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Abstract—Magnetic resonance imaging (MRI) is frequently 

contaminated by noise during scanning and transmission of 

images, this deteriorates the accuracy of quantitative measures 

from the data and limits disease diagnosis by doctors or a 

computerized system. It is common for MRI to suffer from noise 

commonly referred to as Rician noise because the uncorrelated 

Gaussian noise is present in both the real and imaginary parts of 

a complex K-space image with zero mean and equal standard 

deviation, the distribution of noise in magnitude MR images 

typically tends to be related to Rician distributions. To remove 

the Rician noise from an MRI scan, deep learning has been used 

in the MRI denoising method to achieve improved performance. 

The proposed models were inspired by the Residual Encoder-

Decoder Wasserstein Generative Adversarial Network (RED-

WGAN). Specifically, the generator network is residual 

autoencoders combined with the convolution and deconvolution 

operations, and the discriminator network is convolutional 

layers. As a result of replacing Mean Square Error (MSE) in 

RED-WGAN with Structurally Sensitive Loss (SSL), RED-

WGAN-SSL has been proposed to overcome the loss of 

important structural details that occurs because of over-

smoothing the edges. The RED-WGAN-SSIM model has also 

been developed using Structural Similarity Loss SSIM. The 

proposed RED-WGAN-SSL and RED-WGAN-SSIM models are 

formed by using the SSL, SSIM, Visual Geometry Group (VGG), 

and adversarial loss that are incorporated to form the new loss 

function. They preserved the informative details and fine image 

better than RED-WGAN, so our models could effectively reduce 

noise and suppress artifacts. 

Keywords—Deep learning; image denoising; MRI; 

Wasserstein GAN; loss function 

I. INTRODUCTION 

MRI is a medical imaging process that produces 
multidimensional images of the inside of the body; it uses 
powerful magnets and radio waves generated by computers 
rather than injecting contrast agents. It is considered one of the 
most attractive modalities that have been used in the diagnosis 
and treatment of several neurological diseases because it can 
show 3D details of internal living tissues and the human body 
organs. MRI plays an increasingly important role in 
pathological and physiological diagnostics and scientific 

research. Physiological noise impedes the acquisition of signals 
and contaminates raw data sets by artificial outliers. As a result 
of this practical issue, more advanced technologies have 
difficulty being applied in clinical research. Increasing noise 
levels may have a bad effect not only on the accuracy of 
computed diagnostic systems, but also 
on manual disease inspection and the reliability of quantitative 
image processing including segmentation, registration, 
visualization, super-resolution, and classification [1]. Raw data 
is usually polluted by White Additive Gaussian Noise 
(WAGN) in the real and imaginary parts. This noise is assumed 
to have equal variance and zero mean in the entire K space of 
the data, meaning that it affects both the real and imaginary 
parts of the data equally.  Rician noise, on the other hand, is 
signal-dependent, which makes it harder to separate from the 
signal and can result in biased estimates of image intensity. 
Additionally, in high SNR regions, the Rician noise is close to 
the Gaussian distribution. To achieve reliable analysis results, 
it is necessary to remove noise before performing further image 
processing. 

In MRI denoising, the goal is to effectively restore a clean 
image from a contaminated MR image and preserve valuable 
information [2]. In the past, many research attempts for MRI 
denoising were made to remove additive noise, most of which 
used the Rician noise model. In general, these methods can be 
categorized into three types: spatial filtering, transform domain 
filtering, and statistical methods [3]. The spatial domain 
techniques are directly applied to image pixels [4]. There are 
several traditional spatial image filters, including median [5], 
Gaussian [6], Wiener [7], diffusion [8],  and bilateral filters. 
Anisotropic diffusion filter [9] significantly retained 
informative details of edges and reduced the noise from the 
images by smoothing local regions in the image, but the image 
was still blurry. This filter tried to avoid blurring of the edges 
by utilizing the edge-stopping function. A transform domain 
image filter is different from a spatial domain image filter. In 
that transform domain filtering methods first transform the 
space domain into another domain, and then they process the 
transformed image in the new domain based on the different 
characteristics of the image and its noise such as the frequency 
and wavelet domains [10]. Rician noise in MRI data has been 
successfully denoised by well-known block matching 3D 
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(BM3D) [11]. Higher-order singular value decomposition 
(HOSVD) [12] was developed to denoise MR volume data, and 
its performance was improved compared to BM3D. 

