specification. The test cases were obtained from
test input, test procedure, and expected test results. The work
proposed by [23][27] used inference rules based on reasoner
to generate test cases and improve requirements coverage and
domain coverage. Furthermore, [28] presented Web Ontology
Language for Web Service (OWL-S) to describe the workflow
in the web service application. Petri-Net is used to represent
the meaning of the test process and OWL-S is used to generate
test data. In addition, [29] presented application of OWL
ontologies to generate test cases and test procedures based on
controlled-English model. The closely related work is proposed
by [30]. They proposed test case generation using a learning-
based software testing approach based on requirement ontol-
ogy to generate test cases. However, those research studies
mentioned earlier only focus on the application of requirement
specification ontology to generate test cases, they did not
consider testing coverage in test case generation. Based on our
literature reviews, it can conclude that most of the existing
research studies focus on using ontology to represent the
software testing concept and knowledge sharing in software
engineering communities. A few studies considered more im-
portant in the use of requirement specification ontology in the
software testing process to generate comprehensive test cases
together with testing coverage analysis of test case generation.

III. MATERIALS AND APPROACH
A. ReqOntolestGen Framework

Fig. 1 shows a framework of the test case generation with
software requirement ontology (ReqOntoTestGen) proposed in
our previous work [13]. There are four steps in this framework.
(1) Ontology Engineering generates the ontology according
to CNL from the functional requirement definition described
in terms of natural language by using ROO-CNL authoring.
CNL in ROO authoring enables the complex requirement to be
transformed into a very simple requirement before generating
the ontology. Then, the achieved requirement ontology is
exported in terms of OWL format, before (2) XML Generation
transforms the exported OWL into the XML data dictionary
metadata. In (3) Variable and Decision Tree Management, it
starts with the variable information extracted from the XML
of use case defined in the SRS document, before the corre-
sponding data structure of the extracted variable is extracted
from the XML data dictionary. This, then, is considered with
the XML file of decision tree for test cases generation. Finally,
(4) Test Case Generation creates test cases from the variable
and its conditions by using CCTM technique. CCTM test
case generation technique was chosen to be implemented in
the proposed framework as it provides the benefit in which
the number of test cases are minimized by eliminating the
redundant test cases and the testing coverage is maximized
in which all possible range value of test input variables is
expanded.

B. ReqOntoTestGen Algorithm

To achieve a better understanding of our ReqOntoTestGen
Framework explained in Section III-A, this section describes

www.ijacsa.thesai.org

1006 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

/Requirement Engineering\ ‘Ontology Englneering N\
s Roo-CNL (e
xporting
authoring " owL
™ Trunctional I Requirement
Requirement Ontology

(m Case Generation Engine N\
Variable and XML Generation
Decision tree Management | *Data Dictionary

) Metadata

e
Testing Techniques 6
I
4
Fig. 1. The ReqOntoTestGen framework [13].

the algorithm of the framework in detail.

1) Step 1: Ontology engineering: In this step, the complex-
ity of natural language based functional requirement and its
corresponding constraints are reduced by transforming them
into CNL structure. Then, the target ontology is developed
from the transformed CNL based requirement. Table I shows
an example of mapping from natural language-based require-
ment to ROO-CNL Structure and OWL2 Functional Syntax
respectively. When classifying and structuring the ROO-CNL
successfully, the ontology is exported in terms of file OWL
format for data dictionary metadata generation in the next step.

TABLE I. EXAMPLE OF ROO STRUCTURE

Description Roo-CNL Structure OWL 2 Functional
Syntax
Class cname is a concept Declaration(Class(:cname))
Declaration
Subclass Every scname is a kind SubClassOf(:scname :cname)
of cname
Relationship rname is a relationship Declaration(ObjectProperty(:rname))
Declaration Every cnamel rname ObjectPropertyDomain(:rname
cname?2 :cnamel)
ObjectPropertyRange(:rname :cname2)
Instance insname is a cname Declaration(Namelndividual(:insname))
Declaration ClassAssertion(:cname :insname)

2) Step 2: The XML generation: In this step, the OWL
files obtained from the ontology are transformed into XML
structures of data dictionary that is used for test case genera-
tion. The XML format is used for the target file transformed
from the source of OWL file to make it easier to exchange
data between programs [31]. Based on the study of [32][33],
13 relevant transformation rules are designed and used for
transformation. All rules are available on our tool website!.

Fig. 2 shows an example of transformation rules, consisting
of the first column (Rules) as the rules of transformation.
The second column (OWL2 Functional) is an OWL syntax.
The last column (XML Schema) is an XML syntax. The
transformation consists of three main categories, the structure
of classes and relations, object property restrictions, and data
property restrictions.

3) Step 3: The variable and decision tree management:
This step considers two input files, the XML file of use

Thttps://sites.google.com/phuket.psu.ac.th/reqontotestgen/

Vol. 14, No. 8, 2023

Rules

OWL2 Functional

XML Schema

The Structure of Classes and Relations

1. Class(-cname) Local:
Class xs:element name="cname"
Declaration xs:complexType> </xs:complexType>
/xs:element™
Global:
xs:-element name="cname"/>
2. SubClassOf(:scname :cname) xs:element name="scname" type="cname" />
Subclass
Declaration
3. ObjectProperty(-hasClass) xs:element name="cdomain">
Object ObjectPropertyDomain(-hasClass xs:complexType
Property -cdomain) <Xssequence>
Declaration | ObjectPropertyRange:(-hasClass ‘elementname="hasClass" ref="crange"’>

-crange)

</xs:sequence
xs:complexType:
</xs;element>
xs:element name="crange">
xs:complexType> </xs:complexType>
xs:element>

