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Abstract—In order to study the technology of image 

conception, splitting, stitching and positioning in film and 

television production, this paper first discusses the relevant 

research literature, then designs an improved biomedical image 

segmentation convolution network model applied in film and 

television production, and then verifies the effectiveness of the 

proposed model. Ultimately, the paper summarizes the research 

findings. Aiming at the problem that the traditional image 

mosaic positioning model has poor robustness because of its 

insufficient ability to extract features and inaccurate 

segmentation and positioning areas, this study proposes a 

biomedical image segmentation convolutional network model 

that is based on dense block and void space convolutional pooling 

pyramidal module. Additionally, an attention mechanism is 

introduced to enhance the biomedical image segmentation 

convolutional network model. The results show that the 

accuracy, recall, and F1 value of the biomedical image 

segmentation convolutional network model are 96.48%, 95.24%, 

and 95.96%, respectively, on the Colombian uncompressed image 

stitching detection dataset, and the accuracy, recall, and F1 value 

of the improved biomedical image segmentation convolutional 

network model are 98.19%, 96.23%, and F1 value of 97.21%. In 

summary, the improved convolution network model for 

biomedical image segmentation has excellent performance, and it 

has certain application value in image conception, mirror splicing 

and positioning in film and television production. 

Keywords—Convolutional neural network; attention 

mechanism; null space convolutional pooling pyramid; spatial rich 
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I. INTRODUCTION 

The field of cinema and television production has 
encountered novel challenges and made significant strides as a 
result of the ongoing advancements in science and technology 
[1-2]. As an essential pre-production step in film and 
television, the split screen is an intermediate medium for 
converting text into a three-dimensional audio-visual image 
and presenting it in a pictorial form [3-4]. Due to the increased 
functionality and user-friendliness of image editing software, 
producers can easily select areas of interest from other images 
to be cut and spliced into the split-screen image, which brings 
great convenience for creating the split-screen image, but also 
easily brings trouble to the film and television copyright [5]. 
To enhance split-screen imagery creativity in film and 

television production and reduce the risk of copyright, it's 
crucial to prioritize research on image stitching and 
positioning technologies [6]. Image stitching is a semantic 
segmentation of features by dividing the stitching area into 
one category and the real area into another category. The 
CNBIS model is capable of extracting the stitched region from 
the real region. The traditional CNBIS model can achieve 
good results only when it is faced with simple semantic 
information of the same kind of content. However, in image 
mosaic and positioning, the mosaic area often comes from 
different semantic interference information, resulting in 
inadequate feature extraction and inaccurate segmentation and 
positioning area, which reduces the segmentation accuracy of 
the model [7]. The research aims to improve image semantic 
segmentation accuracy and make up for the deficiency of 
model extraction features caused by different semantic 
interference information. To overcome these issues, the study 
implements Dense Block (DB) and Atrous Spatial Pyramid 
Pooling (ASPP) modules to improve the CNBIS model and 
introduce the DACNBIS model. The research also 
incorporates the Attention Mechanism (AM) to enhance the 
DACNBIS model and create the AM-DACNBIS model, which 
increases the segmentation accuracy of the DACNBIS model. 
The primary contribution of the research is to broaden the 
application of image mosaic positioning technology in film 
and television production. The goal is to increase the diversity 
of split-mirror images, improve the reduction and richness of 
split-mirror in films, and make the storyline and the overall 
picture of film and television works more complete. The 
research focuses on two significant innovations. The first point 
is to improve the traditional CNBIS model by introducing DB 
module and ASPP module, and improve the DACNBIS model 
by combining attention mechanism. The second point is that 
AM-DACNBIS model is divided into three parts: parameter 
sharing, area monitoring and edge detection, and specific 
feature layers are used for each part to extract the 
corresponding task information. The study is primarily divided 
into four parts. The first part reviews relevant pertinent 
research findings. The second part constructs the construction 
of DACNBIS model and AM-DACNBIS model. The third part 
validates the two proposed models' validity in the study. The 
final part concludes the research. 
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II. RELATED WORK 