Deep Learning (DL) made impressive progress in image 
processing and computer vision fields by introducing new 
effective methodologies. It has been used on low-level tasks to 
denoise [13,14], deblur [15], and restore super-resolution 
images [16]. CNNs and autoencoders achieved competitive 
performance with state-of-the-art methods, such as BM3D and 
NLM, for image denoising [14].  Lore et al. [17] developed 
LLNet, a deep auto-encoder that enhances contrast and 
removes noise. Zhang et al. [14] used Denoising convolutional 
neural networks (DnCNNs) to handle Gaussian denoising with 
unknown noise levels, which is different from traditional 
discriminative models that are trained specifically for certain 
noise levels. DnCNNs not only achieved excellent performance 
quantitatively and qualitatively by using residual learning 
strategy but also to speed up the training process on GPU 
computing by using batch normalization (BN) [18]. Zhang et 
al. [19] proposed a new fast, flexible CNN denoising model 
namely FFDNet. FFDNet can handle a wide range of noises, 
remove white Gaussian and spatially variant noise which 
requires a noise level map, and is faster than BM3D. It is 
effective and provides a practical solution to denoising 
applications because it achieves a good balance between 
performance and inference speed. 

Although researchers have made great efforts in MRI 
denoising to retrieve free noise images and get effective results, 
the research on MRI denoising is quite limited. Current 
methods suffer from several drawbacks including nonlinear 
optimization, tuning the parameters of neural networks, high 
computations, and/or sensitive parameters, which seriously 
lead to unsatisfactory denoising results. In this work, to avoid 
these problems, the proposed models are inspired by an MRI 
denoising method based on RED-WGAN [3]. This paper 
mainly contributes to learning the distribution of data in a low-
dimensional manifold using the WGAN framework, different 
loss functions such as VGG loss [20], SSL loss, SSIM loss 
[21], residual networks and autoencoders [22], which were 
employed in the proposed models to preserve clinical relevant 
details such as the edges and the informative structure. MSE 
loss in the RED-WGAN model has been replaced with SSL 
loss to overcome the loss of important structural details 
occurring due to over-smoothing edges. Also, SSIM loss has 
been used to preserve the image details in high resolution. The 
proposed method is computationally fast and can be 
implemented on Graphic Processing Units (GPUs). The rest of 
this paper is organized as follows: Section II defines the related 
work; Section III presents the proposed models; Section IV 
describes the experiments and results; and finally, Section V 
shows the conclusions and future work. 

II.  RELATED WORK 

In the field of clinical imaging, Jiang et al. [23] proposed a 
multichannel convolutional neural network (MCDnCNN) for 
MRI denoising with and without a specific noise level, in 
which CNN layers were combined with residual learning [24] 
and VGG network architecture. It robustly denoises 3D MR 
images with Rician noise. Manjon et al. [25] proposed a two-

