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Abstract—Monitoring the pollen foraging behavior of honey-
bees is an important task that is beneficial to beekeepers, allowing
them to understand the health status of their honeybee colonies.
To perform this task, monitoring systems should have the ability
to automatically recognize images of pollen-bearing honeybees
extracted from videos recorded at the beehive entrance. In
this paper, a novel convolutional neural network architecture is
proposed for recognizing pollen-bearing and non-pollen-bearing
honeybees from their images. The performance of the proposed
model is illustrated based on a real dataset and the obtained
results show that it performs better than some other state-of-the-
art deep learning architectures like VGG16, VGG19, or Resnet50
in terms of both accuracy and execution time. Thus, the proposed
model can be considered an effective algorithm for designing
automatic honeybee colony monitoring systems.

Keywords—Pollen-bearing honeybee; image classification; con-
volutional neural network; honeybee monitoring system; pollen
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I. INTRODUCTION

Honeybees bring great benefits to human life. Products
from honeybees such as honey, propolis, and pollen bring high
economic efficiency. They are both popular components for
daily consumption and an important source of raw materials
in the production of medicines and beauty care. The global
honey market was valued at 8.9 billion dollars by the year
2022, and it is predicted to reach 12.6 billion dollars in the year
2030, according to a report in VANTAGEMarketResearc
In addition, honeybees are known as the most common and
effective pollinators [1]]. A large-scale survey in [2] has shown
that honeybee pollination has contributed to increased yields
and improved quality for many crops worldwide. For example,
in the US, honeybees have increased fruit setting by 60%
and seed yield by 20% for almonds; in Argentina, honeybees
simultaneously increase fruit setting (by 15%) and the content
of fruit sugar for apples, thereby increasing profits by 70%;
and in Brazil, honeybees increased soybean yield by 18.9%.
Besides that, the pollination of honeybees also contributes to
the preservation of the diversity of plant ecosystems.

To take care of honeybee colonies, beekeepers must mon-
itor the health of the colonies regularly. This task requires
gathering information about the activities, status, and behav-
iors of honeybees in the colony, including pollen foraging
behavior. In fact, pollen is the leading food of honeybees. It

Uhttps://www.vantagemarketresearch.com/industry-report/honey-market-
2138

4

provides proteins, lipids, vitamins, and minerals necessary for
the growth and reproduction of honeybees [3]. Information
about the foraging behavior of honeybees can bring valuable
understanding about the pollen source status in the habitat, the
need for food, the increase of individuals, and the health of the
whole honeybee colony. As a result, it allows beekeepers to
understand the status of their honeybee colonies and detect
unusual problems in the colonies for timely intervention.
Recognizing honeybees bringing pollen back to the hive is
then an effective solution for monitoring the beehives.

In recent years, thanks to the application of IoT (Internet of
Things) technologies, several automatic honeybee monitoring
systems have been deployed. These systems use surveillance
cameras to record the activities of honeybees at the beehive
entrance, then use different techniques to extract and ana-
lyze information from the recorded images [4]. Due to its
powerful ability in image data processing, the Convolutional
Neural Network (CNN) is perhaps the most widely used
technique in these systems. In the context of recognizing
pollen-bearing honeybee images, many CNN-based models
have been designed. For example, several well-known CNN-
based models like VGG16, VGG19, Resnet50, and DarkNet53
have been applied in [3]] towards precise recognition of pollen-
bearing honeybees. Rodriguez et al. [6] tested with several
types of CNN architectures and showed that shallow-CNN
architecture gives higher recognition accuracy than machine
learning methods such as SVM (Support Vector Machine),
Naive Bayes, or K-nearest neighbors. The authors also pro-
vided a real dataset of pollen-bearing and non-pollen-bearing
honeybee images. However, we have found that there are a
few mislabeled samples in this dataset where some images of
non-pollen-bearing honeybees were assigned as pollen-bearing
honeybees and vice versa. In addition, the use of complex
structures for these CNN-based models requires a large number
of samples for training and testing, leading to a significant cost
of calculation and resources for the execution. To provide an
effective model for designing automatic beehive monitoring
systems, in this study, we propose a novel CNN architecture
for recognizing pollen-bearing honeybee images. Here, we aim
to find a model that is better than existing models in terms
of both efficiency and execution cost. The performance of the
proposed model is validated by comparing it with several other
complex models like VGG16, VGG19 [7]], and Resnet50 [§]
architectures using the same dataset.

