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Abstract—In the field of molecular chemistry, the functions,
interactions, and bonds between proteins depend on their tertiary
structures. Proteins naturally exhibit dynamism under different
physiological conditions, as they alter their tertiary structures
to accommodate interactions with other molecular partners.
Significant advancements in Generative Adversarial Networks
(GANs) have been leveraged to generate tertiary structures
closely mimicking the natural features of real proteins, in-
cluding the backbone and local and distal characteristics. Our
research has led to the development of stable model ROD-
WGAN, which is capable of generating tertiary structures that
closely resemble those found in nature. Four key contributions
have been made to achieve this goal: (1) Utilizing Ratio Of
Distribution (ROD) as a penalty function in the Wasserstein
Generative Adversarial Networks (WGAN), (2) Developing a
GAN network architecture that fertilizes the residual block in
generator, (3) Increasing the length of the generated protein
structures to 256 amino acids, and (4) Revealing consistent
correlations through Structural Similarity Index Measure (SSIM)
in protein structures with varying lengths. These model represent
a significant step towards robust deep-generation models that
can explore the highly diverse set of protein molecule structures
that support various cellular activities. Moreover, they provide a
valuable source of data augmentation for critical applications
such as molecular structure prediction, inpainting, dynamics,
and drug design. Data, code, and trained models are avail-
able at https://github.com/mena01/Generating-Tertiary-Protein-
Structures-Resembling-Nature-using-Advanced-WGAN.
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I. INTRODUCTION

Molecular structures have been extensively researched over
the past century due to their significant impact on our under-
standing of the human body and its functioning, both in normal
and pathological states. This has facilitated the identification
of the molecular basis of various diseases and facilitated
the development of new strategies for their prevention and
treatment [1]. In recent years, the pivotal role of bioinformatics
models in the analysis of the molecular basis of diseases,
including infectious diseases and cancers such as gallbladder
cancer [2], lung cancer [3], colon cancer [4], [5], and prostate
cancer [6], has been increasingly recognized.

The function and interactions of molecules largely de-
pend on their structure. Therefore, predicting the structure
of molecules can provide insights into their functions and
has implications for a wide range of applications, including

drug design [7], molecule structure prediction [8], molecular
inpainting [9], and molecular dynamics [10].

There are four different structures that proteins can have:
primary structures [11], secondary structures [12], tertiary
structures [13], and quaternary structures [14]. In biological
laboratories, there are traditional methods that are used to de-
termine these protein structures, such as X-ray crystallography
[15], nuclear magnetic resonance (NMR) [16], and cryogenic
electron microscopy (cryo-EM) [17]. However, these methods
can be time-consuming and resource-intensive.

The gap between the number of known protein sequences
and the number of discovered tertiary structures has increased
exponentially and continues to grow [18]. According to the
Protein Data Bank (PDB) [19], only around 180 thousand
protein structures have been identified, compared to the ap-
proximately 207 million known protein sequences according
to Uniport/TrEMBL [20].As data scientists working in the
field of protein structure prediction, our role is to generate
tertiary structures of proteins that accurately mimic natural
protein structures by capturing the natural protein structures’
distribution.

CASP (Critical Assessment of protein Structure Prediction)
[21] evaluates models that predict protein structures, and
the recent introduction of Google’s DeepMind AlphaFold v2
[22] has achieved the greatest performance in this area. It is
important to note that proteins are naturally dynamic molecules
[23] that can adopt different tertiary structures to modulate
their interactions with different partners.

The dynamics of proteins have garnered significant atten-
tion lately, as evidenced by recent studies [24], [25], [26] that
examine the balance motions between the spike glycoprotein
(Receptor-Binding Domain (RBD) of the severe acute respira-
tory syndrome coronavirus 2 (SARS-COV-2)) and the human
Angiotensin-converting enzyme 2 (ACE2) receptor.

The spike glycoprotein is flexible and can transition be-
tween a closed and partially open structure, allowing it to bind
to the ACE2 receptor and act as a viral entry point into human
host cells.

Therefore, it is important to detect the diverse protein
structures that proteins can access to regulate interactions
with their molecular partners. Obtaining a broad view of the
structure space is thus a vitally important research problem,
and much work [26] has been focused on modeling proteins
to capture this broad view of the protein structure space.
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However, this is a challenging task, and most research [27]
relies on existing protein structure data or restricted physical
models [28] to guide search algorithms to the pertinent regions
of the structure space that are otherwise too vast [29].