Object Property Restrictions

5.
Existential

EquivalentClasses(:cdomain
ObjectSomeValuesFrom(-hasClass
.crange))

xs:element name="cdomain">
xs:complexType
=~ sequence-
-element name="hasClass" ref="crange
~/Xsisequence-~
/xs:complexType:
xs:element
xs:element name="crange">
<xs:complexType>
<xs:choice> </xs:choice:
xs:complexType:
xs:element>

s

6.
Universal

EquivalentClasses(:cdomain
ObjectAllValuesFrom(-hasClass
“crange))

xs:element name="cdomain"
xs:complexType:
sequence>
lement name="hasClass" ref="crange"/>
Xs:sequence>
xs:complexType:
xs:element
xs:-element name="crange">
xs:complexType>
<xs:all>
</xs:all>
</xs:complexType’
xs:element™

Data Property Restrictions

11. Namelndividuval(-individuall) <xs:element name="dprop"
Individual | Namelndividual(-individualZ) xs:complexType>
value Namelndividuval(-individual3) 3
ClassAssertion(:cnamel individuall) <xselement name="vahiel" type="xs:dpe’""
DataPropertyAssertion(:dprop xs:element name="vakie2" type="xs:dhpe’"/-
sindividuall "valuel "Vxsd:dtype) xselement name="vakie3" type="xs:dtype’"/>
ClassAssertion(:cnamel “individual?) </xs:choice™
DataPropertyAssertion(-dprop xs:complexType:
‘individual2 "value2"~xsd:dtype) /xs:element”
ClassAssertion(:cnamel -individual3)
DataPropertyAssertion(-dprop
sindividual3 "value3 " xid:dtype
12. EquivalentCla: ‘cname xs:element name="cname">
Minimum | DataMinCardinality(min :dprop xs:complexType>
cardinality | xsd-dfpe)) quence=
s:element name="dprop" type="xs:dpype"
minOccurs="min"/>
xs:sequence
xs:complexType
/xs;element™>
13. EquivalentClasses(: <xs:element name="cname">
Maximum | DataMaxCardinality(max -dprop <xs:complexType>
cardinality | xsd:dfype) Xs:sequence>

xs-element name="dprop" tvpe="xs:dfpe"
maxOccurs="mar"
Xs:sequence
</xs:complexType
/xselement™>

Fig. 2.

Example of OWL and XML transformation rules.

cases and the XML file of data dictionary transformed from
the OWL of requirement ontology. The use case files are
designed from requirements in the SRS document according
to UML Development Guidelines Version 2.0 [34]. The use
case normally demonstrates the overview of functionality and
procedure of the system to generate test cases. Fig. 3 shows

www.ijacsa.thesai.org

1007 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

an example of brief description of use case UC001 describing
the behaviour of function Borrow Item of LMS. To represent
the function behaviour, a sequence of the step-by-step is
used including main flow of events for the most common
success scenario, alternative flow of events for other less
common success scenario and exception flow of events for the
error management scenario. The input and output for function
operation, then, are indicated from the use case corresponding
steps. The data structure of input and output variables are
described in the XML files of data dictionary transformed from
the OWL of requirement ontology.

Use Case Description

UCO001-Borrow Item
ucoo1

Borrow Item

Checking members of the library
Borrow items successfully

High

1.The system shows GUI for a list of items to borrow 2.Member select
items to borrow 3.Member confirm borrow items [A1] 4.The system records
the borrowed items 5.The system displays a list of borrowed items

[A1] If click "Cancel” button, the system will not records [E1]

[E1] The system shows the warning "Confirm cancellation?

Fig. 3. Example of use case detail.

4) Step 4: Test case generation: Our framework imple-
ments CCTM technique for test case generation. It generates
test cases from the extracted input variable with the corre-
sponding data structure. The test case generation process is
described as follows.

Step 4.1: Classification Tree Generation with CTM Tech-
nique. CTM technique generates a classification tree from
the information extracted from the use case. It starts with
the name of the system represented by the use case name
to be a root node of the tree. Then, it layers the tree from
the root node to the terminal classification node with the
subsystem and its corresponding variables respectively. The
leaf node of the tree, terminal class, defines the range of
variable values which are considered to create partitions for
both valid and invalid data values by ECP technique. This
data range value is used to generate test cases in the later
step. An example of classification tree for function Borrow
Item of LMS resulted from CTM is shown in Fig. 4. The
variables and their corresponding range value are visualised in
terminal classification (parent node) and terminal class (leaf
node) of the tree respectively. This can be explained as follows:
Member = {AdminStaff, Grad, Lecturer, Undergrad, None},
Item = {Book, CD, DVD, None}, borrowDate = {beginDate-
endDate, None} and maxDaysBorrow = {7, 14, 30, None}.
These are considered to create an equivalence class partitioning
in the next step.

Step 4.2: Test Case Generation with ECP Technique. In the

Vol. 14, No. 8, 2023

Fig. 4. Example of a classification tree for function Borrow Item of LMS.

classification tree achieved from CTM technique, ECP divides
the terminal classification into equivalence classes for each
possible range of data values. The framework implemented a
strong robust format [4] to generate a test case. The equiva-
lence class in this form considers both valid and invalid values
of all classes of equivalence and allows the test case generation
to cover every possible value of all equivalence classes. An
example ECP for function Borrow Item of LMS is shown in
Fig. 5.

Member

AdminStaff Grad Lecturer UnderGrad None

Item

Book CcD DVD None

borrowDate

beginDate endDate None

maxDaysBorrow

7 14 30 None

Fig. 5.
of LMS.

Example of equivalence class partitioning for function Borrow Item

C. Case Studies

To demonstrate the effectiveness of our proposed approach,
case studies from the real world system are used. We consider
two different case studies for this purpose. One is a Library
Management System (LMS) deployed in Prince of Songkhla
University, Phuket. The other is Kidney Failure Diagnosis
(KFD) subsystem from Hospital Information System (HIS)
replicated from [15]. The following sections describe the case
study information together with the demonstration of how our
approach manually works.