Many image processing jobs start with the pre-processing 
stage of picture semantic segmentation, and many academics 
have written extensively about ways to increase segmentation 
accuracy in this process, Gao and co. To help the network 
better concentrate on object borders and small objects during 
the feature extraction process, a sensitive feature selection 
module was created to reweight each pixel on several channels. 
The findings of the experiments demonstrate that the sensitive 
feature selection module can aid in the semantic segmentation 
algorithm's high segmentation accuracy [8]. To reduce 
semantic information loss and improve image information, 
Zhou et al. proposed a semantic segmentation model based on 
dense convolutional separation convolution. This model also 
integrates multi-scale feature information for a broader 
perceptual field and captures more dense pixels. Simulation 
experiments demonstrate the superior performance and good 
performance of this model for image segmentation [9]. Zhang 
et al. proposed a system that utilizes the original semantic 
segmentation network to deal with the issue of missing static 
object segmentation occluded by dynamic scenes and 
combines it with image restoration [10]. Maurya et al. created 
a cross-form attention pyramid to extract multi-scale 
information using a pre-trained model in order to address the 
issues of feature redundancy and low discrimination in image 
semantic segmentation. An attention module in a spatial 
manner is then introduced to further improve the segmentation 
effect. With the addition of the attention pyramid and attention 
module, simulation results demonstrate that the semantic 
segmentation model has greater segmentation accuracy [11]. 
In order to tackle the problem of loss of image information 
caused by feature extraction in the process of image semantic 
segmentation, Chen constructs a semantic segmentation model 
with encoder-decoder as the basic structure. The research 
results verify the logic and effectiveness of the model [12]. 

CNBIS model is a very famous segmentation network 
model in the field of image segmentation, which has been 
widely used in various fields. In order to accurately divide 
non-enhanced tumor, enhanced tumor, tumor core and 
undamaged region in brain images, Teki et al. used CNBIS 
model to realize semantic segmentation of brain tumor images. 
The research findings demonstrate that the CNBIS model 
performs well in segmenting simple semantic information. 
However, in the presence of complex semantic interference 
information, the model exhibits insufficient feature extraction 
capability and low segmentation accuracy [13]. Singh et al. 
designed an improved Deep-CNBIS model for semantic 
segmentation of images using satellite images to extract 
vegetation cover. The simulation experiments show that the 
model has superior performance in semantic segmentation 
accuracy of satellite images [14]. Tiwari et al. proposed an 
improved CNBIS model for segmenting vehicles, which 
segmented the input images by successive encoding and 
decoding steps. The simulation results show that the improved 
CNBIS model outperforms other segmentation models in 
terms of segmentation accuracy [15]. Cheng et al. designed a 
separated convolutional CNBIS model combining 

convolutional downsampling. The outcomes of the simulation 
experiment demonstrate that the model is capable of quickly 
and easily detecting fabric defects with high accuracy [16]. 
Mahmoud et al. developed a deep learning model based on the 
combination of CNBIS model. The simulation experiments 
demonstrate that the model performs significantly better than 
the traditional CNBIS model, exhibiting a higher accuracy rate 
[17]. Abdelrauof et al. proposed to use multi-gated expansion 
starting blocks. It is evident from the experimental results that 
the addition of multi-gate expansion start blocks improves the 
CNBIS model performance and demonstrates exceptional 
capability [18]. 

In summary, there are many research results on image 
semantic segmentation and CNBIS model applications. 
However, most of the image semantic segmentation studies 
use small data set samples, which do not sufficiently meet the 
deep learning requirement for extensive data training. The 
traditional CNBIS model has insufficient feature extraction 
capability, which leads to inaccurate image localization and 
poor robustness. The paper suggests the DACNBIS model to 
overcome the aforementioned issues and introduces an 
attention mechanism to enhance the DACNBIS model, 
resulting in the AM-DACNBIS model. 

III. DACNBIS MODEL AND AM-DACNBIS MODEL 

CONSTRUCTION IN IMAGE STITCHING LOCALIZATION 

DETECTION 

The purpose of image stitching, which separates the 
stitching area from the real area so that they are presented 
separately, can be thought of as a unique sort of semantic 
segmentation. 