In summary, the main contributions of the study are as
follows:
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e  We adjust a dataset published in a previous study by
assigning correct labels to some previously mislabeled
samples.

e  We propose a novel structure for a CNN-based model
to classify the images of pollen-bearing and non-
pollen-bearing honeybees. We also suggest a data
augmentation technique to handle the cases where
there are few observed samples.

e  We verify the efficacy and cost of the proposed method
by extensive experiments, achieving an absolute accu-
racy for pollen-bearing honeybee recognition on the
testing set.

The rest of the paper is organized as follows. Section 1II is
to present the recent related works in the literature. In Section
III, we describe the dataset considered in the study and the
proposed CNN architecture. The experiments and the obtained
results are presented in Section IV. Finally, Section V is for
some concluding remarks.

II. RELATED WORK

In this section, we briefly discuss recent studies related
to the classification models of pollen-bearing and non-pollen-
bearing honeybees.

For pollen-bearing honeybee image recognition, many stud-
ies relied on image processing techniques and conventional
machine learning algorithms [9]. Babic et al. [10] applied
background subtraction using a Mixture of Gaussian for the
segmentation of honeybees. Then, based on the difference
in color variance and eccentricity features between pollen-
bearing and non-pollen-bearing honeybees, the authors used
the Nearest Mean Classifier to classify them. The accuracy
achieved by the classifier is 88.7%. However, the classification
accuracy depends on the results of background subtraction and
the light source in the video recording area. Yang and Collins
[L1] used color thresholding and the Mixture of Gaussian to
detect and extract images of individual honeybees in frames
captured from video recorded at the beehive entrance and track
them using Kalman filter and Hungarian algorithm. The bee
blob analysis method from the binary image of each frame was
applied to remove the main body of the honeybee and retain
only the pollen blobs. The two main features of the pollen
blobs, including the area of the pollen blobs and the location
of them relative to the bee’s body, will be used to remove noise
blobs. Finally, the pollen sacs detection results are combined
with the previous honeybee detection and tracking model to
identify if a honeybee bears pollen sacs. The test results with
several videos show that the pollen measurement model has
the highest sensitivity of 76%. In [12], the authors conducted
experiments using two methods to segment honeybee images:
the k-means algorithm and the algorithm that only considers
the b component of the CIE LAB color space. Then, the SVM
classifier with Gaussian kernel was used to classify the pollen-
bearing and non-pollen-bearing honeybee images based on
the Dense SIFT (Dense Scale Invariant Feature Transform)
descriptors and the VLAD (Vector of Locally Aggregated
Descriptors) encoder. The test results show that the method
that combines the k-means segmentation algorithm and the
classifier based on the descriptors on the decorrelated channels
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gives the highest value of the area under the ROC curve (AUC-
ROC) at 0.915. In [6], authors performed the classification of
pollen-bearing and non-pollen-bearing honeybees with three
traditional methods: K-Nearest Neighbor algorithm, Naive
Bayes statistical algorithm, and Support Vector Machines with
linear and non-linear kernel functions. The results show that
the SVM RBF method (Support Vector Machine with Radial
Basis Function) with PCA (Principal Component Analysis)
preprocessing technique and using the Gaussian feature map
gives the highest accuracy at 91.16%.