stage approach to effectively reduce the noise: the non-local 
PCA thresholding strategy is used to filter the noisy image by 
automatically estimating the local noise level in the image; 
then this filtered image is used as a guide in the rotationally 
invariant NLM [prefiltered rotationally invariant nonlocal 
means (PRI-NLM)] filter. Ran et al. [3] introduced the RED-
WGAN model for MRI denoising, which consists of three 
main parts: the generator network, the discriminator network, 
and combined loss functions. In the generator network, the 
residual autoencoder structure is composed of convolutional 
and deconvolutional layers symmetrically. The discriminator 
network consists of convolutional layers. The authors 
combined three loss functions including the MSE loss function 
[21], Adversarial loss, and VGG loss. The proposed model 
powerfully reduced the noise and retrieved the structural 
details.  Tripathi et al. [26] proposed a novel CNN-DMRI 
model to remove the Rician noise from MRI, which utilized a 
set of convolutional layers to capture the image features while 
the noise is separating. As part of CNN-DMRI structures, 
encoder-decoder structures were also employed to retain the 
informative features of the image while unnecessary ones are 
ignored. The qualitative and quantitative results of the 
proposed method are promising. Li et al. [1] successfully 
applied Rician denoising with a progressive learning approach 
to MR images. The progressive network, called RicianNet, 
consists of two sub-RicianNets, which are residual blocks: one 
of the sub-networks fitted the noise distribution at the pixel-
domain without batch normalization layer, and the other one 
employs ResNet structure with batch normalization layer in the 
feature domain, thus enhancing the nonlinear mapping. The 
authors improved the network performance by employing the 
BN layer, Convolutional layer, and residual unit. RicianNet 
had better quantitative measures and significant improvements 
in visual inspections. Aetesam et al. [27] proposed a deep 
neural architecture for MRI denoising to remove Gaussian-
impulse noise by using an ensemble-based residual learning 
strategy. The proposed model achieved high-quality visual 
results and high quantitative metrics compared to other state-
of-the-art models. Gregory et al. [28] developed a multi-branch 
deep neural network architecture, HydraNet, to remove noise 
from MR images at a wide range of noise levels. Compared to 
other deep learning-based methods, the HydraNet network 
demonstrated powerful results in the denoising of complex 
noise distributions. Wu et al. [2] used 3D Parallel-RicianNet 
for 3D MRI denoising, which combines global and local 
information for noise reduction. To expand its receptive field, 
the authors introduced a powerful module called dilated 
convolution residuals (DCR). 

III. PROPOSED DENOISING MODEL 

It is difficult to denoise an MRI because magnitude images, 
which consist of real and imaginary parts, are commonly used 
[3, 29]. The noise in the magnitude MR image follows a Rician 
noise distribution [29], which is significantly more complicated 
than traditional additive Gaussian noise. 

In MRI denoising, a free MR image is obtained by 
removing noise from a noisy MR image, as follows: 

  =  ( ) (1) 
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Where   denotes a noisy MR image,   denotes the 
corresponding noise-free MR image and ( ,          , and 
function   maps to the noise. The model-based DL is 
independent of noise and its statistical characteristics since it is 
a black box. So, the denoising process aims to approximate the 
function      to the possible optimal and can be expressed as 
follows: 

𝑎𝑟𝑔      ̂     
   (2) 

where  ̂=Q ( ), which corresponds to an estimate of  , and 
Q indicates the optimal approximation of      [3]. 

A. Wasserstein GAN 

The GANs model can be described in Eq.  (3). 

         (     
      (      𝑔  (          (       𝑔 (   ( (     (3) 

The two variables   and   can be interpreted as samples 
drawn from two different distributions of data, which in the 
context of statistics, can be considered as being real image 
distributions     and noisy image distributions    respectively. 
Then, the denoising function moves the samples from    to     

which is close to   . An Adversarial Generative Network 
(GAN) is made up of two networks, a generator, G, and a 
discriminator, D. There have been many uses of GAN in 
research fields such as computer vision [30,31], security [32], 
and data generation [33]. The generator generates samples 
from random noise as close as possible to real data to deceive a 
discriminator. The discriminator attempts to distinguish 
between the two-distribution of the generative model    and 

the real data   . 

Despite its success in image generation, GAN suffers from 
training instabilities, extremely sensitive parameter tuning, 
vanishing gradient, and mode collapse [34].  It has been 
proposed to improve GAN by using Wasserstein GAN 
(WGAN) [35]. The loss function of WGAN was proposed to 
avoid vanishing gradients. Wasserstein Distance measures the 
divergence between real distribution    and model distribution 
   ; In WGAN, weight clipping is used to enforce Lipschitz 

constraints, when clipping parameters are too small or too large 
can result in the same original GAN problems. Therefore, the 
Gradient penalty (GP) was used instead of weight clipping to 
enforce the Lipschitz constraint on the critic(discriminator) 
during training. 

WGAN-GP is a WGAN with a gradient penalty, and the 
loss function is shown in Eq. (4). 

    ̃     
  (  ̃)  -            ( )  + λ    ̂     ̂

[(   ̂   ( ̂    

 )
2
] (4) 

The sample of    ̂ is taken uniformly between two points 
sampled from    and   , the last term is a gradient penalty 

factor, and 𝜆 is a penalty coefficient. 