Early models used angles between bonds of atoms to
simulate protein structures [9], [30] but more recent work has
used GANs and long short-term memory networks to generate
protein structures based on alpha-Carpon [30]. Despite the
promising results obtained from these models, there is still
much work to accurately simulate the diversity of protein
structure.

In [9], the researchers used GANs with backbone angles
in the representation of tertiary proteins, but they expanded
the training dataset to include more proteins with various
structures. However, it was observed that the generated protein
structures exhibited distortion. As a result, the researchers
replaced the backbone angles with distance matrices, which
incorporated either the distances between each pair of Carbon
Alpha (CA) atoms in the protein’s main chain or the distances
between every atom in the protein [31]. In the latter, the
number of atoms increases, leading to larger distance matrices
that can be difficult and time-consuming to train.

Recently, GAN networks have been employed to predict
contact maps for protein structures [32], [33]. In this context,
a contact map is a matrix in which the value of each element
is 1 if two CA amino acids are in contact and 0 otherwise.

In [34], researchers trained their autoencoder (AC) on
structures obtained from molecular dynamics simulations, such
as computational platforms. In [35], the researchers used
Rosetta as a platform for protein structure prediction to train
the AC of Variational Autoencoder (VAE) [36]. In both cases,
the researchers did not use experimental protein structures
from the Protein Data Bank (PDB). However, in GAN models,
it is preferable to use experimental structures from PDB rather
than computational platforms.

In [10], the author used distance matices of CA and
produced nine models based on Vanilla GANs, which in-
clude Vanilla GAN, vanilla GAN + TTUR, Vanilla GAN +
SpecNorm, Vanilla GAN + VBN, Vanilla GAN + TTUR +
SpecNorm, Vanilla GAN + TTUR + VBN, Vanilla GAN +
SpecNorm + VBN, Vanilla GAN + TTUR + SpecNorm +
VBN, and WGAN.

The model achieved the highest accuracy was WGAN,
denoted here as 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛, but it did not accurately cap-
ture the backbone and exhibited poor accuracy in both short-
range and long-range structures. Furthermore, the generated
distribution deviated significantly from the natural distribution,
Where the average peptide bond lengths of 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 at
128 amino acids for backbone, short-range, and long-range
structures were 7.5 Å, 11.66 Å, and 26.144 Å, respectively.
In comparison, the natural average peptide bond lengths for
backbone, short-range, and long-range structures are 3.78 Å,
7.79 Å, and 21.3 Å, respectively.

In this paper, our objective is to create models using
WGAN [37] to generate tertiary protein structures that exhibit
similar features to the natural protein structures in terms of
their backbone, local, and distal protein structures. Addition-
ally, we aim to ensure that the distribution of the generated

tertiary protein structures is comparable to that of the real
tertiary protein structures.

We represented the tertiary structure using a CA distance
matrix, as described in [9], [10]. Our models were trained using
data from the PDB [19], which contains a diverse set of protein
structures with varying amino acid lengths. We increased the
amino acid length in our models to 256 aa. Additionally, we
adjusted the WGAN gradient penalty by incorporating the ratio
of distribution that achieved high accuracy within only 10
epochs. This contrasts with the best of the previous methods,
where the 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 model [19] was found to be unstable
and achieved acceptable accuracy only after 50 epochs. To
enhance stability, we utilized residual blocks in the generator
network.

To summarise, the main contributions of our model ROD-
WGAN, which make it different from the other models, are as
follows:

1) Enhancing the WGAN gradient penalty by introduc-
ing the Ratio of Distribution (ROD) concept

2) Incorporating the convolution layers and the residual
blocks in the Generator network to generate superior
tertiary protein structures.

3) Increasing the length of the generated protein to 256
aa.

4) Our research reveals consistent correlations in protein
structures through the application of Structural Simi-
larity Index Measure (SSIM). These findings provide
valuable insights into the inherent relationships within
protein structures.

In the subsequent sections, this paper embarks on a com-
prehensive journey through the foundational elements of our
study. The groundwork is established in Section II, where we
present our proposed methodology and its key components.
Progressing further, Section III meticulously details the re-
finement and preprocessing of our training dataset. Moving
to Section IV, a thorough evaluation of our models takes
place, wherein we compare them to state-of-the-art coun-
terparts. Subsequent sections delve into the interpretation of
experimental outcomes in Section V, while our contributions
are summarized, and potential avenues for future research are
suggested in Section VI, concluding this paper.