In machine learning models, the important features were
often selected from the inputs manually and subjectively. This
can greatly affect the performance of the model once the key
elements are not considered. To overcome this disadvantage,
recent research suggest using models based on deep learning,
more specifically, different CNN architectures. Rodriguez et al.
[6]conducted experiments with 1-layer and 2-layer Shallow-
CNN models, VGG16, VGG19, and Resnet50. The results
show that all these models achieve high accuracy in which
Shallow-CNN with small step size gives the highest accuracy
of 96.4%, followed by VGG19, VGG16, and Resnet50 with
an accuracy of 90.2%, 87.2%, 61.7%, respectively. Sledevi¢
[13] investigated different CNN architectures with different
numbers of hidden layers. After several experiments, the
author stated that the architecture consisting of three hidden
layers 7-7, 5-5, and 3-3 is the most suitable for classifying
pollen-bearing and non-pollen-bearing honeybees, achieving
a 94% accuracy. In [14], a pollen sac detection model on
an individual honeybee image is used to classify a honeybee
image as a pollen-bearing or non-pollen-bearing honeybee.
This detection model uses Faster R-CNN architecture with
the core for classification as VGG16. When a pollen sac is
detected on an individual honeybee image, it is marked by a
bounding box labeled “pollen” and a numerical value that is
the confidence score of the detection. When the confidence
score is greater than or equal to a predefined threshold, it is
counted as a pollen sac, and the individual honeybee image is
counted as a pollen-bearing honeybee image. This model has
a pollen detection accuracy of 81.5%. Ngo et al. [15] relied
on the YOLOv3-tiny model to detect and classify objects.
Since YOLO-v3 treats the object classification problem as a
regression problem, whereby an input image is divided into
grid cells, each grid cell is responsible for detecting a target
honeybee. This model allows the simultaneous detection of
multiple objects on a frame belonging to one of two classes
of pollen-bearing and non-pollen-bearing honeybees. The ob-
tained results from this study showed that the proposed model
gives a classification accuracy of 94%. In another research,
nine different pre-trained CNN models, including VGG16,
VGG19, Resnet50, ResNetl101, Inception V2, Inception V3,
Xception, DenseNet201, and DarkNet53 have been explored
[S]. The authors also considered the influence of color by
applying some image preprocessing techniques to the input
dataset. The experimental results showed that the DarkNet53
and VGG16 architectures attained higher recognition accuracy
than the others. In [16], the authors first tested the image
classification using the transfer learning method with seven
pre-trained Deep Neural Networks (DNNs) including AlexNet,
DenseNet201, GoogLeNet, ResNetl01, ResNetl8, VGG16,
and VGG19. After that, the authors continued to experiment
with the SVM classifier using shallow features, deep features,
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and shallow+deep features extracted from the DNNs. Three
different standard datasets were used for the training and
evaluation of models. The experimental results showed no
significant difference in performance between them. For the
pollen-bearing honeybee image dataset, the transfer learning
method with pre-trained DNN yielded the highest accuracy of
99.07%.

III. MATERIALS AND METHODS
A. Data Description

In this study, the Pollen dataset published in [6] has been
considered. The dataset is available and can be accessed
publicly at GitHuHﬂ The authors stated that at the beginning,
there were 810 honeybee images extracted and manually
annotated from videos taken at the beehive entrance under
natural light conditions. However, after being curated, many
have been removed due to misclassification. Thus, the final
data downloaded from the source above contains only 714
images. The photo was built by fixing the size of the cropping
rectangle to 180 x 300 pixels, containing a fully visible image
of a single honeybee. The images are also adjusted to make
sure that the honeybees are facing upward in all images. Each
photo was then labeled with pollen or non-pollen. Out of 714
images, 369 are labeled as pollen (P) and the rest 345 are non-
pollen (NP). Fig. [T] presents some images of pollen-bearing and
non-pollen-bearing honeybees in this dataset.

)
b)
Fig. 1. Images of pollen-bearing honeybees (a) and non-pollen-bearing
honeybees (b).

Based on this dataset, we have conducted several ex-
periments to investigate the performance of the proposed
model. The obtained results have shown that our model has
misidentified some images from pollen-bearing honeybees to
non-pollen-bearing ones and vice versa. We then carried out
a thorough analysis of these misidentified images and found
that some of them were mislabeled. According to our knowl-
edge, images NP24865-145r and NP27452-203r are images
of honeybees that bear pollen but are annotated as non-pollen-
bearing ones (NP). Meanwhile, images P7660-97r, P7776-99r,
P11440-32r, and P11762-35r in the dataset are images of
honeybees that do not bear pollen but are annotated as pollen-
bearing honeybees (P). Fig. [2| shows these mislabeled images.