B. Loss Functions 

Mean Squared Error (MSE) loss or    calculates the 
normalized Euclidean distance between a generated patch  (   
from model distribution    and the patch of noise-free images x 

from real distribution   ; it minimizes the pixel-wise difference 

between them [21]. Recent studies suggest that although the 
per-pixel MSE results have a high peak signal-to-noise ratio 
(PSNR), it may cause the loss of some important structural 
details due to an over-smoothed edge. The formula of     loss 
is expressed as in Eq. (5). 

   
 

   
  (       

 
 (5) 

The Perceptual Loss (  ) was used to overcome this 
problem by being employed in the feature space instead of 
directly estimating MSE on a pixel-by-pixel basis. A pre-
trained VGG-19 network [20] can be applied to extract the 
features from the generated patch and noise-free patch, VGG 
loss compares high-level perceptual differences [21]. 

  (    (     
 

   
   (     (   

 

 
  (6) 

In which   is a feature extractor, W refers to the width, H 
indicates to the height, and D is the depth of feature maps. The 
perceptual loss can be described as the following formula:  

    (  =  (    (     
 

   
    ( (  )      (   

 

 
(7) 

Structural Similarity (SSIM) loss measures the similarity 
between two patches  (   and x based on three comparisons: 
contrast, luminance, and structure [21]. The SSIM can perform 
better than the MSE in perceptual pattern recognition because 
it is visually based. The original SSIM is formulated as follows 
in Eq.  (8). 

    (      = 
        

  
   

     
 ∗ 

       

   
    

    
 =  (     ∗   (    (8) 

Where    ,   ,   ,    and     are the means, standard 

deviations, and the cross-covariance of the two images 
(     obtained from the model and the corresponding noise-
free image respectively and   ,    are constants [21,36,37]. If 
x and y are very similar, SSIM approaches 1. 

             (     (9) 

In this paper, we presented RED-WGAN-SSL and RED-
WGAN-SSIM models based on WGAN. They are incorporated 
with different loss functions to reduce the noise in 3D MRI and 
retain structural information. The two proposed models are 
compared with RED-WGAN [3]. The joint loss functions for 
all models are formulated as follows: 

             = 𝜆      (   𝜆      𝜆      (10) 

                     =𝜆      (   𝜆      𝜆      (11) 

               = 𝜆      (   𝜆      𝜆     (12) 

C. Network Architectures 

The proposed models' architecture is inspired by the RED-
WGAN architecture [3], which is made up of a G network, a D 
network, and a VGG network. The G network structure is an 
autoencoder network that consists of the convolution and 
deconvolution layers that are symmetrical to deal with the 
noise. The convolution and deconvolution layer pairs are 
linked by short connections. The deconvolution layers and the 
short connections are proposed to speed up the training 
procedure and maintain more details. There are 8 layers in the 
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encoder-decoder generator: four convolutional layers and four 
deconvolutional layers. A 3D convolution is applied to the first 
seven layers, followed by a batch-normalization and a 
LeakyReLU, except the last layer, which has a 3D convolution 
and a LeakyReLU without a batch-normalization; each layer 
uses 3×3×3 kernels, the generator employed 32, 64, 128, 256, 
128, 64, 32, 1 filter. The VGG network is used to extract 
features. 

The structure of the discriminator network   consists of 3 
convolutional layers. All layers perform 3D convolutional 
operations in sequence with 32, 64 and 128 filters and have 
3×3×3 kernel size, followed by a fully connected layer in the 

last layer that has a single output. 

IV. EXPERIMENTS AND RESULTS 

The two proposed models RED-WGAN-SSL and RED-
WGAN-SSIM were extensively tested on clinical datasets to 

validate their performance. 

A. Clinical Data 

Clinical experiments were conducted using the IXI dataset 
[38] gathered from three hospitals: Hammersmith Hospital, 
Guy’s Hospital, and the Institute of Psychiatry. The above-
mentioned website provides detailed information on scanning 
configuration. The Hammersmith dataset is a subset of the IXI 
dataset obtained from a Philips 3T scanner. 110 PD-weighted 
brain image volumes were randomly chosen. The training set 
consists of 100 image volumes from the Hammersmith dataset, 
and the testing set consists of 5 image volumes from the 
Hammersmith dataset, it also included 5 image volumes from 
the Guy's Hospital dataset to evaluate the robustness of the 
proposed models. We manually added Rician noise to the 
training set and testing set to simulate noisy images. Many 
training samples are required for deep learning-based methods, 
which is especially challenging in clinics. 