II. PROPOSED METHODOLOGY

The Generative Adversarial Network (GAN) [38] is a
sophisticated architecture that has garnered attention from
researchers across various fields, particularly in computer
vision [39], [40], [41]. GAN has been employed to generate
tertiary protein structures that mimic the real tertiary protein
structure. In fact, this process is even more daunting than
generating images due to the various constraints involved in the
protein’s structure, such as the backbone and short- and long-
distance features. Previous GAN models have fallen short in
capturing all three features of the tertiary protein structure with
the same level of accuracy, and the discrepancy between the
generated and the natural distributions was not close enough.
The subsequent sections will briefly introduce the GAN model
architecture and explain our model, ROD-WGAN.
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A. GAN

GAN [38] consists of two neural networks that compete
with each other: the Generator (G) and the Discriminator (D).
The generator is responsible for generating fake proteins that
simulate natural proteins and aims to deceive the discriminator,
while the discriminator distinguishes between fake and real
proteins.

As they compete against each other, each network tries to
outperform the other. The balance between G and D leads
to an optimal state in which their loss is equal to 0.5.
Mathematically, assuming x represents the real data and z
represents the latent vector or noise data, G is the generator
that minimizes the function expressed in Eq. (1), and D is the
discriminator that maximizes it.

min
𝐺

max
𝐷

𝐺𝐴𝑁 (𝐺, 𝐷) = 𝐸𝑥𝑝𝑟 (𝑥 ) [log 𝐷 (𝑥)]

+𝐸𝑧𝑝𝑧 (𝑧) [log 1 − 𝐷 (𝐺 (𝑧))]
(1)

Where 𝑝𝑟 denotes the real data distribution, 𝑝𝑧 denotes
the model distribution, z is the input to the Generator and is
randomly selected from some simple noise distribution.

The GAN network has encountered many problems, the
most important of which are vanishing gradients and network
instability. In [37], researchers proposed a WGAN network that
uses Wasserstein distance to make the network more stable and
faster, avoiding many of the issues faced with the GAN. The
WGAN harnesses the 1-Lipschitz function, which guarantees
the value is generated in a specific space and is enforced by the
gradient penalty. It also replaces the name of the discriminator
with the critic. The WGAN loss function is shown in Eq. (2)
as follows:

𝐿 = 𝐸 𝑥̃∼𝑝𝑔 [𝐷 (𝑥 ) ] − 𝐸𝑥𝑝𝑟 [𝐷 (𝑥)]︸                              ︷︷                              ︸+𝜆𝐸 𝑥̂∼𝑝𝑥
[(∥ ∇𝑥̂𝐷 (𝑥̂) ∥2 −1)2]︸                                 ︷︷                                 ︸

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑐𝑟𝑖𝑡𝑖𝑐𝑙𝑜𝑠𝑠 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑝𝑒𝑛𝑎𝑙𝑡𝑦
(2)

Where 𝑥̂ is composed of real data x and fake data 𝑥̃ , which
is defined as 𝑥̃ = 𝐺 (𝑧), using the following equation:

𝑥̂ = 𝜀𝑥 + (1 − 𝜀)𝑥̃ (3)

B. Ratio of Distribution (ROD)

According to our experimental findings, we found that the
sum of the values of each distance matrix remains largely
consistent across different proteins with the same number of
amino acids. For example, as shown in Fig. 1, the sum of
values of the distance matrix of different proteins with a length
of 128 aa is 375000 Angstrom Å.

To compute ROD, some steps are required:

1) Calculate the mean sum of the natural proteins’
distances matrices with the same length on all batches
denoted as 𝜇𝑟 , (only performed once).

2) Calculate the mean sum of the distance matrices of
generated proteins with the same length for each
batch, denoted as 𝜇 𝑓 (performed every time the fake
data is generated).

Fig. 1: Proteins with equal lengths of amino acids have equal
sums of CA pairwise distance matrices.

3) Calculate the ratio of distribution 𝜌 by dividing 𝜇𝑟
over 𝜇 𝑓 .