Zhttps://github.com/piperod/PollenDataset
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TABLE I. THE STRUCTURE OF THE POLLEN DATASET

Dataset Class label Number of images
Original Pollen 369
e Non-pollen 345
Pollen 367
Corrected Non-pollen 347

We have relabeled these images and used the corrected dataset
to train and test the performance of the proposed model (as
well as control models). The structure of the original Pollen
dataset and the relabeled one is summarized in Table [l

NP24865-145¢ NP27452-2031 P7660-97r P7776-99¢ P11762-35¢

a) b)

Fig. 2. Mislabeled images in the Pollen dataset, from Pollen to Non-Pollen
(a) and vice versa (b).

P11440-32r

B. Proposed Method

1) Convolutional neural networks: Convolutional Neural
Networks (CNNs) refer to a well-known deep learning algo-
rithm specialized in handling image data. The basic architec-
ture of a CNN model consists of three main types of layers,
as displayed in Fig. 3]

The functions of each type of layer are as follows:

e  The first type of layer of a basic CNN architecture is
Convolution, the core of a CNN model used to extract
various features from the input. The mathematical
convolutional operation is performed in this layer,
between the input and a filter. The dot product is taken
between the filter and the parts of the input by sliding
the filter over the image. The output from each layer
containing information about the image like corners
and edges is then fed to the next layer to learn other
input features.

e Following the convolutional layers are the Pooling
layers. These layers summarize the features extracted
from the previous convolution layers, aiming to de-
crease the size of the obtained feature map and reduce
computational costs. Several types of pooling opera-
tions can be used in a CNN model depending on the
specific situation, such as Max Pooling and Average
Pooling.

e  The last Fully connected layers perform the classifica-
tion task based on the features extracted from previous
layers, mapping the representation between the input
and the output. They generate scores for each class,
then use them for the final classification.

In general, there is no universal optimal model for all
datasets. For different problems, one should design different
models with different structures to achieve the best perfor-
mance. Choosing the right model is the key to solving many
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Fully connected

Convolution
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[] Class 1

—> —> |:| Class 2

[] Class 3

Feature extraction

Classification

Fig. 3. Architecture of a basic CNN model.

problems in practice. More introduction and discussion about
the architectures of CNN-based deep learning model can be
seen in and [[18].

2) The proposed CNN model: As discussed above, the
CNN architectures have been widely applied to the problem of
recognizing pollen-bearing honeybees, some of them achieved
up to about 99% accuracy. Several transfer learning models
whereby different CNN architectures such as VGG16, VGG19,
Resnet50, and Resnet101, etc. are pre-trained and some SVM
classification models are based on features extracted from
CNN architectures, were presented in and [16]. However,
the use of these models requires significant costs due to their
complex architectures. To overcome this problem and aim for
simplicity and efficiency in use, we thought about using a
basic CNN model. This idea can be verified by investigating
the basic CNN structures with different hyperparameters. In
particular, using the Grid search method, we have figured
out an optimal architecture for the CNN model in classi-
fying pollen-bearing and non-pollen-bearing honeybees. The
proposed architecture comprises:

e 4 convolutional layers equipped with a ReLU (Recti-
fied Linear Unit) activation function,

e 5 max-pooling layers,

o | flatten layer, a dense layer with a ReLU activation
function, and a dense layer with a Sigmoid activation
function.

The use of this simple architecture obviously makes the
model lighter than other pre-trained deep-learning models like
VGG16, VGG19, and Resnet50 which contain more layers and
parameters. In addition, in this study, we use some data aug-
mentation techniques such as image rescaling, random rotating,
shifting (horizontally and vertically), shearing, random zoom-
ing, random flipping, and nearest filling. These techniques
enrich the data by generating different variations from the
original images which will be used in different epochs of the
model training process, thereby improving the performance of
the classification model. Fig. ] shows a visualization of several
images obtained after applying data augmentation techniques
to a honeybee image.

o . . . .

Several different vaniations of the original image

Fig. 4. An example of data augmentation.