B. Parameter Setting 

The training was performed on PD-weighted brain image 
volumes with specific levels of noise. According to the 
suggestions in [31,39], the parameters λ1, λ2, and λ3 were 
experimentally set to 1, 0.1, and 1e-3, respectively. A penalty 
coefficient λ in Eq. (4) was specified in following the 
suggestion [35] to 10. The loss function was optimized by the 
Adam algorithm [40], and the parameters α, β1, and β2 for the 

optimizer were set to 1e - 4, 0.5, and 0.9, respectively. 

C. Results 

To evaluate the performance of the proposed denoising 
models RED-WGAN-SSL and RED-WGAN-SSIM in 
comparison to RED-WGAN, three quantitative metrics were 
utilized. The first metric, PSNR, involved comparing the 
denoised images to the original (ground truth) images by 
calculating RMSE. The second metric, RMSE, measured the 
difference between the denoised and ground truth images, 
lower values indicating better image quality. Lastly, the SSIM 
was used to compare the similarities between the denoised and 
ground truth images, taking into account the luminance, 
contrast, and structure of the images. 

1) Results obtained using a mini-batch size of 11: This 

section illustrates the different results for RED-WGAN-SSL, 

RED-WGAN-SSIM, and RED-WGAN that were trained on 

PDw images with different levels of noise (5%, 9%, 11%, and 

15%). Then, the three denoising models were tested on the 

same levels of noise (5%, 9%, 11%, and 15%). 

a) Quantitative Results: Table I presents the average 

quantitative analysis. The results demonstrate that when the 

noise level is less than 11%, RED-WGAN-SSL and RED-

WGAN-SSIM exhibit slightly better performance than RED-

WGAN. As the noise level increases, the performance of 

RED-WGAN-SSL is mildly better than that of RED-WGAN 

and RED-WGAN-SSIM. 

b) Qualitative Results: This section illustrates the 

different qualitative results for the denoising models RED-

WGAN-SSL, RED-WGAN-SSIM and RED-WGAN. Fig. 1 

shows results obtained for the PDw brain images in the testing 

set with 15% Rician noise as the models were also trained on 

images with 15% Rician noise. Each model suppresses noise 

to a different degree. However, some vital details are distorted 

as in RED-WGAN-SSIM. In Fig. 2, it is important to mention 

that all the models at the noise level of 11% can remove noise 

to a different degree and that the RED-WGAN-SSL and RED-

WGAN-SSIM have better results compared with RED-

WGAN, as they preserve more structural details than RED-

WGAN as shown by the red arrow. RED-WGAN-SSL 

suppresses noise better than other models. The results show 

that the lower the noise level, the better the results and closer 

to the original reference image as observed at level noise of 

9% and 5% in Fig. 3 and Fig. 4 respectively. Consequently, 

the structure details were preserved while noise was 

effectively reduced especially at level noise of 5%. 

2) Results obtained using a mini-batch size of 80: Based 

on the results obtained in Table II, the RED-WGAN-SSL 

seems to have performed better in terms of PSNR, SSIM, and 

RMSE than all the models considered. Fig. 5 provides a visual 

representation of the different results for RED-WGAN-SSL, 

RED-WGAN-SSIM, and RED-WGAN on the PDw brain 

images that were corrupted by 15% Rician noise in the 

training set and then were tested with 15% Rician noise. It is 

important to note that all of the models are capable of 

suppressing noise in converging degrees. The RED-WGAN-

SSL model has an improvement in noise suppression 

compared to the RED-WGAN model as shown in the red 

arrow, and it also produces results that are more consistent 

compared to the original reference images. RED-WGAN-SSL 

analysis results show that most of the noise has been reduced 

efficiently and the structure details have been retained much 

better than other models. The quantitative results of different 

models for Fig. 5 are presented in Table II. There was an 

agreement between the visual inspection and quantitative 

results in terms of PSNR, SSIM, and RMSE when using RED-

WGAN-SSL, which is the best result of all the modalities. 
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TABLE I. A COMPARISON OF PSNR, SSIM, AND RMSE METRICS ON DENOISED PDW EXAMPLE WITH DIFFERENT LEVELS OF RICIAN NOISE FROM THE 