1) Library Management System (LMS): The LMS? is a
system for managing various library resources. The members
of the library can borrow or return resources such as books,
CDs, or DVDs. Each type of member has different borrowing

Zhttp://library.phuket.psu.ac.th/

www.ijacsa.thesai.org

1008 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

conditions. To generate a test case, we considered the return
function that contains fine calculation when the late return
occurs. The detailed information as well as practical require-
ments were formulated from the LMS of Prince of Songkla
University.

Requirements: The functional requirements of LMS is shown
in Table II.

TABLE II. THE FUNCTIONAL REQUIREMENTS OF LMS

Req. ID Reqiurements

LIB-FUN-01 Members can borrow item including books, CDs or DVDs.

LIB-FUN-02 Members are classified into admin staff, graduate student,
lecturer and undergraduate.

LIB-CON-01 Books, CDs, DVDs must be disjointed.

LIB-CON-02 Admin, staff, graduate student, lecturer and undergrade must
be disjointed.

LIB-CON-03 Maximum borrowing items and borrowing periods: 5 books
per 7 days for admin staff and undergraduate students, 10
books per 14 days for graduate students, and 15 books per
30 days for lecturers.

LIB-CON-04 Maximum borrowing items and borrowing periods: 3 discs
per 7 days for all members.

Ontology Engineering: From the functional requirements of
LMS as shown in Table I, it can be used to design and develop
an ontology which consists of classes, relationships, and data
properties. The ontology syntax of LMS is shown in Fig. 6.

Req. ID Roo-CNL Structure OWL2 Functional Syntax
LIB-FUN-01 | Member is a concept Declaration(Class(:Member))
Item is a concept Declaration(Class(. Item))
Every Book is a kind of Item SubClassOf(:Book :Item)
Every CD is a kind of Item SubClassOf(-CD :Item)
Every DVD is a kind of Item SubClassOf(-DVD :Item)
hasBorrow is a relationship Declaration(ObjectProperty(-hasBorrow))
Every Member hasBorrow Itent ObjectPropertyDomain(-hasBorrow :Member)
ObjectPropertyRange(-hasBorrow :Item)
LIB-FUN-02 | Every AdminStaffis a kind of Member | SubClassOf(-AdminStaff :Member)
Every Grad is a kind of Member SubClassOf(:Grad :Member)
Every Lecturer is a kind of Member | SubClassOf(:Lecturer :Member)
Every UnderGrad is a kind of Member | SubClassOf(:UnderGrad :Member)
LIB-CON-01 | DisjointClasses() DisjointClasses(:Book :CD)
DisjointClasses(-Book :DVD)
DisjointClasses(:CD :DVD)
LIB-CON-02 | DisjointClasses() DisjointClasses(:AdminStajff :Grad)
DisjointClasses(:AdminStaff :Lecturer)
DisjointClasses(:AdminStaff . UnderGrad)
DisjointClasses(:Grad :Lecturer)
DisjointClasses(:Grad : UnderGrad)
DisjontClasses(:Lecturer :UnderGrad)
LIB-CON-03 | borrowDaysRI is a Declaration(NameIndividual(:borrowDaysR1))
maxDaysBorrow ClassAssertion(:AdminStaff :borrowDaysR1)
LIB-CON-04 . DalaPropem'Assertion(.‘quDm'sBorrow
And, configure data property assertion | :berrowDaysR1 "7 xsd:integer)
directly through GUI in the tool.
LIB-FUN-03 | hasReturn is a relationship Declaration(ObjectProperty(:hasReturn))
Every Member hasReturn Item ObjectPropertyDomain(-hasReturn :Member)
ObjectPropertyRange(:hasReturn :Item)
LIB-FUN-04 | DataProperty() Declaration(DataProperty .fine))
DataPropertyDomain() DataPropertyDomain(.fine
ObjectSomeValuesFromy() ObjectAllValuesFromy(-hasReturn :Member))
DataPropertyRange() DataPropertyRange(.fine xsd.integer)

Fig. 6.

The ontology syntax of LMS.

Fig. 7 shows the ontology structure of LMS generated by
ROO tool. It consists of two classes that are related to each
other. The Member class is a member of the library including
AdminStaff, Grad, Lecturer, and UnderGrad. The Item class
is a library resource that can be borrowed including Book,
CD, and DVD. The ObjectProperty between the Member and
Item classes represents the relationship in which members can
borrow (hasBorrow) library resources. Another relationship,
hasReturn is a relationship where members can return library
resources after they have been borrowed. Furthermore, the
DataProperty is also an entity of data, the domain is a

Vol. 14, No. 8, 2023

class, and the data type is a range of data properties. For
example, borrowDate has class Member to be a domain and
xsd:dateTime to be a range. Moreover, an individual or instance
of value such as borrowDayR1 “7” is the condition for the
maximum of days to borrow the Book of UnderGrad member

type.

Y (daysofl
PN

~
- —f\ J— — > xsdinteger

—(returnDate g Q\//\ Fine /‘— — xsd:integer
- & ~

-, a

2

5

v
xsd:dateTime “5%’

- ~a
(borrowDate j—properties of
-

r o

g%
| 7%
Adminstaff] & %

rad

UnderGrad

o
Book DVD
o

Y _L —_
xsd:dateTime G Lecturer
:borrowDaysR1 "7"
:borrowDaysR1 "7".
2o
:lmrrm.m.a\,-sm"m“4 11
177
saysR1 "7"
ysR2 "14" |
177
Y 7
n -
owDaysR1 "7"

-
- - - - - -"F-""-"""""""="—"="—"="—"=-= ~N
i Object 1
| o Rl D = N
| individual |

Data o
| Datatype Propeﬂvf\ /‘ Value)
N I _____ 7/

Fig. 7. The ontology structure of LMS.