The architecture of the proposed model is illustrated in
Fig. 5] Each input is a 224x224 RGB image containing the
image of an individual honeybee. After passing through the
convolutional layers and the max-pooling layers to extract
the important features, it is fed to fully connected layers. A
predefined threshold is used to classify whether the honeybee
image is a pollen-bearing honeybee or not. The performance
of the proposed method will be discussed in the sequel.

1V. EXPERIMENTS AND RESULTS
A. Experimental Setup

In this study, two schemes of splitting the Pollen dataset
are considered. By the first scheme, as in several previous
studies, we randomly divide the corrected Pollen dataset into
three subsets, i.e., the training set, the validation set, and
the testing set at a ratio of 6:1:3. Accordingly, 60% of the
samples corresponding to 428 images (which include 221
images of pollen-bearing honeybees and 207 images of non-
pollen-bearing honeybees) are for model training, 10% of
the samples corresponding to 70 images (which include 36
images of pollen-bearing honeybees and 34 images of non-
pollen-bearing honeybees) are for model validation, while the
remaining 60% of the samples corresponding to 216 images
(which include 110 images of pollen-bearing honeybees and
106 images of non-pollen-bearing honeybees) are for model
testing. Moreover, to investigate the effect of partitioning data
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Input size 224 Conv2D 3x3, 64

QZI .

MaxPooling2D/2

MaxPooling2D/2

Input size 56 Conv2D 3x3, 128

<)='I<}='

MaxPooling2D/2

Input size 28 Conv2D 3x3, 64

<)='I<)='

MaxPooling2D/2

Input size 14 Conv2D 3x3, 128

<}='I<2='

MaxPooling2D/2

Input size 7 Flatten, 6272

Dense, 256

Dense, 1

IC:IC:

Fig. 5. The proposed CNN architecture.

TABLE II. TWO SCHEMES OF SPLITTING THE POLLEN DATASET

Scheme  Class label Training set ~ Validation set ~ Testing set
| Pollen 221 36 110
Non-pollen 207 34 106
N Pollen 183 36 148
Non-pollen 173 34 140

into training, validation, and testing sets on the model perfor-
mance, we design the second scheme where the Pollen dataset
is split into the three subsets at a ratio of 5:1:4, namely fewer
samples for training and more samples for testing compared to
the first scheme. The details of the number of images in each
subset of each scheme are presented in Table [T}

The experiments were performed on Google Colab, using
Python 3 Google Compute Engine backend (GPU) with a
system RAM of 83.5 GB, GPU RAM of 40 GB, and Disk
of 166.8 GB.

After hyperparameters tuning, hyperparameters are set up
for model training as follows: batch size is 4, the number of
epochs is 25, the initial learning rate is 0.001, and the optimizer
is Adam.

B. Evaluation Metrics

To evaluate the performance of the proposed pollen-bearing
honeybee recognizing model comprehensively, in this study,

Vol. 14, No. 8, 2023

Precision, Recall, Fl-score, Accuracy, Loss, and AUC-ROC
metrics have been utilized. These are widely used metrics to
assess the performance of the classification models.

e  Precision, Recall, Fl-score, and Accuracy are com-
puted as follows:

. . TP
Precision& = &W (1)
TP
Recall& = & ——— 2
ccalle =& p TN @

2 % Recall * Precision
F1- =
scoreds = & Recall + Precision 3)

TP+TN
Accuracy& _&TP+TN+FP+FN @)

where

o  TP: number of pollen-bearing honeybees im-
ages that are properly classified as pollen-
bearing honeybees images;

o  FP: number of non-pollen-bearing honeybees
images that are misclassified as pollen-bearing
honeybees images;

o  FN: number of pollen-bearing honeybees im-
ages that are misclassified as non-pollen-
bearing honeybees images;

o TN: number of non-pollen-bearing honeybees
images that are properly classified as non-
pollen-bearing honeybees images.

e Loss (Binary Cross Entropy) is calculated as follows:

N
—1
Loss = — > (yilogepi + (1 = y;) loge (1 — pi))

i=1
®)
where

o N is the number of images;

y; is the real label of the ¢th image (y; = 1 if
the ¢ — th image is a pollen-bearing honeybee
image; y; = 0 if the ¢+ — th image is a non-
pollen-bearing honeybee image);

o p; is the probability of the event predicting
the ¢ — th image as a pollen-bearing honeybee
image (1 — p; is the probability of the event
predicting the ¢ — th image as a non-pollen-
bearing honeybee image).

e AUC-ROC: one of the most important evaluation
metrics for checking any classification model’s per-
formance is calculated as the area under the ROC
(Receiver Operating Characteristics) curve.