TESTING SET 

15% 11% 9% 5%  

41.853721 ..4828.44 .44858444 .44854824 PSNR 

Noise .44.94.5 .445884. 0.192677 0.306874 SSIM 

1.135392 .48444.8 0.678883 0.374527 RMSE 

54.901224 584284... 594.2.428 444.28258 PSNR 

RED-WGAN 0.605663 .4499445 0.760506 .48.2.54 SSIM 

0.303276 .4229424 0.180583 .4444428 RMSE 

55.001128 58485994 594424428 44488484. PSNR 

RED-WGAN-SSL 0.588793 0.721758 0.761466 .484484. SSIM 

0.301685 0.215451 0.177403 .4442842 RMSE 

5.44482.8 58458.5.. 59444.944 44444842. PSNR 

RED-WGAN-SSIM 0.560422 .4848452 0.726462 0.787149 SSIM 

0.313424 .422288. 0.181923 0.114135 RMSE 

 

NOISE-15 FREE RED-WGAN 

 

   

A B C 

   

RED-WGAN-SSL RED-WGAN-SSIM  

  

 

D E  

  

  

Fig. 1. Denoised PDw example with 15% Rician noise from the testing set at 

a mini-batch size =110: (A) Noisy image, (B) Ground truth image, (C) RED-
WGAN, (D) RED-WGAN-SSL and (E) RED-WGAN-SSIM. 

 

NOISE-11 FREE RED-WGAN 

   

A B C 

   

RED-WGAN-SSL RED-WGAN-SSIM  

  

 

D E  

 

  

 

Fig. 2. Denoised PDw example with 11% Rician noise from the testing set at 

a mini-batch size =110: (A) Noisy image, (B) Ground truth image, (C) RED-

WGAN, (D) RED-WGAN-SSL and (E) RED-WGAN-SSIM. 
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NOISE-9 FREE RED-WGAN 

 

   

A B C 

   

RED-WGAN-SSL RED-WGAN-SSIM  

  

 

D E  

   

  

Fig. 3. Denoised PDw example with 9% Rician noise from the testing set at 

a mini-batch size =110: (A) Noisy image, (B) Ground truth image, (C) RED-

WGAN, (D) RED-WGAN-SSL and (E) RED-WGAN-SSIM. 

TABLE II. A COMPARISON OF PSNR, SSIM AND RMSE METRICS ON 

DENOISED PDW EXAMPLE WITH 15% RICIAN NOISE FROM THE TESTING SET 

AT A MINI-BATCH SIZE =80 

41.853721 PSNR 

Noise -15 

 

.44.94.5 SSIM  

1.135392 RMSE  

584.988.. PSNR 

RED-WGAN 

 

.4855488 SSIM  

.4242454 RMSE  

8;49:6785 PSNR 

RED-WGAN-SSL 

 

14:;0850 SSIM  

145181:< RMSE  

5844.2.48 PSNR 

RED-WGAN-SSIM 

 

.4844552 SSIM  

.4242.89 RMSE  

 

NOISE-5 FREE RED-WGAN 

   

A B C 

   

RED-WGAN-SSL RED-WGAN-SSIM  

  

 

D E  

 

  

 

Fig. 4. Denoised PDw example with 5% Rician noise from the testing set at 

a mini-batch size =110: (A) Noisy image, (B) Ground truth image, (C) RED-

WGAN, (D) RED-WGAN-SSL and (E) RED-WGAN-SSIM. 

3) Comparison between the results obtained with a mini-

batch size = 80 and mini-batch size = 110: Quantitative results 

of all models at a noise level of 15% with a mini-batch size of 

80 are significantly better than those with a mini-batch size of 

110 as shown in Table I and Table II. Based on the 

comparison, we found that the qualitative results with a mini-

batch of 80 show that most noise can be effectively removed 

in most cases, as well as that the structural details are 

preserved better than the results with a mini-batch of 110 as 

shown in Fig. 5 
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NOISE-15 FREE RED-WGAN 

 

   
A B C 

   
RED-WGAN-SSL RED-WGAN-SSIM  

  

 

D E  

  

  

Fig. 5. Denoised PDw example with 15% Rician noise from the testing set at 

a mini-batch size =80: (A) Noisy image, (B) Ground truth image, (C) RED-
WGAN, (D) RED-WGAN-SSL and (E) RED-WGAN-SSIM. 