Test Case Generation: Fig. 8 demonstrates the classification
tree resulted from CTM technique. In the tree, Library Man-
agement System as a system name is considered to be a root
node, before the subsystem Return Item is defined as a ter-
minal classification in the next level. Variables Member, Item,
borrowDate, returnDate, maxDaysBorrow, daysOfLateReturn,
and fine related to this function are defined in the below level in
the tree. These variables are considered to generate test cases
by using ECP in the later step. The terminal class of each
terminal classification defining the possible range of value is
used to be a partition for generating test cases and test data in

ECP.
Library Management
System

End = End of Date brD = borrowDate

Beg = Begin of Date

mdB = maxDaysBorrow
Fig. 8. The classification tree of LMS.

Test cases are generated from the Cartesian product of all

www.ijacsa.thesai.org

1009 |[Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

. . . . Req. ID Roo-CNL Structure OWL2 Functional Syntax
equivalence classes defined in four input variables (Member,
KID-FUN-01 | Stageis a concept Declaration(Class(:Stage))
Item, borrowDate, returnDate). There are a total of 160 Gt is 2 somomnt Dechonation(Cluesy-GER)
(5%4%2%*4) test cases to be generated. An example of test cases TOlsaconcept Declataon, Gl 10,
. . hasGFR is a relationship Declaration(ObjectProperty(-hasGFR))
and test data is shown in Table III. Every Stage hasGFR GFR ObjectPropertyDomain(:hasGFR :Stage)
ObjectPropertyRange(-hasGFR :GFR)
KID-FUN-02 | Every ESRD is a kind of Stage SubClassOf(:ESRD :Stage)
TABLE III. EXAMPLE OF TEST CASES AND TEST DATA FOR TESTING Every Loss is a kind of Stage SubClassOf(-Loss :Stage)
Every Failure is a kind of Stage SubClassOf(:Failure .Stage)
RETURN OPERATION Every Injury is a kind of Stage SubClassOf(:Injury :Stage)
Every Risk is a kind of Stage SubClassOf(:Risk . Stage)
- KID-CON-01 | DisjointClasses() DisjointClasses(:ESRD :Loss)
TC#/| Member Item borrow return maxDays| daysOf fine Comments DisjointClasses(:ESRD -Failure)
Date Date Borrow LateReturn DisjointClasses(-ESRD :Injury)
1 AdminStaff | Book 1/7/2019 2/7/2019 7 0 0 Valid SRR eI
DisjointClasses(:Loss :Failure)
2 AdminStaff | Book 5/712019 15/7/2019 7 3 9 Valid DisjointClasses:Loss :Injury)
. DisjointClasses(:Loss :Risk)
— DisjointClasses(: Failure :Injury)
67 Lecturer Book 10/7/2019 9/6/2019 30 -1 -3 Invalid DisjointClasses(:Failure -Risk)
68 Lecturer Book 10/7/2019 None 30 None None Invalid DisjointClasses(:Injury :Risk)
KID-FUN-03 | DataProperty() Declaration(DataProperty/(.Sex))
N N N N N N N - DataPropertyDomain() DataPropertyDomain(:Sex :GFR)
160 None None None None None None None Invalid DataPropertyRange() DataPropertyRange(:Sex xsd:integer)
sex] is a Sex Declaration(NamelIndividual(:sexi))
And. configure data property assertion | DataPropertyAssertion(:
Table III is the test case generation result for testing return directly through GUL in the tool Sex :sexl "Female™ wsd:string)

operation. Consider test case #1, it is a normal test case in
which there is no late return for AdminStaff. This test case is
different from test case #2. This results in the fine of 9 (3*3)
to be calculated. Furthermore, the generated test cases cover
in the case of invalid. In invalid test case #67, for example,
it defines the return date before the borrowing date.

2) Kidney Failure Diagnosis (KFD) Subsystem: The KFD
subsystem is a system for recommending the treatment appro-
priately to physicians for patients that have kidney dysfunction.
It is calculated from the Glomerular Filtration Rate (GFR)
result, consisting of sex, age, and creatinine result (SCr).
The GFR and Urine Creatinine (UO) results are paired to
interpret the stage of kidney failure. This case study is based
on [15]. It is an open-source system and is part of the Hospital
Information System called HospitalOS?. It is a system that is
installed and used in community hospitals and more than 100
clinics in Thailand.

Requirements: The functional requirements of KFD that design
and develop an ontology comprise a total of four requirements
as shown in Table IV.

TABLE IV. THE FUNCTIONAL REQUIREMENTS OF KFD

Req. ID Reqiurements

KFD-FUN-01 Stage is paired with GFR and UO.

KFD-FUN-02 Stage of GFR includes ESRD, Loss, Failure, Injury and Risk.
KFD-CON-01 ESRD, Loss, Failure, Injury, Risk must be disjointed.
KFD-CON-02 GFR is calculated with sex, age, height and SCr.

Ontology Engineering: From the functional requirements of
KFD in Table IV, it can be used to design and develop an
ontology which consists of classes, relationships, and data
properties. The ontology syntax of KFD is shown in Fig. 9.

Fig. 10 shows the ontology structure of KFD resulted from
ROO tool. It consists of three classes: Stage, GFR, and UO.
The stage of kidney failure includes ESRD, Loss, Failure, In-
jury, and Risk. The ObjectProperty is the relationship between
classes. For example, hasPair is a relationship between GFR
and UO class to represent a pair to interpret the stage of kidney
failure. Furthermore, the DataProperty is also an entity of data.
As GFR contains Scr, Height, Age and Sex, they are defined as
a data property. In the data property, the domain is a class and
the data type is a range. For example, Height has class GFR

3http://www.opensource-technology.com

Fig. 9. The ontology syntax of KFD.

to be a domain and xsd:integer to be a class range including
the restriction of data property is 0-300 (0-300"" xsd:integer).
Another example is Sex which has a domain to be class GFR
and a range to be xsd:string. For this property, two individuals
or instances are defined Female and Male to represent the
gender of the patient.