From the above definitions, the larger the values of Pre-
cision, Recall, Fl-score, Accuracy, and AUC-ROC, and the
smaller the value of Loss, the better the model is at classifying
classes in a dataset.
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TABLE III. THE PERFORMANCE OF CNN-BASED MODELS ON THE FIRST
SCHEME OF SPLITTING THE POLLEN DATASET

Vol. 14, No. 8, 2023

designing of efficient real-time recognition systems of
pollen-bearing honeybees.

Vgé’{‘g"(‘[’g) Precision _ Recall _Fl-score A;zu;"(‘;y Loss  AUC-ROC | Fig. [ and Fig. [7] show the curves of the training and
VGGI6 ([5)) B} B} 94.80 ) ) validation accuracy, and the training and validation loss of
ngiggr{:‘f;) 98.67 98.58  98.61 2?)2(1, 1086 0.9994 the models compared. As can be seen from these figures,
VGGI19 ([3]) _ _ _ 98.20 . _ the proposed CNN quel gives a hl.gher performaqce than
VGG19 (ours) 96.48 96.24 96.29 96.30 14.99 0.9961 the other models. This is accordant with the results discussed
Resnet50 ([6]) - - - 61.70 - - above
Resnet50 ([5]) - - - 86.60 - - :
Resnet50 (ours) 99.53 99.55 99.54 99.54 491 0.9955
Proposed CNN 100.00  100.00 _ 100.00 100.00 132 1.0000 o0 P — 20 7
. /VO‘Q //\/,__/\.,_\/\/\
0.9
TABLE IV. THE EXECUTION TIME OF CNN-BASED MODELS ON THE
FIRST SCHEME OF SPLITTING THE POLLEN DATASET a8 08
Method Training time (s) Testing time (s) 080 07
VGG16 272.830 133
VGG19 265.359 167 — | o s
Resnet50 7471.634 39 o0 Pl e e
Proposed CNN 150.543 6 e ° s » s e 1 = » »

C. Experimental Results and Discussion

The performance of the proposed method and the corre-
sponding execution time on the first scheme of splitting the
Pollen dataset is presented in Table [[TI] and Table [V} For the
purpose of comparison, we also show the performance and the
execution time of other CNN-based transfer learning methods
using the same dataset in the literature.

Several important remarks can be drawn from these tables
as follows.

e The proposed CNN model provides the best perfor-
mance in terms of all the metrics. Although the use of
other CNN-based models results in quite an impressive
efficiency (for instance, an accuracy of 99.54% with
Resnet50, and 98.61% with VGG16), our proposed
method can still achieve higher performance, with
an absolute efficiency of 100% for the metrics of
Precision, Recall, Fl-score, and Accuracy, and the
maximum value is 1 for the metric of AUC-ROC.
It also leads to the smallest value of the Loss of
1.32. This means the proposed model can accurately
recognize all pollen-bearing and non-pollen-bearing
honeybee images in the Pollen dataset.

e  After correcting the mislabeled images, the accuracy
of other CNN-based models is generally improved.
For example, based on the original Pollen dataset, the
Resnet50 model in [6] and [S] provided an accuracy of
61.70% and 86.60%, respectively. Meanwhile, on the
corrected dataset, it can reach an accuracy of 99.54%.

e Thanks to its simple architecture with fewer layers
than some other CNN architectures such as VGG16,
VGG19, and Resnet50, the proposed model also re-
duces significantly the execution time for both training
and testing processes. Indeed, it took only 150.543
seconds for training and 6 seconds for testing. Mean-
while, the second-fastest models asked for about
265.359 seconds for training (VGG19) and 39 seconds
for testing (Resnet50), which are significantly slower
than the proposed model, as can be seen in Table [[V]
This finding has a practical meaning as it allows the

A B S g
_— 2 ey S
09 09
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|
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3 3
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Fig. 6. Training and validation accuracy curve.
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Fig. 7. Training and validation loss curve.

