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Abstract—To address the challenge of requiring a large 

amount of manually annotated data for semantic segmentation of 

remote sensing images using deep learning, a method based on 

self-supervised learning is proposed. Firstly, to simultaneously 

learn the global and local features of remote sensing images, a 

self-supervised learning network structure called TBSNet 

(Triple-Branch Self-supervised Network) is constructed. This 

network comprises an image transformation prediction branch, a 

global contrastive learning branch, and a local contrastive 

learning branch. The contrastive learning part of the network 

employs a novel data augmentation method to simulate positive 

pairs of the same remote sensing images under different weather 

conditions, enhancing the model's performance. Meanwhile, the 

model integrates channel attention and spatial attention 

mechanisms in the projection head structure of the global 

contrastive learning branch, and replaces a fully connected layer 

with a convolutional layer in the local contrastive learning 

branch, thus improving the model's feature extraction ability. 

Secondly, to mitigate the high computational cost during the pre-

training phase, an algorithm optimization strategy is proposed 

using the TracIn method and sequential optimization theory, 

which increases the efficiency of pre-training. Lastly, by fine-

tuning the model with a small amount of annotated data, 

effective semantic segmentation of remote sensing images is 

achieved even with limited annotated data. The experimental 

results indicate that with only 10% annotated data, the overall 

accuracy (OA) and recall of this model have improved by 4.60% 

and 4.88% respectively, compared to the traditional self-

supervised model SimCLR (A Simple Framework for Contrastive 

Learning of Visual Representations). This provides significant 

application value for tasks such as semantic segmentation in 

remote sensing imagery and other computer vision domains. 

Keywords—Computer vision; deep learning; self-supervised 
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I. INTRODUCTION 

With the rapid development of remote sensing satellite 
technology, remote sensing images are playing an increasingly 
critical role in various fields such as urban planning, resource 
exploration, and natural disaster prediction 0. Extracting 
useful information from the vast wealth of remote sensing 
geo-information has become a long-standing scientific 
challenge in remote sensing. Among the methods explored, 
semantic segmentation [2] has proven to be an effective 
approach. 

In the field of semantic segmentation for remote sensing 
images, there are two main approaches: traditional methods 

based on handcrafted feature descriptors and deep learning 
methods based on Convolutional Neural Networks (CNNs). 
Due to the complexity of background and scale differences in 
high-resolution remote sensing images, traditional methods 
have not been very effective. However, since Long et al. 
proposed the Fully Convolutional Neural Network (FCN) [3] 
in 2015, deep learning-based techniques for semantic 
segmentation in remote sensing images have made significant 
progress. This has led to the development of post-processing 
techniques based on probabilistic graphical models [4], global 
context modeling using multi-scale aggregations [5], and 
perpixel semantic modeling based on attention mechanisms 
[6]. 

For instance, Ronneberger et al. introduced the U-Net 
model [7], which employs an encoder-decoder architecture 
with lateral connections, enabling multi-scale recognition and 
feature fusion in the image. Similarly, Chen et al. proposed the 
DeepLabV3+ model [8], which utilizes a spatial pyramid 
structure to gather rich contextual information through pooling 
operations at various resolutions. Furthermore, it uses the 
encoder-decoder architecture to achieve precise object 
boundaries, thereby enhancing segmentation accuracy. 

Despite the achievements made in deep learning-based 
semantic segmentation of remote sensing images in recent 
years [9][10], these methods all rely on large amounts of 
manually annotated data to train the neural network. This 
requirement not only consumes significant human resources 
but also reduces the efficiency of semantic segmentation. 
Therefore, the application of self-supervised learning [11] to 
semantic segmentation of remote sensing images has become 
a feasible method. Li et al. [12] proposed a multi-task self-
supervised learning method for semantic segmentation of 
remote sensing images, which applied three pretext tasks [13] 
to self-supervised learning and achieved decent results. 
However, these pretext tasks only learn the global features of 
the image, lacking in the learning of local features of the 
image. Thus, how to effectively use these unannotated remote 
sensing data has become a major research focus in recent 
years. 

The main contributions of this study are as follows: 

1) To tackle the aforementioned challenges, a self-

supervised semantic segmentation approach for remote 

sensing images is introduced, along with the design of a triple-

branch self-supervised network named TBSNet. This network 
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uses an image transformation prediction branch and a global 

contrastive learning branch to learn global features of images, 

and a local contrastive learning branch to learn local features. 