:sex1 "Female"

isex2 "Male"

o5 % op,
0o 5% s
g % o & s,
£ % o %,
ESRD 5’& PR Pt $ % Y=<
2 roser) £ % f sex
o St £ =< -~
.E -n jury == \
¢ Heieht) Age
Comge)y 8
xsd:float recvwing
Al
"0-300"""xsd:integer xsd:integer
T T T T T T T T T T T T T T N
" s ()2 !
| Property |
pat Data 7 Ty Individual |
| Datatype Property \, P Value]
\ 7/

Fig. 10. The ontology structure of KFD.

Test Case Generation: Fig. 11 demonstrates the classification
tree resulted from CTM technique. In the tree, GFR Module
as a system name is considered to be a root node, before the
subsystem GFR Interpreted is defined as a terminal classifica-
tion in the next level. Variables Sex, Age, Height, SCr, GFR,
UO, and Stage related to this function are defined in the below
level in the tree. These variables are considered to generate test
cases by using ECP in the later step. The terminal class of each
terminal classification defining the possible range of value is
used to be a partition for generating test cases and test data in
ECP.

Table V is the test case generation result for testing GFR
interpreted operation. Consider test case #1, it is a valid test
case for GFR calculation of a female patient less than 18 years
old. This result of the stage of kidney failure interpreted as the
Injury. Furthermore, the generated test cases cover in the case

www.ijacsa.thesai.org

1010 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

GFR Module

GFR Interpreted

N

Fig. 11.

The classification tree of KFD.

of invalid. In test case #144, it is an invalid test case because
the data value is out of the range of interest.

TABLE V. EXAMPLE OF TEST CASES AND TEST DATA FOR TESTING
RETURN OPERATION

Vol. 14, No. 8, 2023

Home New Project Existing Project Contact

Project Name : Library Management System

Step 1: Import use case file

Bl usecasefile (xmi)

Step 2 : Import OWL ontology file and XML generation

(a) The import file management screen

(b) The variables and values management screen

TC+# Sex Age Height Scr GFR LI[0) Stage Comments Create Decision Tree
1 Female 10 142 0.8 73 450 Injury Valid Comlion Adtios
2 Female 18 165 4.5 15 27 Loss Valid =
61 Male 177 0.3 356 30 555 Risk Valid
62 Male 65 104 7.2 7 10 ESRD Valid et
e s s e e e s o o = . m
144 None 200 1140 110.2 11558 65487 None Invalid >
IV. PROOF OF CONCEPT
=3
- ==

A. Tool Development

To demonstrate the effectiveness of ReqOntoTesGen ap-
proach, a prototype tool was developed. The developed tool is
a Java based web application using Node.js 16.14.0* JavaScript
runtime environment that is well known and widely used.

Fig. 12 demonstrates an example of our developed tool.
Fig. 12a shows the screen for importing the necessary XML
file. Two types of XML files are imported into the tool (1)
the XML file of use cases indicating functionality from SRS
documents and (2) the OWL file of requirement specifications
created by the ROO tool. Then, the XML file of data dictionary
is automatically generated from the OWL file. All extracted
variables and their range value from the XML file of data
dictionary are analysed. This includes variable name, variable
type and variable range value as shown in Fig. 12b. The next
step is the decision tree creation in the case that the system uses
the condition for decision making on the operation process.
The condition and decision of the decision tree can be adjusted
as necessary as demonstrated in Fig. 12c. This decision tree is
considered with the transformed data dictionary to generate test
cases by the CCTM technique in the tool. The classification
tree and equivalence partition of related variables resulted from
CCTM are shown on the screen as demonstrated in Fig. 4 and
5 respectively. Test cases are automatically generated from this
classification tree and equivalence partition. The result of test
case generation is shown on the screen as in Fig. 12d.

“https://nodejs.org/en/about/

Test Case/Test Data

(d) The test case / test data generation screen

Fig. 12. Example of the tool screens.

B. Tool Validation

To validate the developed tool whether all functionalities
of the tool perform correctly according to the RegOntoTest-
Gen framework proposed in Section III. Three test scenarios
corresponding to three steps of the framework were conducted
as shown in Table VI. This includes 1) 7S-01 Validate OWL
transformation to XML function with 13 relevant designed
transformation rules. 2) TS-02 Validate variable and decision
tree management function to validate the correctness of ex-
tracted variables from the XML file of use case and data
dictionary together with the decision tree information. 3) 7S-
03 Validate test case generation function that validates the
correctness of test case generation with CCTM techniques.

www.ijacsa.thesai.org

1011 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE VI. THE RESULT OF TOOL TESTING

Test Scenario Result Revision
TS-01 Validate OWL transformation to XML function Fail Pass
TS-02 Validate variable and decision tree management func- Pass -

tion

TS-03 Validate test case generation function Pass -

Table VI demonstrates the validation result. This led us to
reveal an error that occurred in 7S5-0/. The validation result
of TS-01 was Fail because the individual value transformation
rule generated the wrong order in the XML element as shown
in Fig. 13a This resulted in the data property element e.g.,
maxDaysBorrow to be generated outside the class element.
This violated our designed transformation rules in which the
data property needs to be inside the class. This led us to
restructure the rule according to the design. Fig. 13b shows
the corrected version of this error that resulted in this testing
scenario to be Pass.

“http://w

="http://waw.w3.0rg/ 2601/ XMLschema” /
Member™">

(2) (b)

Fig. 13. The error of TS-01.

C. Tool Evaluation

We evaluated the effectiveness of our proposed approach
with two real case studies, Library Management System
(LMS) and Kidney Failure Diagnosis (KFD) subsystem. This
evaluation is divided into two parts that are 1) effectiveness
evaluation and 2) satisfaction evaluation.