In Tables [V] and [VI, we present the experimental results
obtained from using the second scheme of splitting the Pollen
dataset at the ratio 5:1:4. Since the scheme has not been con-
sidered in previous studies, we present the performance of our
experiments only. The same result as the first scheme can also
be witnessed in these two tables where our proposed method
still brings the best Precision, Recall, F1-score, Accuracy, and
Loss in the fastest processing time. However, the performance
of all models, in this case, has been reduced a bit compared
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TABLE V. THE PERFORMANCE OF CNN-BASED MODELS ON THE
SECOND SCHEME OF SPLITTING THE POLLEN DATASET

Method Precision  Recall ~ Fl-score  Accuracy Loss AUC-ROC
VGG16 98.27 98.25 98.26 98.26 9.24 0.9961
VGG19 97.61 97.54 97.57 97.57 13.03 0.9941
Resnet50 95.73 95.40 95.47 95.49 9.58 0.9966
Proposed CNN 98.95 98.99 98.96 98.96 8.02 0.9921

TABLE VI. THE EXECUTION TIME OF CNN-BASED MODELS ON THE
SECOND SCHEME OF SPLITTING THE POLLEN DATASET

Method Training time (s) Testing time (s)
VGG16 217.666 179
VGG19 241.568 223
Resnet50 6295.647 49
Proposed CNN 123.874 10

to the first scheme. For example, the proposed model does not
achieve an absolute accuracy as in the first scheme, instead,
it decreases to 98.96%. This result can be explained by the
reduced number of samples in the training set. As a result, the
model learns less from the training set, resulting in reduced
classification performance.

V. CONCLUSION

In this paper, we have proposed a novel convolutional
neural network model for classifying pollen-bearing and non-
pollen-bearing honeybee images. Rather than using complex
and pre-trained CNN models, we design a basic CNN ar-
chitecture with a few layers, leading to a lighter and also
more efficient model. We have also corrected some mislabeled
samples from a widely used dataset in the literature. The
performance of the proposed CNN model has been investigated
and compared with other models based on this corrected
dataset. The obtained results have shown that our method
leads to the best performance in terms of both accuracy and
execution time. In particular, it could identify correctly 100%
all the pollen-bearing and non-pollen-bearing honeybee images
from the testing set in the shortest time.

There are still several limitations that should be considered
before deploying the use of the proposed model in designing
automated systems to recognize pollen-bearing honeybees in
practice. For example, the efficiency of the model was verified
based on a small dataset that contains 714 images only.
Its performance should be validated on other datasets with
larger sizes. In addition, the choice of hyperparameters of the
proposed architecture is suitable for the current dataset, but
may not be for other datasets. Therefore, it would be better to
have another method to find hyperparameters that are optimal
for each dataset. From this point of view, some optimization
algorithms such as Random search or Bayesian optimization
could be applied for future work. In addition, the model can
be applied to process honeybee images for some other related
tasks, like counting the number of pollen-bearing honeybees
(for the purpose of measuring the amount of pollen carried
by honeybees to the hive), classifying pollen, or recognizing
disease-carrying honeybees. However, its performance needs
to be verified for each specific situation.

Vol. 14, No. 8, 2023

ACKNOWLEDGMENT

The authors would like to thank the Vietnam National
University of Agriculture for sponsoring this research through
the University-level science and technology project with the
title “Research on deep learning algorithms of convolutional
neural network and their applications in recognizing pollen-
bearing honeybee images” and number “T2022-10-39”.

REFERENCES

[1] U. Joshi, K. Kothiyal, Y. Kumar, and R. Bhatt, “Role of honeybees in
horticultural crop productivity enhancement,” International Journal of
Agricultural Sciences, vol. 17, no. AAEBSSD, pp. 314-320, 2021.