2) On this basis, the projection head structures in the 

global contrastive learning branch and the local contrastive 

learning branch are improved to enhance their performance. 

Specifically, in the projection head of the global contrastive 

learning branch, a combination of spatial attention 

mechanisms [14] and channel attention mechanisms [15] are 

used to better focus on the important parts of the feature map, 

thus improving the quality of feature representation. In the 

local contrastive learning branch, the original first fully 

connected layer is replaced with a convolutional layer, which 

enables the learning of richer local features. 

3) Considering the heavy computational cost of pre-

training, the TracIn method [16] and sequential optimization 

theory [17] are employed to optimize the model's pre-training 

process, reducing computational and time costs. Finally, the 

model is fine-tuned in the downstream task using a small 

amount of annotated data to achieve the expected semantic 

segmentation results. 

The remaining structure of the article is outlined as 
follows: Section Ⅱ introduces the background knowledge and 
relevant work. Section Ⅲ describes the implementation details 
of the proposed method, including the network framework and 
optimization techniques. Section Ⅳ presents the experiments 
conducted and analyzes the obtained results. Section Ⅴ 
provides the conclusions drawn from our experiments. 

II. BACKGROUND 

A. Self-supervised Learning 

Self-supervised learning is a type of unsupervised learning 
[18] , as shown in Fig. 1. Compared to supervised learning, it 
utilizes a large amount of unlabeled data through specially 
designed pretext tasks. This approach relies on pseudo-labels 
generated by the model itself, enabling it to learn high-level 
features from the input data. The model can then be further 
transferred to downstream tasks in actual applications. With a 
small amount of labeled data, the model can be fine-tuned to 
achieve, or even surpass, the performance of supervised 
learning. Generally, self-supervised learning can be divided 
into generative and contrastive categories [19] [20].  

B. Pretext Task 

During the self-supervised pre-training phase, different 
pretext tasks are typically designed to allow the model to more 
effectively learn the intrinsic features and interrelationships 
within the samples. By performing these pretext tasks, the 
model can generate pseudo-labels internally to guide its 
learning, thus achieving self-supervised learning without the 
need for labeled data. Classic pretext tasks include image 
inpainting [21], which uses neural networks to repair missing 
parts by learning texture features; rotation prediction [22], 
which allows neural networks to grasp the overall features of 
an image; and jigsaw puzzles [23], where the neural network 
needs to learn the relative positional features among different 
pieces for image stitching. These pretext tasks have achieved 

good results in instance-level image classification tasks. 
However, their effectiveness is not ideal for semantic 
segmentation tasks due to a lack of learning about local 
features. 
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Fig. 1. Schematic diagram of self-supervised model. 

C. Contrastive Learning 

Contrastive self-supervised learning [24], also referred to 
as contrastive learning, shows more promising results in the 
field of remote sensing compared to generative self-supervised 
learning. The central idea of contrastive learning, a common 
method of self-supervised learning, is to learn high-level 
semantic features by contrasting two semantically similar 
inputs. Specifically, samples are divided into positive and 
negative pairs, with the aim of drawing positive samples 
closer while pushing negative samples farther apart, as shown 
in formula (1): 

𝑠𝑖𝑚(𝑓(𝑥), 𝑓(𝑥+)) ≫ 𝑠𝑖𝑚(𝑓(𝑥), 𝑓(𝑥−)) (1) 

Here, 𝑥+ represents a sample semantically similar to 𝑥 , 
thus forming a positive pair with  𝑥 ; 𝑥−  is a sample that is 
different from 𝑥, thereby forming a negative pair with 𝑥. 𝑠𝑖𝑚 
represents the similarity measure between two pairs of 
features generated by encoding function 𝑓. 

Classic examples of contrastive learning include 
Momentum contrast (MoCo) [25] and SimCLR [26]. MoCo 
introduces momentum contrast for unsupervised visual 
representation learning, constructing a dynamic dictionary 
with a queue and a moving average encoder to improve the 
effects of contrastive learning. SimCLR presents a simple 
framework where two different data augmentations of the 
same image 𝑥  are generated as a positive pair (𝑥𝑖  and 𝑥𝑗 ), 

while the augmented image from a different image 𝑦 serves as 
a negative sample. A projection head is added after the 
encoder to achieve significant results. While both of the 
above-mentioned models have achieved significant 
accomplishments in self-supervised learning research, they 
also exhibit notable limitations. This is because both models 
utilize pairs of images as positive samples, allowing them to 
effectively learn overall features of images. However, they 
lack the ability to learn local features. 
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Recent years have seen extensive research on image 
processing based on contrastive learning, such as a method 
proposed by Krishna et al. for medical image semantic 
segmentation based on global and local features [27]. 
Research on self-supervised learning for remote sensing 
images mainly focuses on instance-level remote sensing scene 
classification [28][29], given the comparatively limited 
exploration of pixel-level semantic segmentation in the 
context of remote sensing images, a triple-branch network 
architecture is introduced. This architecture facilitates the 
acquisition of both global and local image features, 
consequently leading to enhanced semantic segmentation 
outcomes for remote sensing images. 