1) Effectiveness evaluation: The precision, recall and F-
measure computation were calculated by comparing the result
produced by the manual operation and automated tool. The
computation metrics were adapted from [35] as follows.

|{Exzpert Identified} N {Tool Identified}| “1
[{T ool Identified}|

|{ Exzpert Identified} N {Tool Identified}|
|{ Ezpert Identified}|

Precision = 00 (1)

Recall = x 100 2)

2 X Precision X Recall
F — measure = — 3)
Precision + Recall

TABLE VII. THE RESULT OF IMPACT ANALYSIS

System identified #* b}:eSt ci?lse(:zstiﬁe 7 by Precision | Recall F-measure
an expert the tool

LMS 300 160 100% 53.33% | 69.56%

KFD 144 144 100% 100% 100%

Table VII demonstrates the comparison results between the
expected test case manually created by experts and the actual
test case automatically generated by the tool. Considering the
calculated F-measure with precision and recall of KFD case
study, the accuracy of the automatic tool performing with this

Vol. 14, No. 8, 2023

case study is very high. This is because KFD case study is not
a complex case study compared to LMS case study. However,
considering the calculated F-measure, with precision and recall
of LMS, they are quite low. We have found that in the manual
design of test cases by experts, the out of range of variable
borrowDate and returnDate was identified as invalid partition.
This led to 300 (5*4*3*5) test cases to be created. However,
after we revealed this case, we discovered that this type of
dateTime variable has the range of time from “Begin of Date”
to “End of Date” that can be selected at any time for testing.
Therefore, it is impossible to be “Out of Range”. This led us to
recalculate the number of created test case after cutting these
“Out of Range” partition (partitions 12 and 13 in Fig. 14) and
resulted in this recalculation to be the same as calculated by
the tool.

Partition Num of Valid Data Invalid Data

Partition

Member 5 Lecturer™ |UnderGrad(®) None %)

(input)

Adminstaff) | Grad®

Item 4 Book (©) co @ ovD @ None (¥

(input)

borrowDate 3 a0

(input)

Begin of Date - End of Date None (11 Out of Range "%

returnDate B -a9
(input) (hasBorrowDate +
hasMaxDaysBook)

+ (9 BegmofDatef“:“ None (16) Out of Range (1)
hasMaxDaysBook) - hasBorrowDate
End of Date

maxDaysBorrow 4 708 14019 3020 None (21

(fix rate)

3)

daysOfLateReturn 3 1- Late Return (22 None smallest Number - 1 2*

(output)

fine 3 1xFine Rate - (2%) None (26 smallest number - Fine Rate(?7"

(output) daysOfLateReturn x Fine Rate

Fig. 14. The partition of variable change.

2) Satisfaction evaluation: The satisfaction of our proposed
approach and tool was evaluated with a wide range of experts
that have at least five years in software engineering and
software testing. This included two programmers and three
testers. We designed questions for satisfactory evaluation, it
consists of four categories for evaluation, Q1) Functionality,
Q?2) Efficiency and reliability, Q3) Usability, and Q4) Ability
and applicability that is shown in Table VIIL.

TABLE VIII. SATISFACTION QUESTIONS

Questions

Q1. Functionality

Q1.1 The function can operate accurately and
appropriately.

Q1.2 The function can operate with each
other.

Q1.3 The function can operate according to
the users’ requirements.

Q2. Efficiency and reliability

Q2.1 The prototype can appropriately process
the test cases.

Q2.2 The prototype can increase the structure
of functional requirements.

Q2.3 The prototype can reduce errors caused
by functional requirements.

Q2.4 The prototype can work completely.

Q3. Usability

Q3.1 The prototype is easy to learn and un-
derstand.

Q3.2 The prototype is easy to use, and the
function is not complicated.

Q4. Ability and applicability

Q4.1 The prototype can be applied in the
system or other case studies.

Q4.2 The prototype can be easily installed
and used.

[Average

Likert scale (Mandatory)

Likert scale (Mandatory)

Likert scale (Mandatory)

Likert scale (Mandatory)

Likert scale (Mandatory)

Likert scale (Mandatory)

Likert scale (Mandatory)

Likert scale (Mandatory)

Likert scale (Mandatory)

Likert scale (Mandatory)

Likert scale (Mandatory)

The Likert scale was used to design the levels of satisfac-
tory for each question including Strongly Agree (5), Agree (4),

www.ijacsa.thesai.org

1012 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Neutral (3), Disagree (2), and Strong Disagree (1) respectively.
The evaluation result of the satisfactory is shown in Fig. 15.

Qi1 1 .
Q1.2 |
Qi3 1 e
Q2.1

Q2.2

-

@3 2 e —
Q.4 2 .
.1 3 e ZE——
Q3.2 1 e
Qa1 3

Q4.2 2

0% 20% 40% 60% 80% 100%
Satisfactory Level ®Strongly Disagree M Disagree Neutral Agree W Strongly Agree
Fig. 15. Results of the four Likert scale questions.

As can be seen in Fig. 15, most of the specialists strongly
agreed that our developed tool provides an accurate and
appropriate functionality and interoperation ability (with an av-
erage of Q1.1-1.3, 86.66% of them strongly agree). They also
strongly agreed that the tool is efficient and reliable (with an
average of Q2.1-2.4, 75% of them strongly agree). Considering
the usability (Q3), 60% of specialists strongly agreed that the
functions provided by the tool are not complicated and easy to
use and understand. Furthermore, the specialists satisfied the
prototype in terms of its ability and applicability (Q4) from
the agree level (with half of them satisfied at the strongly
agree level). Overall, we can conclude that the specialists
were mostly satisfied our ReqOntoTestGen approach and its
corresponding tool.