4) Modify Equation (3) by adding the ratio of distribu-
tion 𝜌, as follows:

𝜌 =
𝜇𝑟

𝜇 𝑓

𝑥̂ = 𝜀𝑥 + 𝜌 ∗ (1 − 𝜀)𝑥̃
(4)

ROD 𝜌 helped to generate close-to-real protein structures
by capturing the backbone, short-range, and long-range fea-
tures. In addition, the generated protein distribution is close
enough to the real protein distribution, which accelerates and
guarantees the stability of the learning process.

When 𝜇 𝑓 is greater than 𝜇𝑟 , 𝜌 is less than 1. Thus, we
multiply the 𝜇 𝑓 with the 𝜌 to ensures that the mixed distance
matrix value does not surpass the natural distance matrix value.

Conversely, when 𝜇 𝑓 is smaller than 𝜇𝑟 , 𝜌 is greater than
1. Thus, we multiply the 𝜇 𝑓 with the 𝜌 to ensures that the
mixed distance matrix value does not fall below the natural
distance matrix value.

In general, 𝜌 controls the mixed distance matrix value to
be aligned closely with the natural distance matrix value, as
depicted in Fig. 2. The algorithm’s steps are illustrated in Fig.
3.

(a) (b)

Fig. 2: The fake distribution trying to move to the real
distribution by using a mixed distance matrix. a) Without the

ratio of distribution and b) Using the ratio of distribution.
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Fig. 3: The ROD-WGAN algorithm.

C. Model Architecture

The model architecture of GAN consists of two networks:
the generator network and the discriminator network.

1) The Generator Network Architecture: The generator
architecture of our models is illustrated in Fig. 4(a). The G
network consists of convolution layers, which are fertilized
by two residual blocks to enhance and accelerate the model’s
learning. Table I provides the specifics of the generator net-
work parameters for the 128 aa.

(a)

(b)

Fig. 4: The proposed architecture ROD WGAN a) Represents
the Generator which consists of two Residual blocks and b)

Represents the discriminator.

2) The discriminator network architecture: Fig. 4(b) shows
the architecture of the discriminator. The discriminator takes
the distance matrix of the protein structure produced by G and

TABLE I: THE LAYERS OF THE GENERATOR NETWORK
ARCHITECTURE

layer Details filter stride padding
input 100*1*1 - - -
conv1 512*4*4 512*4*4 4 0
conv2 256*8*8 256*4*4 2 1

Residual1 conv 256*8*8 256*3*3 1 1
conv 256*8*8 256*3*3 1 1

conv3 128*32*32 128*4*4 4 0
conv4 64*64*64 64*4*4 2 1

Residual2 conv 64*64*64 64*3*3 1 1
conv 64*64*64 64*3*3 1 1

conv5 1*128*128 1*4*4 2 1

the distance matrix of the natural protein structure as input to
differentiate the natural matrix from the generated one. The
discriminator utilizes five convolution layers. Table II shows
the discriminator network parameters for 128 aa .

TABLE II: LAYERS OF THE DISCRIMINATOR NETWORK
ARCHITECTURE

layer Details filter stride padding
input 1*128*128 - - -

conv1 64*64*64 64*4*4 4 0
conv2 128*32*32 128*4*4 2 1
conv3 256*8*8 256*4*4 4 0
conv4 512*4*4 512*4*4 2 1
conv5 1*1*1 1*1*1 2 1

III. TRAINING DATASET

The dataset utilized comprised 115K protein structures
sourced from PDB [19], with variations in there protein size.
We calculated distance matrices that measured the distance
between each pair of CA atoms within the protein’s main
chain. As a result, the matrix distance size equaled n*n, where
n equaled 64, 128, or 256 aa. It’s noteworthy that we are the
first to create the 256aa structure; as the number of amino
acids increases, the size of the distance matrix also increases,
thereby increasing the complexity of model training.

To the extent of our knowledge, there has been no prior
study on the generation of protein structures comprising 256
aa using the generative models. Our results align with recent
studies on protein design via deep learning techniques [42],
[43], as well as the latest advancements in the field of protein
structure prediction and design [8], [9], [10].

IV. ASSESSMENT OF OUR MODELS

To evaluate the performance of our models as well as other
state-of-the-art methods, we conducted several assessments,
including i) Quantitative assessment, which involved evaluat-
ing the average peptide bond and comparing distributions; ii)
Qualitative assessment; and iii) Convergence analysis.