A. Construction of DACNBIS Model Based on CNBIS Model 

As the initial stage of rendering text into images in film 
and television production, splitting is the process of dividing a 
film script into a series of shots that can be filmed and 
presented as images. Convolutional Neural Networks (CNN) 
are a deep learning model with learnable weights and bias 
constants that are suitable for processing image data 
processing through supervised learning [19-22]. The 
convolutional layer can extract features from images. Equation 
(1) expresses the parameters of this layer. 

1 *
j

l l l l
j i iji M

x f x Kernel b



 
  

 


 
(1) 

In equation (1), l
jx  is the j  neuron of the l  layer,

Kernel , *, and  f  represent the convolution kernel, 

convolution operation, and nonlinear excitation function, 

respectively, a  and jM  represent the bias term and the 

number of inputs of the j  neuron, respectively. The pooling 

layer can reduce the risk of overfitting by reducing the 
dimensionality. The excitation layer introduces nonlinear 
features to the neural network, enabling it to approximate any 
nonlinear function. The activation function image is shown in 
Fig. 1. 
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Fig. 1. Schematic diagram of three activation functions. 

The Sigmoid function, Tanh function, and ReLu function, 
respectively, are depicted in Fig. 1 where the expression of the 
Sigmoid function is shown in equation (2). 
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The value range of equation (2) is  0,1 , which 

corresponds to the probability value range  0,1 . Equation (3) 

contains the Tanh function's expression. 

 
x x

x x

e e
f x

e e








     
(3) 

The output of equation (3) is centered on 0, which can play 
the effect of data centering. Due to the saturation region of 
Sigmoid function and Tanh function, the gradient is prone to 
gradient disappearance when back propagation, and this 
phenomenon becomes more and more obvious. This issue is 
mitigated by the ReLu function, which is expressed 
mathematically in equation (4). 
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The positive activation value derivative of the ReLu 
function in equation (4) is 1. In order to accomplish the image 
classification task, the fully connected layer must integrate the 
input image data and map the feature map from the 
convolution layer into a fixed-length feature vector, as shown 
in equation (5). 
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In equation (5), ,i jw  and jb  denote the weight and 

offset between neurons, respectively. CNBIS, as a special 
semantic segmentation algorithm in the field of deep learning, 
is a derivative model of CNN and capable of addressing image 
stitching and localization issues. 

The CNBIS model in Fig. 2 adopts a fully symmetric 
coding-decoding structure. The coding section is 
downsampled four times, and the decoding link is 
corresponding to the four stages of the coding link, each of 
which incorporates the feature information corresponding to 
that from the coding process. This results in the final feature 
map is restored to the original image size. Due to the small 
sample of dataset about image stitching at this stage, the 
neural network is prone to the risk of overfitting, the study 

introduces the DB and ASPP modules to improve the CNBIS 
model, resulting in the DACNBIS model. The DB module is a 
CNN with tightly connected nature. The feature map 
resolution of each layer is of the same size, so the channels of 
each layer can be stitched together in dimension. Suppose the 

output channel of the l  layer inside the DB module is lX , 

then the expression of lX  is shown in equation (6). 

1 1 0, , ,l l lX H X X X    
(6) 

In equation (6), lH  is the nonlinear transformation 

function of the l  layer,    indicates that all output feature 

maps of the 0 1 1, , , lX X X   layer are combined by channel, 

and the expression of the network input iX  of the i  layer is 

shown in equation (7). 

 0 1iX K i K   
 

(7) 

In equation (7), K  is the number of output channels of 

the nonlinear function H , and 0K  is the number of input 

channels. The dense jump connection implemented inside the 
DB module causes the number of channels after the l  layer 

to become large. The study adopts a convolution of 1 1  
before the convolution of 3 3  in the DB module. The ASPP 

module aims to minimize the loss of accuracy generated by 
the feature map in the process of recovering the resolution size 
of the original image. It employs four varied expansion rates 
of the null convolution to capture multi-scale information. The 
specific structure of DACNBIS model is shown in Fig. 3. 

In Fig. 3, the study introduces the DB module to replace 
the original CNBIS model upsampled by the 3 3  

convolutional network. This enhances feature reuse and 
propagation, increasing the richness of feature extraction. The 
study also introduces the ASPP module to replace the fourth 
sampling session of the original CNBIS model. This module 
extracts multi-scale information, expands the network 
perceptual field, and improves the model's segmentation 
effects on spliced regions of different sizes. 