V. LESSON LEARNED AND DISCUSSION

In this section, we discuss the benefits of the proposed
ReqOntoTestGen approach for generating test cases with the
software requirement ontology. This section also shares lessons
learned achieved from our implications of practical implemen-
tation and experiment. The approach influences the benefits
according to our research questions as follows.

e It provides a systematic mechanism and framework
to generate test cases from a very clear structure
of functional requirements encoded in the form of
ontology. The application of ROO tool in the frame-
work enables the unstructured requirement to be trans-
formed into more structured and clearer requirements
before generating ontology. This results in the com-
plexity of requirement structure to be reduced and the
ambiguity of the terminology used in the ontology
to be eliminated as discussed in [8][11][16][36][37],
This also guarantees that the main causes of errors in
software testing that are mainly from requirements to
be eliminated and the correct test cases that satisfied
user requirements to be generated.

e CCTM test case generation technique implemented
in the framework to construct test cases influences
benefits that the number of test cases is reduced with
maximizing testing coverage. As claimed in [14][15]
we have discovered from our implemented experiences

Vol. 14, No. 8, 2023

that CTM technique in CCTM enables the redundant
test cases to be eliminated, On the other hand, ECP
technique in CCTM expands the possible range value
both valid and invalid cases. This led to the testing
coverage to be increased.

o ReqOntoTestGen approach provides a semi-automatic
prototype tool that implemented the algorithm to
generate test cases from well-defined ontology. The
results of the experiment by comparing the manual
test case generation and automatic test case generation
by the tool with two case studies: LMS and KFD can
guarantee the correctness, effectiveness, and accuracy
of the proposed approach and tool. Furthermore, the
efficiency and potential use in the future are confirmed
by the evaluation result from experts.

However, as suggested by the practical specialists from the
satisfaction evaluation, there are limitations of the approach.
Firstly, the proposed approach provides the semi-automated
prototype tool in which the conceptual ontologies from the
requirement specification resulted from the ROO tool need to
be input manually into the prototype for test case generation.
Furthermore, the experiment for the prototype validation and
evaluation is based on two real case studies. It needs to be
evaluated with other different domain of case studies.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel approach, ReqOntoTestGen,
to enhance the efficiency of traditional testing techniques. It
provides a semi-automatic framework that integrates ontology
engineering with software testing for test case generation. The
effectiveness and efficiency of our ReqOntoTestGen approach
and framework is demonstrated by the developed prototype
tool. The experiment results with the implementation of two
case studies have shown that the Control Natural Language
(CNL) from the ROO tool used in our tool enables the un-
structured functional requirements that may lead the generated
test cases to be inconsistent to the users’ needs to be more
structured and clearer, before transforming them into the OWL
conceptual ontology. This OWL file is, then, transformed
automatically into the XML file of data dictionary. CCTM
technique implemented in the tool creates the automatic test
case generation environment in which test cases are generated
automatically from the transformed XML file of data dictio-
nary with the decision tree. This influences the benefits that
the redundant test cases to be eliminated and the coverage
of the test case generation to be increased. Furthermore, the
evaluation result has shown that our developed tool has a
high degree of validity, accuracy and satisfaction level from
the practical specialist perspective. As a result of this, it can
be confirmed that our proposed approach contributes a hybrid
test case generation technique with a software requirement
ontology engineering that both meets the users’ need and
covers all possible testing scenarios.

For the future work, to increase the capability and re-
liability of the developed prototype, it needs to link with
the ROO tool which can automatically input the conceptual
ontology resulted from the ROO to the prototype. Furthermore,
the evaluation of the prototype with different domain of case
studies is still open as another research issue.

www.ijacsa.thesai.org

1013 |Page

and

(IJACSA) International Journal of Advanced Computer Science and Applications,

DEPLOYMENT AND AVAILABILITY

The developed tool with the user guide document
source of example case studies is available at

https://sites.google.com/phuket.psu.ac.th/reqontotestgen/.

[1]
[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

R. Patton, Software Testing (2nd Edition). USA: Sams, 2005.

Z. Liu and R. Kang, “Imperfect debugging software belief reliability
growth model based on uncertain differential equation,” IEEE Transac-
tions on Reliability, vol. 71, no. 2, pp. 735-746, 2022.

D. Dermeval, J. Vilela, I. 1. Bittencourt, J. Castro, S. Isotani,
P. Brito, and A. Silva, “Applications of ontologies in requirements
engineering: A systematic review of the literature,” Requirements
Engineering, vol. 21, no. 4, p. 405437, nov 2016. [Online]. Available:
https://doi.org/10.1007/s00766-015-0222-6

K. Thongglin, S. Cardey, and P. Greenfield, “Thai software requirements
specification pattern,” in 2013 IEEE 12th International Conference on
Intelligent Software Methodologies, Tools and Techniques (SoMeT),
2013, pp. 179-184.

G. Liargkovas, A. Papadopoulou, Z. Kotti, and D. Spinellis, “Software
engineering education knowledge versus industrial needs,” IEEE Trans-
actions on Education, vol. 65, no. 3, pp. 419-427, 2022.

P. Jorgensen, Software Testing: A Craftsman’s Approach, 3rd ed. Boca
Raton, NY: Auerbach Publications, 5 2013.

K. Mokos, T. Nestoridis, P. Katsaros, and N. Bassiliades, “Semantic
modeling and analysis of natural language system requirements,” IEEE
Access, vol. 10, pp. 84094-84 119, 2022.

C. Keet. (2020) An introduction to ontology engineering. [Online].
Available: https://people.cs.uct.ac.za/ mkeet/OEbook/

W. W. Sim and P. Brouse, “Towards an ontology-based persona-
driven requirements and knowledge engineering,” Procedia Computer
Science, vol. 36, pp. 314-321, 2014, complex Adaptive Systems
Philadelphia, PA November 3-5, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050914013489

K. Siegemund, U. Assmann, J. Pan, E. Thomas, and Y. Zhao, “Towards
ontology-driven requirements engineering,” in Proceeding of the 10th
International Semantic Web Conference (ISWC), 10 2011.

N. S. Harsha, C. N. Kumar, V. K. Sonthi, and K. Amarendra, “Lexical
ambiguity in natural language processing applications,” in 2022 Inter-
national Conference on Electronics and Renewable Systems (ICEARS),
2022, pp. 1550-1555.

S. Popereshnyak and A. Vecherkovskaya, “Modeling ontologies in
software testing,” in 2019 IEEE 14th International Conference on
Computer Sciences and Information Technologies (CSIT), vol. 3, 2019,
pp. 236-239.