A. Assessment on the Average Peptide Bond

The average peptide bond is calculated by summing all the
entries along the main diagonal of the distance matrix and then
dividing that sum by the length of the diagonal. To assess the
quality of the generated protein tertiary structure, we compared
its features (distance of backbone, short-range, and long-range)
to those of natural proteins.
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1) Assessment on the backbone structure: The backbone
refers to the main diagonal of the generated distance matrix,
which is constructed using every consecutive (i, i+1) CA pair
where 0<i<n-1. In a natural protein, the ideal distance between
two consecutive amino acids is 3.79Å

2) Assessment on the short-range structure and the long-
range structure: After computing the backbone, we can calcu-
late the local structures by examining the short-range distance
between consecutive (i, i+j) CA pairs, where j is between 1 and
4. In natural proteins, the ideal short-range distance is 7.8Å.
If we increase j beyond 4, we can determine the long-range
distance, or distal structure. For 64 aa in a natural protein,
the ideal long-range distance is 18.31Å. While for 128 aa
in a natural protein, the ideal long-range distance is 21.31Å.
Finally, when we computed it for 256 aa, we found a value
of 25.01Å, based on experimental data obtained from natural
proteins.

B. Structural Similarity Index Measure

In our study and during our experiments, we made a
noteworthy observation regarding the tertiary protein struc-
tures: there exists a consistent correlation between natural
protein structures that have the same number of amino acids.
When we calculate the SSIM between two different natural
distance matrices, we obtained the following constant values
for different lengths of distance matrices: 0.72 for distance
matrices with a length of 64 aa, 0.69 for distance matrices
with a length of 128 aa, and 0.68 for distance matrices with a
length of 256 aa.

Based on these findings, we utilized SSIM as a loss
function to enhance the similarity and correlation between the
natural and the generated tertiary protein structures. We eval-
uated the SSIM score between the natural and the generated
structures using Eq. (6).

𝑆𝑆𝐼𝑀( 𝑓 𝑎𝑘𝑒,𝑟𝑒𝑎𝑙) =
2𝜇𝑟𝑒𝑎𝑙𝜇 𝑓 𝑎𝑘𝑒 + 𝐶1

𝜇2
𝑟𝑒𝑎𝑙

𝜇2
𝑓 𝑎𝑘𝑒

+ 𝐶1
∗

2𝜎𝑟𝑒𝑎𝑙𝜎 𝑓 𝑎𝑘𝑒 + 𝐶2

𝜎2
𝑟𝑒𝑎𝑙

𝜎2
𝑓 𝑎𝑘𝑒

+ 𝐶2

∗
2𝜎𝑟𝑒𝑎𝑙∗ 𝑓 𝑎𝑘𝑒 + 𝐶3

𝜎𝑟𝑒𝑎𝑙𝜎 𝑓 𝑎𝑘𝑒 + 𝐶3
(5)

The formula includes several variables, such as the mean
values of the real and the fake protein (𝜇𝑟𝑒𝑎𝑙 and 𝜇 𝑓 𝑎𝑘𝑒,
respectively), the standard deviation of the real and the fake
protein (𝜎𝑟𝑒𝑎𝑙 and 𝜎 𝑓 𝑎𝑘𝑒, respectively), as well as the cross-
correlation (𝜎𝑟𝑒𝑎𝑙𝜎 𝑓 𝑎𝑘𝑒) between the two proteins. Addition-
ally, the formula contains three constants, labeled 𝐶1, 𝐶2, and
𝐶3 equal to 0.01, 0.03, and 0.015, respectively [44].

The SSIM score ranges from 0 to 1, and a score closer to
1 indicates a greater level of correlation between the real and
fake images, and vice versa. Therefore, we strive to achieve
an SSIM score that is as close to natural as possible. Based on
our experiments, if we calculate the SSIM between a natural
distance matrix (n*n), where ’n’ represents the length of the
protein (either 64, 128, or 256), and itself, the SSIM value will
always be one.

For example, if we take natural protein1 with a length of 64
aa, and natural protein2 with a length of 64 aa, and calculate

the SSIM between the distance matrices of these proteins, we
will find the value to be 0.72. If we repeat the calculation
for two different proteins, we will obtain the same constant
value of 0.72. Hence, when calculating the SSIM between two
different proteins with a length of 64 aa, the value is always
constant at 0.72.