[2] S. A. M. Khalifa, E. H. Elshafiey, A. A. Shetaia, A. A. A. El-Wahed,
A. F. Algethami, S. G. Musharraf, M. F. AlAjmi, C. Zhao, S. H. D.
Masry, M. M. Abdel-Daim, M. F. Halabi, G. Kai, Y. A. Naggar,
M. Bishr, M. A. M. Diab, and H. R. El-Seedi, “Overview of bee
pollination and its economic value for crop production,” Insects, vol. 12,
no. 8, 2021.

[3] K. A. Stoner, H. P. Hendriksma, and S. Tosi, “Pollen as food for bees:
Diversity, nutrition, and contamination,” Frontiers in Sustainable Food
Systems, vol. 6, no. 1129358, 2023.

[4] I F Rodriguez, J. Chan, M. Alvarez Rios, K. Branson, J. L. Agosto-
Rivera, T. Giray, and R. Mégret, “Automated video monitoring of
unmarked and marked honey bees at the hive entrance,” Frontiers in
Computer Science, vol. 3, no. 769338, 2022.

[S]1 E C. Monteiro, C. M. Pinto, and J. Rufino, “Towards precise recog-
nition of pollen bearing bees by convolutional neural networks,” In
Iberoamerican Congress on Pattern Recognition, pp. 217-226, 2021,
May.

[6] I F Rodriguez, R. Megret, E. Acuna, J. L. Agosto-Rivera, and T. Giray,
“Recognition of pollen-bearing bees from video using convolutional
neural network,” in In 2018 IEEE winter conference on applications of
computer vision (WACV), 2018, March, pp. 314-322.

[71 K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

[9] S. Bilik, O. Bostik, L. Kratochvila, A. Ligocki, M. Poncak, T. Zemcik,
M. Richter, 1. Janakova, H. P, and K. Horak, “Machine learning
and computer vision techniques in bee monitoring applications,” arXiv
preprint arXiv:2208.00085, 2022.

[10] Z. Babic, R. Pilipovic, V. Risojevic, and G. Mirjanic, “Pollen bear-
ing honey bee detection in hive entrance video recorded by remote
embedded system for pollination monitoring,” ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 3, pp. 51-57, 2016.

[11] C. Yang and J. Collins, “Improvement of honey bee tracking on 2d video
with hough transform and kalman filter,” Journal of Signal Processing
Systems, vol. 90, pp. 1639-1650, 2018.

[12] V. Stojnié, V. Risojevi¢, and R. Pilipovi¢, “Detection of pollen bearing
honey bees in hive entrance images,” in In 2018 17th International
Symposium INFOTEH-JAHORINA (INFOTEH), 2018, March, pp. 1-4.

[13] T. Sledevi¢, “The application of convolutional neural network for pollen
bearing bee classification,” in In 2018 IEEE 6th Workshop on Advances
in Information, Electronic and Electrical Engineering (AIEEE), 2018,
November, pp. 1-4.

[14] C. Yang and J. Collins, “Deep learning for pollen sac detection and
measurement on honeybee monitoring video,” in In 2019 International
Conference on Image and Vision Computing New Zealand (IVCNZ),
2019, December, pp. 1-6.

[15] T. N. Ngo, D. J. A. Rustia, E. C. Yang, and T. T. Lin, “Automated
monitoring and analyses of honey bee pollen foraging behavior using
a deep learning-based imaging system,” Computers and Electronics in
Agriculture, vol. 187, no. 106239, 2021.

[16] S. K. Berkaya, E. S. Gunal, and S. Gunal, “Deep learning-based
classification models for beehive monitoring,” Ecological Informatics,
vol. 64, no. 101353, 2021.

www.ijacsa.thesai.org

1043 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 8, 2023

[17] K. O’Shea and R. Nash, “An introduction to convolutional neural [18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
networks,” arXiv preprint arXiv:1511.08458, 2015. no. 7553, pp. 436444, 2015.

www.ijacsa.thesai.org 1044 |Page



	Introduction
	Related Work
	Materials and Methods
	Data Description
	Proposed Method
	Convolutional neural networks
	The proposed CNN model


	Experiments and Results
	Experimental Setup
	Evaluation Metrics
	Experimental Results and Discussion

	Conclusion
	References