D. TracIn Method 

Deep learning requires a large amount of data support, and 
the quality of data often has a significant impact on model 
training. An important measure of data quality is influence, 
but due to the complexity of models and the growing influence 
of scale features and datasets, it is challenging to quantify 
influence. The TracIn method captures changes in predictions 
when accessing individual training examples by tracking the 
training process and determines the influence of training 
examples by assigning influence scores to each. 

E. Order Optimization Theory 

Order Optimization (OO) is an effective strategy widely 
used in the industry to solve optimization problems, with its 
specific solution process shown in Fig. 2.  

For a given optimization problem, suppose the set of the 
"truly best" g solutions is G. However, due to computational 
resource constraints, the set G cannot be solved from the 
solution space. Using the order optimization idea, a rough 
model with simple computations is used to select some 
solutions from G. All solutions are ranked according to some 
performance evaluation method provided by the rough model, 
and the best s solutions are chosen to form the solution set S. 
In the process of using the rough model, we generally only 
care about how many of the intersecting parts of sets G and S 

(GS) are genuinely good solutions. The order optimization 
quantifies the probability that the set S obtained based on the 
rough model corresponds to |𝐺S| ≥ k , i.e., the alignment 
probability (AP). In practice, the alignment probability of sets 
S and G is often much larger than expected, and the amount of 
data in set S is often several orders of magnitude smaller than 
the real solution space, so the order optimization method can 
typically save at least one order of magnitude of performance 
evaluation times. 

G
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Fig. 2. Schematic diagram of solving sequential optimization theory. 

III. PROPOSED METHOD 

A. Network Architecture Design for Semantic Segmentation 

of Remote Sensing Images Based on Self-supervised 

Learning 

With the objective of improving the outcomes of semantic 
segmentation for remote sensing images using a limited 
quantity of annotated data, as well as intensifying the 
acquisition of local small-object characteristics, a triple-
branch network architecture known as TBSNet is introduced. 
As shown in Fig. 3, this network structure includes an image 
transformation prediction branch, a global contrastive learning 
branch, and a local contrastive learning branch. The image 
transformation prediction branch and the global contrastive 
learning branch are used to learn the overall features of the 
image, while the local contrastive learning branch can learn 
the local features of the image. Each branch performs self-
supervised learning in different ways, and then the losses of 
each branch are summed up as the total loss for adjusting the 
network parameters. 

 

Fig. 3. Schematic diagram of triple-branch network TBSNet. 

1) Design of Image Transformation Prediction Branch 

Learning Strategy: To realize the learning of overall semantic 

features of images without labels, this branch randomly rotates 

(e.g., 90°, 180°, 270°) or mirror flips the original image, and 

feeds the original image and the rotated image into the neural 

network for transformation type identification. Since remote 

sensing images have rotation invariance, rotation can help the 

neural network better understand the concepts described in 

remote sensing images. Specifically, the aforementioned 

rotations are defined as a set of discrete geometric 

transformations 𝐺={𝑦 ,𝑦 ,..𝑦 }. One is randomly selected 

from 𝐺 and applied to the input image 𝑥 to get 𝑥 , which is 
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then fed into the network and trained to identify the type of 

rotation, transforming the image transformation prediction 

branch into a classification problem. The loss function of the 

transformation prediction branch can be defined as shown in 

equation (2): 

𝐿𝛼 = −∑ 𝐴̂( )𝑙𝑜𝑔𝑃( )
𝑀
 =   (2) 

Here, 𝐴̂( ) = *0,1+ represents the one-hot encoding of the 

basic true value class, and 𝑃 represents the probability of 𝑀 
different types of geometric transformations. In this branch, 
geometric transformations are divided into six types, which 
are clockwise rotation of 90°, 180°, 270°, horizontal left-right 
mirror flipping, vertical top-bottom mirror flipping, and no 
rotation. 