Similarly, if we take natural protein1 with a length of 128
aa, and natural protein2 with a length of 128 aa, and calculate
the SSIM between the distance matrices of these proteins, we
will find the value to be 0.69. If we repeat the calculation for
different proteins, we will again obtain the same constant value
of 0.69. Therefore, when calculating the SSIM between two
different proteins with a length of 128 aa, the value is always
constant at 0.69, regardless of the protein lengths.

Lastly, if we take natural protein1 with a length of 256
aa and natural protein2 with a length of 256 aa and calculate
the SSIM between the distance matrices of these proteins, we
will find the value to be 0.68. If we repeat the calculation for
different proteins, we will once again obtain the same constant
value of 0.68. Thus, when calculating the SSIM between two
different proteins with a length of 256 aa, the value is always
constant at 0.68.

C. Comparison of the Distribution

In GANs, we aim to capture the distribution of natural
tertiary protein structures by approximating the generated dis-
tribution to the natural one. To measure the distance between
the two distributions, we employ various metrics, such as the
Earth Mover’s Distance (EMD), Maximum Mean Discrepancy
(MMD), and Bhattacharya Distance (BD).

1) Earth Mover’s Distance (EMD): The Earth Mover’s
Distance, also known as the Wasserstein distance [45], rep-
resents the minimum cost required to transform the gener-
ated distribution of tertiary protein structures to the natural
distribution. EMD has been found to provide better percep-
tual dissimilarity than any other dissimilarity measure. EMD
measures the distance between the two distributions, where
a lower EMD value indicates higher similarity or proximity
between the distributions, and a higher EMD value indicates
lower similarity.

2) Maximum Mean Discrepancy (MMD): Maximum Mean
Discrepancy (MMD) [46] is a popular statistical test used to
measure the distance between two distributions, p(A) and q(B).
MMD is defined as the largest difference in the expectations
of the mean of A(𝜇𝐴) and the mean of B(𝜇𝐵) over functions
in the unit ball of a reproducing kernel Hilbert space (RKHS).
MMD can be computed using Eq. (10). MMD measures the
distance between the two distributions in the RKHS, where
a lower MMD value indicates higher similarity or closeness
between the distributions, and a higher MMD value indicates
lower similarity.

𝑀𝑀𝐷 (𝐴,𝐵) =| 𝜇𝐴 − 𝜇𝐵 |2𝐻 (6)

3) Bhattacharya distance (BD): Bhattacharya Distance
(BD) [47] is another measure of the distance between two
distributions p(a) and q(a) on the same domain. BD can be
computed by Eq. (11).
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𝐵𝐷 (𝑝,𝑞) = − ln(𝐵𝐶 (𝑝, 𝑞)) (7)

where the Bhattcharaya Coefficient BC is

𝐵𝐶(𝑝,𝑞) =
∑︁
𝑥∈𝑋

√︁
𝑝(𝑥)𝑞(𝑥) (8)

BC is an approximation that quantifies the degree of
overlap between two samples drawn from distinct statistical
distributions. A lower BD value indicates higher similarity or
overlap between the two distributions, while a higher BD value
indicates lower similarity.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

We created ROD-WGAN model using the PyTorch frame-
work on an RTX2080. We set the learning rate to 0.001 for
both the critic and generator and used the Adam optimizer with
b1 and b2 values of 0.5 and 0.999 respectively. The training
time for one epoch of ROD-WGAN was approximately 17
minutes.

A. Quantitative Assessment

1) The effect of ROD: We have made significant progress
in generating a distance matrix of tertiary protein structure
using ROD. From the first ten epochs, we were able to capture
the backbone, short-distance, and long-distance features of
protein structures. As shown in Table III, our model, ROD-
WGAN, outperformed WGAN without ROD and achieved
better results that more closely resemble real protein structures.
Furthermore, the distribution of the generated proteins is much
closer to the natural protein distribution.

TABLE III: THE EFFECT OF ROD ON THE RESULTS OF
BACKBONE, SHORT-RANGE, AND LONG-RANGE PROTEIN

STRUCTURES ON JUST 10 EPOCH

Number of
epoch

Features Natural WGAN
without
ROD

ROD-WGAN

10
Backbone 3.78 1.85 3.47
Short 7.8 3.82 7.02
Long 21.3 11.20 19.24

2) Average peptide bond: As mentioned earlier, we eval-
uated the distance matrix of the tertiary protein structure
by considering the average length of peptide bonds in the
backbone, short-range, and long-range distances. This method
enabled us to accurately assess the similarity between the
generated and natural distance matrices of the tertiary protein
structure.