S. Charoenreh and A. Intana, “Enhancing software testing with ontology
engineering approach,” in 2019 23rd International Computer Science
and Engineering Conference (ICSEC), 2019, pp. 186-191.

B. Ramadoss, P. Prema, and S. R. Balasundaram, “Combined classifi-
cation tree method for test suite reduction,” in Proceedings on Inter-
national Conference and workshop on Emerging Trends in Technology
(ICWET, 2011), no. 11, 2011, pp. 27-33.

A. Intana, K. Laosen, and T. Sriraksa, “An automated impact
analysis approach for test cases based on changes of use case
based requirement specifications,” International Journal of Advanced
Computer Science and Applications, vol. 14, no. 1, 2023. [Online].
Available: http://dx.doi.org/10.14569/IJACSA.2023.01401105

R. Denaux, “Intuitive ontology authoring using controlled natural lan-
guage,” Ph.D. dissertation, School of Computing, University of Leeds,
2013.

K. Athiththan, S. Rovinsan, S. Sathveegan, N. Gunasekaran, K. S. A. W.
Gunawardena, and D. Kasthurirathna, “An ontology-based approach to
automate the software development process,” 2018 IEEE International
Conference on Information and Automation for Sustainability (ICIAfS),
pp. 1-6, 2018.

D. Tsoukalas, M. Siavvas, M. Mathioudaki, and D. Kehagias, “An
ontology-based approach for automatic specification, verification, and
validation of software security requirements: Preliminary results,” in

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[33]

[34]

[35]

[36]

(371

Vol. 14, No. 8, 2023

2021 IEEE 21st International Conference on Software Quality, Relia-
bility and Security Companion (QRS-C), 2021, pp. 83-91.

V. Castafieda, L. Ballejos, M. Caliusco, and M. Galli, “The use of
ontologies in requirements engineering,” Journal of Researches in
Engineering, vol. 10, pp. 2-8, 01 2010.

A. A. Alsanad, A. Chikh, and A. Mirza, “A domain ontology for soft-
ware requirements change management in global software development
environment,” IEEE Access, vol. 7, pp. 49352-49361, 2019.

H. Alrumaih, A. Mirza, and H. Alsalamah, “Domain ontology for
requirements classification in requirements engineering context,” /EEE
Access, vol. 8, pp. 89899-89 908, 2020.

L. Yang, K. Cormican, and M. Yu, “Ontology learning for systems
engineering body of knowledge,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 2, pp. 1039-1047, 2021.

E. Souza, R. Falbo, and N. Vijaykumar, “Using ontology patterns for
building a reference software testing ontology,” in 2013 17th IEEE
International Enterprise Distributed Object Computing Conference
Workshops, 2013, pp. 21-30.

E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado, “Towards the
establishment of an ontology of software testing,” in International
Conference on Software Engineering and Knowledge Engineering,
2006.

P. Chen and A. Xi, “Research on industrial software testing knowledge
database based on ontology,” in 2019 6th International Conference on
Dependable Systems and Their Applications (DSA), 2020, pp. 425-429.

L. Olsina, G. Tebes, D. Peppino, and P. Becker, “Approaches used to
verify and validate a software testing ontology as an artifact,” in 2020
IEEE Congreso Bienal de Argentina (ARGENCON), 2020, pp. 1-8.

S. Banerjee, N. C. Debnath, and A. Sarkar, “An ontology-based ap-
proach to automated test case generation,” SN Computer Science, vol. 2,
no. 1, pp. 1-12, 2021.

Y. Wang, X. Bai, J. Li, and R. Huang, “Ontology-based test case
generation for testing web services,” in Eighth International Symposium
on Autonomous Decentralized Systems (ISADS’07), 2007, pp. 43-50.

A. W. Crapo and A. Moitra, “Using owl ontologies as a domain-specific
language for capturing requirements for formal analysis and test case
generation,” in 2019 IEEE 13th International Conference on Semantic
Computing (ICSC), 2019, pp. 361-366.

S. Ul Haq and U. Qamar, “Ontology based test case generation for black
box testing,” in Proceedings of the 2019 8th International Conference
on Educational and Information Technology, ser. ICEIT 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p.
236-241. [Online]. Available: https://doi.org/10.1145/3318396.3318442

A. Jounaidi and M. Bahaj, “Designing and implementing xml schema
inside owl ontology,” in 2017 International Conference on Wireless
Networks and Mobile Communications (WINCOM), 2017, pp. 1-7.

O. E. Hajjamy, L. Alaoui, and M. Bahaj, “Xsd2owl2 : Automatic
mapping from xml schema into owl 2 ontology,” Journal of Theoretical
and Applied Information Technology, vol. 95, no. 8, pp. 1781-1796,
2017.

N. Yahia, S. Mokhtar, and A. Ahmed, “Automatic generation of owl
ontology from xml data source,” International Journal of Computer
Science Issues, vol. 9, 06 2012.

D. Pilone and N. Pitman, UML 2.0 in a Nutshell. OReilly Media, Inc.,
2005.

K. M. Ting, Precision and Recall. Boston, MA: Springer US, 2010,
pp. 781-781. [Online]. Available: https://doi.org/10.1007/978-0-387-
30164-8_652

J. Henarejos-Blasco, J. A. Garcia-Diaz, O. Apolinario-Arzube, and
R. Valencia-Garcia, “Cnl-rdf-query: A controlled natural language
interface for querying ontologies and relational databases,” in
Proceedings of the 10th Euro-American Conference on Telematics
and Information Systems, ser. EATIS *20. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3401895.3402064

R. Denaux, V. Dimitrova, A. G. Cohn, C. Dolbear, and G. Hart, “Rabbit
to owl: Ontology authoring with a cnl-based tool,” in Controlled Natural
Language, N. E. Fuchs, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 246-264.

www.ijacsa.thesai.org

1014 |Page