2) Global Contrastive Learning Branch Learning Strategy 

Design  

a) Remote Sensing Data Enhancement Method Based on 

Weather Conditions: For the same location, remote sensing 

images under different weather conditions exhibit variations, 

yet their deep features remain consistent. Consequently, in the 

global contrastive learning segment, traditional data 

augmentation approaches for forming positive sample pairs 

are eschewed. Instead, the data augmentation method is 

adjusted to mimic diverse weather conditions at the identical 

location, aligning with the distinct traits of remote sensing 

images. Any 𝑥𝑖  in *𝑥 , 𝑥 ,   𝑥 +  undergoes two different 

random data augmentations (including simulating clouds, 

simulating snowflakes, simulating haze, and no augmentation). 

To simulate cloud layers, this paper adds Perlin noise to the 

original image and then blurs the cloud layer using a Gaussian 

filter. To simulate snowflakes, random noise is added to the 

original image, and then a median filter is used to simulate the 

snowflake effect. To simulate haze, we utilize a method of 

overlaying a generated haze layer onto the original image. The 

haze layer is represented by an array of the same size as the 

original image. To ensure uniform effect across all color 

channels, this array is expanded to a three-channel array, with 

each channel having the same values as the original random 

array. Each element of the haze layer is multiplied by the haze 

intensity, and the result is multiplied with each pixel of the 

original image. This effectively reduces the contrast of the 

original image in the haze areas. Then, the haze layer is 

multiplied by the atmospheric brightness and added to the 

original image, simulating the haze effect. In this paper, the 

haze intensity is randomly selected between 0.3 and 0.8, and 

the atmospheric brightness is randomly chosen between 250 

and 270. 

b) Model design integrating channel and spatial 

attention mechanisms: The two samples 𝑥ĩ  and 𝑥î  obtained 

after enhancement are positive samples for each other, and 

other samples in the same batch are all negative samples. The 

two positive samples obtained are passed through the encoder-

based backbone network 𝑓 to get the feature vectors 𝑕ĩ and 𝑕î, 

which are then mapped to the contrast loss space through an 

improved MLP projection head 𝑔( ) to get 𝑧ĩ and 𝑧î. As shown 

in Fig. 4, this work introduce the combination of channel 

attention mechanism and spatial attention mechanism on the 

basis of the original projection head, improving the 

discriminability and expressive power of features. It can also 

adaptively select important features, which helps to improve 

the model's generalization ability on different types of remote 

sensing images. In order to better integrate the channel 

attention module and the spatial attention module, a 

convolution layer and ReLU activation function are added. 

This additional convolution layer can help to further extract 

features before applying the attention mechanism. 
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Fig. 4. Schematic diagram of global contrastive learning branch projection 

head structure. 

Lastly, the contrast loss is used to bring positive samples 
closer, thus learning the geographical features in the image. 
The contrast loss is defined as follows in equation (3):  

𝐿𝛽 =
 

  
∑ .𝑙𝛽(𝑥ĩ, 𝑥î) + 𝑙𝛽(𝑥î, 𝑥ĩ)/

 
𝑘=  (3) 

Where 𝑁  represents the number of samples in the same 
batch, 𝑙𝛽 uses the NT-Xent contrast loss function in SimCLR 

as shown in equation (4): 

𝑙𝛽(𝑥ĩ, 𝑥î) = −𝑙𝑜𝑔
exp(

𝑠𝑖𝑚(𝑧ĩ,𝑧î)

𝜏
)

∑  ,𝑘≠𝑖- exp(
𝑠𝑖𝑚(𝑧ĩ,𝑧𝑘)

𝜏
)2𝑁

𝑘=1

 (4) 

Here, 1,𝑘≠𝑖-  is an indicator function that equals 1 when 

𝑘 ≠ 𝑖 , 𝑠𝑖𝑚(𝑢, 𝑣) =
𝑢𝑇𝑣

‖𝑢‖ ‖𝑣‖
, i.e., it calculates the cosine 

similarity between 𝑢  and 𝑣 . 𝑧𝑘  represents the feature vector 
obtained after the negative sample goes through the projection 

head, that is, 𝑧𝑘 = 𝑔 .𝑓(𝑡(𝑥𝑘))/ . 𝜏  is the temperature 

parameter, which is set to 0.1 in this paper. 