We assessed the quality of the backbone of the distance
matrices generated by different models, namely ROD-WGAN,
and 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 [10]. As shown in Table IV and Fig. 5,
we found that our model ROD-WGAN was able to capture
the backbone, short-range, and long-range features of natural
proteins more accurately than 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 [10].

TABLE IV: DISTANCE FEATURES OF THE BACKBONE, THE
SHORT-RANGE, AND THE LONG-RANGE FOR NATURAL
AND GENERATED PROTEINS BY A VARIETY OF MODELS

Natural ROD-WGAN WGAN𝑅𝑎ℎ𝑚𝑎𝑛

64aa
Backbone 3.78 3.08 5.05
Short 7.5 6.42 9.43
Long 17.55 15.12 20.11

128aa
Backbone 3.78 3.014 7.506
Short 7.8 6.58 11.66
Long 21.31 19.24 26.144

256aa
Backbone 3.78 2.939 -
Short 7.55 5.88 -
Long 25.01 18.738 -

**The bold characters indicate the best evaluation scores.

TABLE V: SSIM BETWEEN THE NATURAL AND THE
GENERATED DISTANCE MATRICES BY ROD-WGAN, AND

𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛

SSIM Natural ROD-WGAN WGAN𝑅𝑎ℎ𝑚𝑎𝑛

64aa 72.47% 73.79% 72.02%
128aa 69.60% 70.19% 66.74%
256aa 68.13% 69.63% -

3) SSIM: As previously mentioned, SSIM is a metric used
to assess the quality and similarity between two distance
matrices. Table V displays the performance of ROD-WGAN,
and 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 [10] on distance matrices of 64 aa, 128
aa, and 256 aa.

The ROD-WGAN model provided the highest protein
structural similarity distance matrices, with ROD-WGAN be-
ing closer to the natural than 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛, particularly as
the number of amino acids increased.

4) Evaluation of the distribution distance: We employed a
variety of measurements, including EMD, MMD, and BD, to
assess the disparity between the distribution of the generated
distance matrices for the tertiary protein structure and the
distribution of the natural distance matrices for the tertiary
protein structure.

The line graph in Fig. 6 illustrates the performance of
our models during the training process. Specifically, the plot
depicts the changes in EMD, BD, and MMD values over
time for each model. The consistently lower lines for our
model, ROD-WGAN, as compared to the best state-of-the-art
model 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛, serve as evidence of the accuracy of our
models in generating protein structures that closely resemble
those found in nature.

Fig. 6 illustrates that ROD-WGAN outperform
𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 [10] in the 64aa and 128aa regions.
Furthermore, We observed that the MMD, BD, and EMD
values obtained for the 256 aa region closely resemble those of
the natural protein. This is noteworthy as the 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛

model [10] was originally implemented for a limited region
of 128 aa and does not cover the entire 256 aa. Overall, the
ROD-WGAN model accurately capture the distribution of the
natural protein.

B. Qualitative Assessment

In Fig. 7, we present the 64*64, 128*128, and 256*256
distance matrices for the generated tertiary protein structures
of ROD-WGAN, and 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 models and the natural
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Fig. 5: The comparison has between the natural distribution(represented by the blue color)and the generated
distribution(represented by the pink color). The 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 model was not implemented on 256 aa.
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Fig. 6: Performance of ROD-WGAN, and 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 on

distributions for 64aa, 128aa, and 256aa.

structure. The heatmaps of these matrices were randomly
selected from each model, with lighter colors indicating greater
distance and darker colors indicating lower distance.

As seen in the 64aa and 128aa matrices, ROD-WGAN
generated a clear heatmap distance matrix for the backbone,
with a distinct dark diagonal, while the 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 matrix
was less clear. Furthermore, when we increase the length
of the protein to 256aa, the ROD-WGAN model generate
clear heat maps that have the backbone. To the best of our
knowledge, there has been no previous report of generating
protein structures with a length of 256 amino acids using the
WGAN model. Our results are supported by recent surveys on
protein design via deep learning [42], [43] and advances in
protein structure prediction and design [8], [9], [10].