Maximum pooling2x2 Upper-convolution 2x2

Copy and crop

 

Fig. 2. Schematic diagram of CNBIS model structure. 
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Fig. 3. Schematic diagram of DACNBIS model structure. 

B. Construction of AM-DACNBIS Model based on DACNBIS 

Model 

In order to avoid some redundant and useless low-level 
semantic information from interfering with the decoding 
process of the DACNBIS model, thereby affecting the 
influence of image sub-screening conception in the film and 
television production stage, the research combines AM to 
improve the DACNBIS model, resulting in the 
AM-DACNBIS model. It is based on the principle that 
humans selectively focus on the more interesting and 
informative visual areas when observing a scene, thus 
ignoring other irrelevant areas and thus improving the 
utilization of visual information. The study draws inspiration 
from AM and introduces a Global Attention Upsampling 
(GAU) module to provide global context as a low-level guide, 
see Fig. 4 [20]. 

Low level semantic 

features

Conv 3x3

Advanced 

semantic features

Conv 1x1
Global 

Pooling

+
Upsample

 

Fig. 4. GAU module schematic diagram. 

In Fig. 4, GAU first convolves the low-level semantic 
features with 3 3 . Since the AM-DACNBIS model ignores 

the differences between the essential attributes of images 
when performing image input, which in turn leads to large 
differences between the extracted real images and the stitched 
images and affects the splitting effect in the film and TV 
production process. In order to reduce the interference 
situation of different semantic information in the stitching 
region on the network's extracted features, the study 
implements the Spatial Rich Model (SRM) filter in the input 
stage to analyze the image features.SRM is a high-latitude 
steganographic model, when the image hides secret 
information, SRM will destroy the image attributes and extract 
the feature information from these images that are hidden 
information. Suppose the image pixel is X , the expression of 

image residual ,i jR  is shown in equation (8). 

 
,2 1 , , ,

ˆ1,2, , , 1,2, , ,
i j i j i j i jj n i n R X N cX   

 
(8) 

In equation (8) 1n  , 2n  denote the pixel points in 

horizontal and vertical directions respectively, ,i jN  is the 

field without the central pixel ,i jX ,  , ,
ˆ

i j i jX N  refers to the 

estimated value of the central pixel ,i jX  in the region ,i jN , 

c  is the residual order, when the magnitude of the residual 

pixel is large, the pixel correlation there will be reduced, so 
the study also needs to quantize and truncate the residual 
image, as shown in equation (9). 
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In equation (10), Q  is the quantization step, round  

indicates rounding, and TTrunc  means the elements are 

truncated one by one by the threshold T , where  TTrunc x  

is expressed as shown in equation (10). 
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In equation (10)  sign x  is the symbolic function and 

the high-pass filter extracted from the SRM can be used for 
the extraction of RGB image noise, as shown in equation (11). 
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(11) 

The residual image resulting from the extraction of the 
SRM filter in equation (11) highlights edge features of the 
stitched region while suppressing other contents. In order to 
maintain sharing in the feature extraction process and 
minimize the risk of network overfitting, the study comprises 
of a multi-task learning output from the branching task of 
stitching edge localization using the DACNBIS model. 
According to Fig. 5, the hard parameter sharing and soft 
parameter sharing categories best describe the multitask 
learning structure. 
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Fig. 5. Schematic diagram of multi-task learning structure. 
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Fig. 6. Structural diagram of AM-DACNBIS model. 

Fig. 5(a) shows the hard parameter sharing structure, in 
which the bottom layers of the network's input share 
parameters. This is known as bottom parameter sharing. 
Different learning tasks present different branches after 
sharing, and these tasks are trained in parallel with each other, 
and the feedback action is performed through the loss function 
each learning task. Fig. 5(b) shows the soft parameter sharing 
structure, in which every task has independent models and 
parameters. Every model can access the internal information 
of other models and regularize the distance between model 
parameters to ensure the similarity between parameters. Since 
the soft parameter sharing mechanism has separate models 
among multiple tasks. A schematic representation of the final 
AM-DACNBIS model structure is shown in Fig. 6. The study 
also embeds the data information of multiple tasks into a 
single semantic space and extracts the relevant task 
information for each task through a specific feature layer. 