3) Local Contrastive Learning Branch Learning Strategy 

Design: The above two branches can effectively learn the 

global information of images. However, for semantic 

segmentation, learning only global features is not enough. A 

single remote sensing image may contain various objects, and 

the learning of global features cannot effectively handle small 

targets. Therefore, the local contrastive learning branch can 

learn more local information, which is crucial for improving 

the performance of semantic segmentation. This branch shares 

the sample after data augmentation with the global contrastive 

learning branch. It forms positive sample pairs by selecting 

two local blocks of the same size from the same location in 

two augmentation images, and takes the local areas of other 

images in the same batch as negative samples. In this paper, a 

random selection of a central pixel point and outward 

expansion method is employed for selecting a local region. To 
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prevent insufficient edge size, if the selected size is s*s, the 

central pixel point is chosen within the rectangular region 

formed by the four points: .⌊
 

 
⌋ , ⌊

 

 
⌋/ , (⌊

 

 
⌋ , .2  −
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⌋/) , (.2  − ⌊
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⌋/) . To 

avoid excessive duplication of selected regions, pixels are 

only chosen with odd coordinates. Moreover, to prevent 

selecting the same region multiple times, each pixel point can 

only be selected once. 

Just like the global contrastive learning branch, for each 
global contrastive learning image, m local areas are selected 
for contrast learning. Therefore, for the selected two local 

areas xi
d̃ and xi

d̂ (d ∈ (1,m)), after going through the encoder, 

we get the feature vectors hi
d̃ and hi

d̂, and finally map the local 

area features to be zi
d̃ and zi

d̂ through the projection head gL( ) 

similar to the one in the global contrastive learning branch. As 
shown in Fig. 5, in this branch, since the sample image has 
already been cropped to the local area, the attention 
mechanism is not used in the projection head. Instead, the first 
fully connected layer in the original projection head is 
replaced with a convolution layer to retain spatial information 
and better capture the features within the local area, thus 
improving the segmentation effect of the model. 

FCFeature

map
Conv Feature

mapping
Rule

 

Fig. 5. Schematic diagram of local contrastive learning branch projection 

head structure. 

The contrast loss can be represented as equation (5): 

 𝐿𝛾 =
 

  𝛾
∑ (𝑙𝑐 .𝑥i

𝑑̃ , 𝑥i
𝑑̂/ , 𝑙𝑐 .𝑥i

𝑑̂, 𝑥i
𝑑̃/)

 𝛾

𝑖= 
 (5) 

where, 𝑙𝑐 .𝑥i
𝑑̃ , 𝑥i

𝑑̂/ = −𝑙𝑜𝑔

exp(
𝑠𝑖𝑚(𝑧i

𝑑̃,𝑧i
𝑑̂)

𝜏
)

∑𝑘𝑑∈𝛬𝛾
−exp (

𝑠𝑖𝑚(𝑧i
𝑑̃,𝑧(𝑘𝑑))

𝜏
)

 (6) 

In this, 𝑁𝛾 represents the number of all local regions in a 

batch, i.e., 𝑁𝛾 = 𝑁 × 𝑚. 𝛬𝛾
− represents the other local regions 

outside the two local area positive samples. 

The total loss of the triple-branch self-supervised network 
can be represented as shown in equation (7), which is used for 
the calculation of the TracIn score during optimization.  

𝐿 = 𝐿𝛼 + 𝐿𝛽 + 𝐿𝛾  (7) 

B. Design of Self-supervised Network Architecture Based on 

Semantic Segmentation of Remote Sensing Images 

Since self-supervised pre-training requires a large amount 
of data as support, but a large amount of data will inevitably 
increase the calculation amount and consume time cost. 
Therefore, how to effectively optimize the self-supervised 
learning algorithm becomes the key to solve the cost problem 
of self-supervised learning. This paper proposes to optimize 
the self-supervised learning algorithm by using the TracIn 
method and sequence optimization theory, achieving the effect 
of using all data to train the model by only pre-training the 
model with the top 80% of training points that contribute the 
most, reducing calculation cost and time cost. 