1) Alternating Direction Method of Multipliers (ADMM) :
In our protein design study, we utilized the alternating direction
method of multipliers (ADMM) [48] to convert the pairwise
carbon alpha distance matrix (2d heatmap) to its equivalent 3d
structure. We performed this for both the natural protein struc-
tures and those generated by various models (𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛,
and ROD-WGAN). By employing the ADMM algorithm and
implementing it with the software library [49], we were able to
fold the distance matrices produced by our models to visualize
the tertiary protein structures, as depicted in Fig. 8.

The visualization presented in Fig. 8 is crucial for eval-
uating the accuracy of the generated protein structures. It
enables us to visually assess the overall shape of the generated
structures and compare them against the natural structures.
The ability to produce structures that closely resemble the
natural structures is one of the most important characteristics of
successful protein structure generation models. Therefore, the
visualization in Fig. 8 provides an opportunity to validate the

Natural ROD-WGAN WGAN𝑅𝑎ℎ𝑚𝑎𝑛

64
aa

12
8a

a
25

6a
a

Fig. 7: Heatmaps visualized the Distance Matrices of the
proteins’ tertiary structures. The natural and generated

distance matrices from various models ROD-WGAN, and
𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛. The 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 model [10] was not

implemented on 256 aa.

performance of our models in generating protein structures’
distance matrices. We observed that the structures generated
from our model ROD-WGAN was much closer to the natu-
ral protein structures compared to those generated from the
𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛 model.

C. Convergence Analysis in ROD-WGAN Model for Protein
Structure Generation

In this study, we investigated the effectiveness of the
generator (G) and discriminator (D) in reducing loss and
achieving convergence during training epochs while ensuring
the generation of high-quality protein structures. Our focus was
on the ROD-WGAN model, designed specifically for protein
structure generation. Fig. 9 illustrates the performance of the
ROD-WGAN model on datasets comprising varying lengths
of amino acids (aa), namely 64 aa, 128 aa, and 256 aa. Our
objective was to assess the model’s convergence capability and
loss reduction across these datasets.

The results demonstrated that the ROD-WGAN model
outperformed in reducing the overall generator loss. This
indicates the significant improvement of the generator network
(G) in generating realistic protein structures as the training
progressed. Furthermore, the convergence between the total
generator loss and the critic loss exhibited by the model
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(a) 128aa Natural (b) 128aa ROD-WGAN (c) 128aa
WGAN𝑅𝑎ℎ𝑚𝑎𝑛 model

(d) 256aa natural (e) 256aa ROD-WGAN

Fig. 8: The tertiary structure of protein structures a) The natural protein structure with a length of 128aa b) The structure of a
protein generated from ROD-WGAN with a length of 128aa. c) The structure of a protein generated from 𝑊𝐺𝐴𝑁𝑅𝑎ℎ𝑚𝑎𝑛

model [10] with a length of 128aa. d) The natural protein structure with a length of 256aa. e) The structure of a protein
generated from ROD-WGAN with a length of 256aa.

64 aa 128 aa 256 aa

Fig. 9: Convergence analysis of ROD-WGAN losses.

indicated its stability and successful interplay between G and
D.

VI. CONCLUSION AND FUTURE WORK

In this study, we not only focused on predicting the protein
tertiary structure problem, but we were also interested in mak-
ing the method of prediction more simple, more practical, and
less laborious. Despite the success of Alphafold in predicting
the protein tertiary structure, there was still a need to search
for another way that is easier, simpler, and does not require
hundreds of TPUs (Tensor Processing Units).

We have developed models to generate distance matrices of
proteins’ tertiary structures in various amino acid lengths. Our
proposed models are different from others in that they have the
followings: 1) Modified the WGAN penalty equation by using
the ROD 2) Developed Convolutional layers and enhanced it
with the residual block 3) Applied on proteins with a length
of 256 aa 4) our research uncovers consistent correlations
in protein structures through the application of the SSIM.
These findings provide valuable insights into the inherent
relationships within protein structures, further enhancing the
significance of our model.

In future work, we can try to generate tertiary protein
structures based on distance and dihedral angle to increase
the realism of the protein structures. We plan to work on

generating realistic and chemically accepting complex tertiary
protein structures. We are also interested in tertiary protein
structures as a data augmentation task for specific families
of proteins that do not have an adequate amount of protein
structures. We are also interested in the conditional GAN as a
generative model by employing amino-acid sequences. Finally,
we plan to build end-to-end models that start with a tertiary
structure and end with different tertiary structures. They have
formulated from its under various physiological conditions.
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