The model structure in Fig. 6 is mainly divided into three 
parts: parameter sharing, region monitoring, and edge 
detection. For the parameter sharing part, the AM-DACNBIS 
model adds SRM filters and completes the shared training for 
both region detection and edge detection tasks through the DB 
module in the pre-input phase of the network. It then embeds 
the information of both tasks into the same semantic space. 
For the region detection part, the study introduces the GAU 
module in the decoding process of the AM-DACNBIS model 
to provide global context as the underlying guidance to 
improve the sensitivity of important feature information. For 
the edge detection part, the study invokes the feature pyramid 

attention module in the edge branch and learns better feature 
representation at the parameter sharing layer through this 
module. To evaluate the AM-DACNBIS performance, the 
study presents the performance metrics of accuracy, recall, and 
F1 value for testing, as shown in equation (12). 
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
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
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
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(12) 

In equation (12), P  and R  represent the precision and 
recall, respectively. TP  is the actual stitched area pixels and 
the predicted stitched area pixels; FP  is the actual real area 
pixels and the predicted stitched area pixels; FN  is the 

actual stitched area pixels and the predicted real area pixels. 

IV. ANALYSIS OF THE RESULTS OF DACNBIS MODEL AND 

AM-DACNBIS MODEL IN IMAGE STITCHING LOCALIZATION 

DETECTION 

The section focuses on the examination of the 
experimental results of the DACNBIS model and the 
AM-DACNBIS model. To confirm the validity of the 
DACNBIS model and the AM-DACNBIS model, comparative 
tests were conducted on various data sets utilizing different 
model sets. 
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A. Experimental Data Preparation 

The algorithmic model was developed with the PyTorch 
deep learning framework, and the hardware environment for 
the experiments was a workstation running Windows OS. This 
was done to compare the performance of the proposed models. 
With a stochastic gradient descent network training optimizer, 
a binary cross-entropy loss function, an initial learning rate of 
0.01, momentum of 0.9, weight decay of 0.0005, and 
performance metrics of accuracy, recall, and F1 value. The 
Chinese Academy of Sciences Institute of Automation 1 
(CASIA1) dataset, CASIA2 dataset, Columbia Uncompressed 
Image Splicing Detection (CUIS) dataset, and the Chinese 
Academy of Sciences Institute of Automation 1 (CASIA2) 
dataset are used for the study. For the experiments, the Image 
Splicing Detection (CUISD) datasets are utilized, and the 
specific experimental data are divided as shown in Table Ⅰ. 

TABLE I.  PARTITION RESULT OF DATA SET 

Data Set CASIA1 CASIA2 CUISD 

Training set 1050 7000 175 

Verification set 300 2000 50 

Test set 150 1000 25 

1500 samples total for the CASIA1 dataset, 10,000 
samples total for the CASIA2 dataset, and 250 samples total 
for the CUISD dataset are shown in Table Ⅰ, where the training, 
validation, and test sets account for 70%, 20%, and 10% of the 
corresponding datasets. To enhance the understanding of the 
datasets, the schematic diagram of some data sets is selected, 
as shown in Fig. 7. 

(a) CASIA1 data set

(b) CASIA2 data set

(c) CUISD data set

Real image Ⅰ Real image Ⅱ Mosaic image Mosaic image label

Real image Ⅰ Real image Ⅱ Mosaic image Mosaic image label

Real image Ⅰ Real image Ⅱ Mosaic image Mosaic image label
 

Fig. 7. Sample diagrams of three data sets. 

Fig. 7(a) is a schematic diagram of the CASIA1 dataset 
with stitching areas of different sizes and arbitrary boundaries 
such as circles, triangles and rectangles. Additionally, Fig. 7(b) 
illustrates the CASIA2 dataset, which is an upgrade of the 
CASIA1 dataset with more data and better production. Fig. 
7(c) displays the CUISD dataset which provides labels with 
red and green colored edge templates, and the edge labeling 
error is larger. 