1) Training point score calculation based on TracIn 

method: The TracIn method identifies the overall impact of 

training examples by tracking the training process. Its 

principle is as follows: Z represents the sample space,   and    

respectively represent the training point (training sample) and 

test point (test sample). Given a set of k training points 

 = *  ,   ,    ∈  + , train the predictor by finding the 

parameters   that minimize the training loss   𝒔𝒔 =
∑  ( ,   )

 
 =  through the iterative optimization process using 

a training point  𝒕 ∈   in iteration 𝒕, and update the parameter 

vector from  𝒕 to  𝒕+ . For the training point  ∈  , the loss 

reduction caused by the training process for a given test point 

  ∈   can be expressed as: 

𝑻𝒓𝒂𝒄𝑰𝒏𝑰𝒅𝒆𝒂𝒍( ,   ) = ∑  ( 𝒕,  
 )𝒕: 𝒕= −  ( 𝒕+ ,  

 )(8) 

By limiting the gradient to a specific gradient descent and 
substituting the parameter change formula into a first-order 

approximation and ignoring the high-order term 𝐎(𝜼𝒕
 ), the 

following first-order approximation of loss change can be 
obtained: 

 ( 𝒕,  
 ) −  ( 𝒕+ ,  

 ) ≈ 𝜼𝒕𝛁( 𝒕,  
 ) ∙ 𝛁( 𝒕,  ) (9) 

where 𝜼𝒕 represents the step length in iteration 𝒕.  

For a specific training point z, this approximation can 
approximate the idealized influence by summing this 
approximation over all iterations where z is used to update the 
parameters. This first-order approximation is referred to as 
𝑻𝒓𝒂𝒄𝑰𝒏𝑻𝑩 𝑵𝒆𝒕, as shown in equation (10):  

𝑻𝒓𝒂𝒄𝑰𝒏𝑻𝑩 𝑵𝒆𝒕( , ′) = ∑ 𝜼𝒕𝛁 ( 𝒕,  
 ) ∙ 𝛁 ( 𝒕,  )𝒕: 𝒕= (10) 

From the above equation, it can be seen that the score of a 

training point 𝒒  at a test point 𝒒𝒋
  can be expressed as:  

𝒕𝒓𝒂𝒄 𝒏𝒔𝒄 𝒓𝒆𝒒 ,𝒒𝒋
′ = 𝑻𝒓𝒂𝒄𝑰𝒏

𝑻𝑩 𝑵𝒆𝒕.𝒒 ,𝒒𝒋
′/

 (11) 

In order to verify the difference in contributions among 
each training point, the scores of each training point on the test 
point are summed up, and the final score obtained is the total 
score of this training point, that is: 

 𝒄 𝒓𝒆 = ∑ 𝒕𝒓𝒂𝒄 𝒏𝒔𝒄 𝒓𝒆𝒒 ,𝒒𝒋
′

𝑵
𝒋=𝟎   (12) 

where 𝑵 represents the number of test points. 
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2) Optimization of TBSNet training process based on 
sequential optimization: Following the computation of the 
TracIn score as outlined earlier, scores can be derived for each 
training point against the identical set of test points. Based on 
the idea in sequential optimization that "sequence is more 
useful than ratio," each training point's TracIn score can be 
seen as abstracting each training point into a sortable value. 
For the triple-branch network model that applies the TracIn 
method, the scores of each training point are sorted, and the 
training points with higher scores are considered to contribute 
more, while the training points with lower scores are 
considered to contribute less. Therefore, using only a certain 
range of higher scoring training points can achieve results 
comparable to training with all training points. The specific 
operation process is shown in Fig. 6. 

Dataset

TBSNet

Calculate TracIn score 

and join score queue
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Fig. 6. Schematic diagram of training optimization process. 

After the pre-training is completed, the trained neural 
network is transferred to the downstream task for fine-tuning. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Dataset Selection  

The dataset utilized for this study is derived from high-
resolution satellite remote sensing images from the southern 
regions of China. To validate the generalization capability of 
the proposed method, this dataset amalgamates imagery from 
various locations and different satellite types. These datasets 
were uniformly re-annotated into five land cover categories: 
vegetation, buildings, roads, water bodies, and others. In total, 
it comprises 12 large-scale RGB original images ranging from 
4000×4000 to 8000×8000 pixels. 

Due to computational resource constraints, the original 
remote sensing images were segmented into patches of 
256×256 pixels. Additionally, to meet the extensive data 

requirements for pre-training, the experimental dataset was 
augmented using random noise, Gaussian blur, and color 
transformations, resulting in an enriched dataset. Ultimately, a 
training sample consisting of 100,000 images was established. 

B. Evaluation Metrics 

For validating and evaluating the suggested approach in 
subsequent tasks related to remote sensing image 
segmentation, the performance metrics employed are Overall 
Accuracy (OA) and Recall. These metrics are defined in 
equations (13) and (14) as provided below: 

𝑂𝐴 =
𝑇𝑃

 
   (13) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹 
   (14) 

Here, TP represents the correctly predicted pixel count, or 
true positives. FN signifies the incorrectly predicted pixel 
count, or false negatives. N denotes the total number of pixels. 

C. Experimental Setup and Configuration 

The experiment was conducted in a Linux environment, 
with an Intel(R) Xeon(R) Gold 5218R CPU and NVIDIA 
GeForce RTX 2080Ti 11Gb GPU. Programming was done in 
Python 3.8 within the PyTorch framework, with Resnet50 as 
the backbone network and DeepLabV3+ for segmentation. 
The initial learning rate during the self-supervised stage was 
set to 0.01, batch size was 32, region size in the local contrast 
learning branch was 24×24, and six local areas were selected 
from each image. The pre-training stage was set to run for 500 
epochs using the Adam optimizer. The initial learning rate for 
the fine-tuning stage was set to 0.005, the fine-tuning epoch 
was set to 50, and the training and validation sets were split in 
a 7:3 ratio. The selection of training and testing points for 
calculating the TracIn score was done per batch, and the ratio 
of training points to testing points was set at 5:1. 

The experiment started with the computation of TracIn 
scores for each training point during the first training round. 
Following the idea of sequential optimization, the top 80% of 
training points with higher TracIn scores were selected for 
further self-supervised pre-training. Finally, after pre-training, 
the trained model was fine-tuned on a downstream 
segmentation task using a small amount of labeled data. 

D. Comparative Experiment  

To validate the effectiveness of our method, we compared 
it against several mainstream methods, including MoCo v2 
[30], which uses a dynamic dictionary for contrastive learning, 
SimCLR, which uses data augmentation to create positive 
pairs for contrastive learning, the classic self-supervised 
learning pretext task of image inpainting, and supervised pre-
training models using ImageNet for segmentation. In this 
paper, we used 0.5%, 1%, 5%, and 10% of the self-supervised 
pre-training data to fine-tune the downstream task, as shown 
in Table Ⅰ. For different models' semantic segmentation 
experiments on this dataset, some experimental results are 
shown in Fig. 7. 
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Fig. 7. Comparison experiment effect picture. 

TABLE I. COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT MODELS 

Fine-tune data volume 0.5% 1% 5% 10% 

Evaluation Metrics OA Recall OA Recall OA Recall OA Recall 

Inpainting 0.2764 0.2593 0.4375 0.4359 0.5158 0.4783 0.5709 0.5256 

SimCLR 0.3809 0.3825 0.4604 0.4289 0.5781 0.5452 0.6679 0.6623 

MoCo v2 0.3654 0.3577 0.4432 0.3964 0.5295 0.5114 0.6067 0.6008 

ImageNet 0.3848 0.3826 0.4128 0.4049 0.5624 0.5551 0.6792 0.6567 

Ours(TBSnet) 0.3856 0.3831 0.4721 0.4558 0.5739 0.5584 0.7139 0.7111 

Our results show that our method is effective for land 
cover segmentation in remote sensing images. With only 10% 
of labeled data used for fine-tuning, the overall accuracy (OA) 
and recall reached 0.7139 and 0.7111 respectively, 
representing a significant improvement over advanced self-
supervised models such as MoCo v2 and SimCLR. 

Analysis of the results reveals that since Inpainting mainly 
predicts missing areas from the image's context, it often lacks 
precision for complex remote sensing images, thus performing 
the worst in the experiments. Both MoCo v2 and SimCLR 
focus on global features, and their effectiveness is limited due 
to the lack of learning of local features in remote sensing 
images. Although ImageNet uses millions of natural images 
for pre-training, the differences in distribution, texture, and 
color between remote sensing images and natural images 
make ImageNet pre-training ineffective for downstream 
remote sensing image segmentation tasks. Our method 
performs well in learning both global and local features, 
demonstrating great application potential worthy of further 
research and exploration. 

E. Ablation Experiments 

1) Ablation experiments on the three-branch network 

structure: In the ablation experiments on the triple-branch 

network structure, 10% of pre-training data was used for fine-

tuning. After one round of training, the top 80% of training 

points based on TracIn scores were selected for training. The 

following experiments were designed to demonstrate the 

effectiveness of the proposed method: using only the image 

rotation prediction branch (Exp1), using only the global 

contrast learning branch (Exp2), using only the local contrast 

learning branch (Exp3), using both the global and local 

contrast learning branches (Exp4), using the image rotation 

prediction branch and the global contrast learning branch 

(Exp5), using the image rotation prediction branch and the 

local contrast learning branch (Exp6), and using the complete 

triple-branch network (Exp7). The experiment results are 

shown in Table Ⅱ. 