B. Performance Analysis of DACNBIS Model 

To verify the performance of DACNBIS model, the study 
conducted comparison experiments using Fully Convolutional 

Networks (FCN), CNBIS, and Pyramid Scene Analysis 
Network (PSAN) models. The number of model iterations was 
increased from 10 to 100 in epoch. 
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Fig. 8. Accuracy and recall results of four models. 

The change curves indicated in Fig. 8 illustrate the 
precision rate and recall rate of the four models. As the 
number of iterations increases, the precision rate and recall 
rate of the four models improve. In Fig. 8(a), the accuracy rate 
for the four models is displayed, showing that the DACNBIS 
model has a precision rate of 96.48%. The precision rates for 
the PSAN, CNBIS, and FCN models are 94.87%, 94.23%, and 
93.75%, respectively, at 100 epochs. Fig. 8(b) shows the recall 
variation curves of the four models, and the recall rates of 
DACNBIS, PSAN, CNBIS, and FCN models are 95.24%, 
93.52%, 93.17%, and 92.91%, respectively, when the number 
of iterations is 100 epoch. 
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Fig. 9. F1 value results of four models. 

Fig. 9 shows the results of the F1 values of the four models, 
which all increase with the number of iterations. When the 
number of iterations is 10 epoch, the F1 values of the 
DACNBIS, PSAN, CNBIS, and FCN models are 94.30%, 
93.81%, 93.54%, and 93.26%, respectively. When the number 
of iterations is 100epoch, the F1 value of DACNBIS model is 
95.96%, surpassing the 94.58% of the PSAN model, the 93.99% 
of the CNBIS model, and the 93.71% of the FCN model. In 
summary, the DACNBIS model proposed in the study has 
higher segmentation accuracy compared to other models and 
performs well in the field of split-screen image stitching 
localization in film and TV production. 

C. Performance Analysis of AM-DACNBIS Model 

In order to verify the validity of AM-DACNBIS model, 
literature [14], DACNBIS model and AM-DACNBIS model 
were set up for comparative experiments. 
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Fig. 10. The experimental results of three models in CASIA1 and CASIA2 data sets. 

Fig. 10 shows the experimental results of three models in 
CASIA1 and CASIA2 data sets. Fig. 10(a) shows the results 
of accuracy, recall and F1 value of the three models on the 
CASIA1 data set. The accuracy of AM-DACNBIS model is 
98.19%, and that of study [14] and DACNBIS model is 97.21% 
and 97.97% respectively. The recall rates of AM-DACNBIS, 
study [14] and DACNBIS models are 96.23%, 95.68% and 
95.87% respectively, and the F1 value of the AM-DACNBIS 
model is 97.21%, which is higher than that of study [14] and 
DACNBIS model, which is 96.57% and 96.92%. Fig. 10(b) 
shows the results of accuracy, recall and F1 value of the three 
models in CASIA2 data set. The accuracy of AM-DACNBIS 
model is 98.76%, and that of study [14] and the DACNBIS 
model is 97.59% and 98.45% respectively. The recall rates for 
the AM-DACNBIS, study [14] and DACNBIS models are 
96.54%, 95.51% and 96.01% respectively. The F1 value for 
the AM-DACNBIS model is 97.65%, which is higher than that 
of study [14] and the DACNBIS model, which are 96.73% and 
97.23%. 

Fig. 11 shows the detection results of the DACNBIS 
model and AM-DACNBIS model on two data sets; Fig. 11(a) 
displays the outcomes for both models in the CASIA1 dataset. 
The detection results for both models in the CASIA2 dataset 
are shown in Fig. 11(b). The figure shows that the 
AM-DACNBIS model has better performance in detection and 
can significantly amplify the sensitivity of key features, and 
can filter out key feature information. To further verify the 
robustness of the AM-DACNBIS model, the study performs 
two operations of compression and Gaussian blurring on the 
CASIA1 test set images, where the image compression factors 

are 95, 90, 80, and 70, and the standard deviations of Gaussian 
blurring are set to 0.5, 1.0, 1.5, and 2.0. The results of the 
model tests are shown in Table Ⅱ. 