TABLE II. EXPERIMENTAL RESULTS OF TRIPLE BRANCH NETWORK 

ABLATION 

 Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 

OA 0.5726 0.6593 0.5830 0.6845 0.6507 0.6732 0.7139 

Recall 0.5658 0.6494 0.5800 0.6744 0.6457 0.6642 0.7111 

The results reveal that a reasonable combination of the 
three branches is more conducive to the improvement of 
downstream task performance. The image rotation prediction 
branch and the global contrast learning branch can learn the 
overall features of the image. However, due to the lack of 
local feature learning, they do not achieve the best results, 
reaching only an overall accuracy of 0.6507 when learning 
global features only. Without global feature learning, solely 
learning local features results in an overall accuracy of only 
0.5830. The best results are achieved when both global 
features are learned using the image rotation prediction branch 
and the global contrast learning branch, and local features are 
learned using the local contrast learning branch. Compared to 
the former two scenarios, the overall accuracy is improved by 
0.0632 and 0.1309, respectively. 
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2) Ablation experiments on training process optimization 

methods: This work conducted training using the top 20%, 

50%, 80%, 100% of training points based on TracIn scores, 

and without sequential optimization, randomly selected 80% 

of training points (Random 80%), to investigate the impact of 

the TracIn method and sequential optimization on experiment 

accuracy. The results are shown in Table Ⅲ. Simultaneously, 

we explored the relationship between the time consumed and 

the overall accuracy when pre-training with different data 

volumes. The results are shown in Fig. 8. 

 
Fig. 8. The impact of different data volumes on time and accuracy. 

TABLE III. OPTIMIZATION METHOD ABLATION EXPERIMENTAL RESULTS 

 20% 50% 80% 100% 
Random 

80% 

OA 0.6637 0.6859 0.7139 0.7166 0.7048 

Recall 0.6599 0.6916 0.7111 0.7183 0.6985 

In Fig. 8, with the increase in data volume, both the pre-
training time and the overall accuracy increase. However, the 
ratio of overall accuracy to pre-training time (i.e., the slope of 
the line) keeps decreasing, indicating that the time required to 
improve the unit accuracy is increasing. This reflects that 
those with higher TracIn scores contribute significantly to 
accuracy improvement. When the data volume reaches the top 
80% of TracIn scores, the accuracy is nearly the same as using 
all pre-training data (i.e., 100%), demonstrating the 
effectiveness of the optimization method proposed in this 
paper for reducing data volume. Meanwhile, as shown in 
Table III, using the top 80% of data based on TracIn scores 
also improved the results compared to randomly using 80% of 
the data, verifying the effectiveness of the proposed 
optimization method. 

The experimental results show that applying the training 
data selected by the TracIn method and sequential 
optimization to the proposed triple-branch self-supervised 
network can reduce the data volume by 20% with almost no 
impact on the experiment accuracy. The reduction in data 
volume brings about a decrease in time cost. Therefore, for 
self-supervised learning, the combination of the TracIn 
method and sequential optimization theory is an optimization 
format worth considering. 

V. CONCLUSION 

This study introduces a self-supervised learning-based 
semantic segmentation technique for remote sensing images. 
Initially, a triple-branch self-supervised learning network 
known as TBSNet is developed to capture both global and 
local features within these images. Subsequently, the TracIn 
method and sequential optimization theory are employed to 
enhance the pre-training procedure of the self-supervised 
learning network, consequently reducing the time and 
computational resources necessary for pre-training. 
Ultimately, the pre-trained model is fine-tuned for downstream 
tasks, culminating in a semantic segmentation model tailored 
for remote sensing images through self-supervised learning. In 
comparison to traditional self-supervised models, our 
experiments reveal varying degrees of enhancement. But there 
are two notable limitations in this study. First, during the fine-
tuning phase, 10% of the labeled data was utilized, thus not 
achieving a fully unsupervised approach. There remains 
potential for further reduction in the amount of labeled data 
used. Secondly, to simultaneously learn global and local 
features, a triple-branch network collaboration was employed, 
leading to an increase in the model's size. For future research, 
under the premise of further reducing labeled data, the goal is 
to integrate more advanced optimization techniques to develop 
a lighter self-supervised model and strive to further enhance 
segmentation accuracy. 
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