Table Ⅱ shows that the accuracy, recall, and F1 values of 
both models decrease as the picture compression factor drops 
and the Gaussian fuzzy standard deviation rises. The 
AM-DACNBIS model's accuracy, recall, and F1 values are 
76.58%, 59.63%, and 62.99%, respectively, when the image 
compression factor is 70, while those of the DACNBIS model 
are, respectively, 70.28%, 40.21%, and 50.31%. When the 
Gaussian fuzzy standard deviation is 2.0, the accuracy rate of 
AM-DACNBIS and DACNBIS models are 85.07% and 
78.74%, the recall rates of AM-DACNBIS and DACNBIS 
models are 85.41% and 74.31%, and the F1 values of 
AM-DACNBIS and DACNBIS models are 85.21% and 
76.64%. The combined results show that AM-DACNBIS can 
effectively reduce the risk of overfitting and is more suitable 
for split-screen image conception in the film and television 
production than the DACNBIS model. 

Mosaic image Mosaic image label DACNBIS AM-DACNBIS

Mosaic image Mosaic image label DACNBIS AM-DACNBIS

(b) CASIA2 data set

(a) CASIA1 data set

 

Fig. 11. Test results of two models in CASIA1 and CASIA2 data sets. 

TABLE II.  DETECTION OF TWO MODELS UNDER DIFFERENT COMPRESSION FACTORS AND GAUSSIAN FUZZY STANDARD DEVIATION ATTACKS 

Model Type AM-DACNBIS DACNBIS 

Performance index Precision Recall F1 Precision Recall F1 

Compressibility factor 

95 87.95% 78.27% 82.81% 87.03% 70.54% 77.74% 

90 86.94% 67.61% 75.94% 80.51% 62.41% 70.24% 

80 81.47% 60.41% 64.12% 79.74% 44.09% 55.89% 

70 76.58% 59.63% 62.99% 70.28% 40.21% 50.31% 

Gaussian fuzzy standard 
deviation 

0.5 87.41% 85.54% 86.48% 86.31% 78.79% 82.45% 

1.0 87.02% 86.21% 85.84% 84.29% 77.59% 80.81% 

1.5 86.83% 85.77% 85.64% 80.87% 75.47% 78.54% 

2.0 85.07% 85.41% 85.21% 78.74% 74.31% 76.64% 
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V. CONCLUSION 

As image editing software becomes more functional and 
easier to use, the stitching and positioning techniques for 
splitting images, a crucial step in pre-production for film and 
TV, is imperative. The traditional stitching and positioning 
techniques have limited segmentation accuracy and poor 
robustness due to inadequate feature extraction capabilities in 
the sampling process and inaccurate positioning segmentation 
for different shapes. To address the above problems, a 
DACNBIS model based on DB module and ASPP module is 
proposed. The results show that when the number of iterations 
is 100 epoch, the accuracy, recall and F1 values of DACNBIS 
model under CUISD dataset are 96.48%, 95.24% and 95.96%, 
respectively, which are higher than 94.87%, 93.52% and 94.58% 
of PSAN model. Under the CASIA2 dataset, the 
AM-DACNBIS model exhibited higher accuracy, recall, and 
F1 values than the DACNBIS model with scores of 98.76%, 
96.54%, and 97.65%, respectively, which were improved by 
0.31%, 0.53%, and 0.42%. Under the CASIA2 dataset, the F1 
values of the AM-DACNBIS model are 62.99% and 85.21% 
when the image compression factor and Gaussian fuzzy 
standard deviation are 70 and 2.0, respectively, which are 
higher than those of the DACNBIS model by 50.31% and 
76.64%. In summary, the DACNBIS model proposed in the 
study performs well with the AM-DACNBIS model, but in the 
CASIA1 and CASIA2 datasets, the AM-DACNBIS model 
performs significantly better than the DACNBIS model and is 
more suitable for the image splitting conceptualization 
applications in film and television production. However, there 
are still shortcomings in the study, and the image quality of the 
CUISD, CASIA1, and CASIA2 datasets is somewhat different 
from the demand of multi-scope image stitching, and the 
subsequent study will further construct a high-quality and 
complex professional stitching dataset. 
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