4) An evaluation of robustness: For the analysis of the 

robustness of the RED-WGAN-SSL and RED-WGAN-SSIM 

models for various noise levels, RED-WGAN-SSL, RED-

WGAN-SSIM and RED-WGAN models were trained with 

15% Rician noise, and these three models were then tested 

with various noise levels which are 5%, 9%, 11%, 15%, and 

17% to show how robust they are. 

a) Qualitative Results: It has been found that the 

performance of RED-WGAN-SSL is slightly better than that 

of other models at a higher level than 11% Rician noise. RED-

WGAN-SSIM preserved more informative features and 

provided better visual quality compared to other denoising on 

the testing set at a lower level than 11% Rician noise, it can 

reduce the noise and artifacts as indicated by the red arrow in 

Fig. 6. 

The advantage of our proposed models is combining loss 
functions which are SSL, SSIM, and VGG losses. The VGG 
loss is used to preserve image style and content after it has 
been denoised. SSL loss is efficient in extracting structural 
details and informative features. The SSIM loss generates 
visually artistic images by using the visible structures in the 
image. All of these losses help to generate results that can be 
similar to the original distribution of the data. 

b) Quantitative Results: A quantitative summary of the 

results for Fig. 6 is provided in Table III. The RED-WGAN-

SSL has better scores when tested at noise levels higher than 

11%; it provides good PSNR and SSIM values, which are 

higher than those of other models as observed in Table III. 

The RED-WGAN-SSIM has better scores when tested at noise 

levels less than 11%. As a result, we can take this as evidence 

that the proposed models are both robust and generalizable. 

Consequently, we can conclude that the proposed models can 

denoise MR images with high-quality images and with high 

structural similarity between the original image and its 

denoised result. 

TABLE III. A COMPARISON OF PSNR, SSIM, AND RMSE MEASURES ON PDW IMAGES WITH DIFFERENT NOISE LEVELS IS SHOWN FROM TOP TO BOTTOM 

Noise RED-WGAN-15 RED-WGAN -SSIM-15 RED-WGAN -SSL-15 Noise 

5% 

52.446672 53.204429 53.375807 52.93542 

0.306874 0.664977 0.684727 0.665400 

0.374527 0.350747 0.343258 0.361404 

9% 

.44858444 56.432396 56.666630 56.06631 

0.192677 0.734335 0.745195 0.733152 

0.678883 0.254213 0.247617 0.264126 

11% 

..4828.44 58.067011 58.161415 57.496115 

.445884. 0.763594 0.775136 0.762014 

.48444.8 0.214020 0.210872 0.228062 

15% 

41.853721 584.988.. 58.342468 8;49:6785 

.44.94.5 .4855488 0.736552 14:;0850 

1.135392 .4242454 0.212479 145181:< 

17% 

40.643732 57.271908 56.900920 57.800380 

0.091793 0.713646 0.644451 0.758627 

1.289173 0.252457 0.257386 0.231039 

19% 39.576729 55.302866 54.905874 56.213300 

 0.077927 0.626172 0.539672 0.713555 

 1.442252 0.315957 0.326715 0.282167 
 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

744 | P a g e  

www.ijacsa.thesai.org 

Noise  

Level   
NOISY FREE  RED-WGAN-15 RED-WGAN-SSL-15 RED-WGAN-SSIM-15 

17%      

     

 

 
 

 

15% 
 

 

 
 

 

     

     

11%      

     

 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

745 | P a g e  

www.ijacsa.thesai.org 

9%    
 

  

     

5%      

     

 
 

Fig. 6. Denoised PDw example with different levels of Rician noise from the testing set. (A) Noisy image, (B) Ground truth image, (C) RED-WGAN-15, (D) 

RED-WGAN-SSL-15 and (E) RED-WGAN-SSIM-15. 

V. CONCLUSION 

The two models RED-WGAN-SSL and RED-WGAN-
SSIM models were presented in this paper, which use WGAN 
to get rip Rician noise from MR images while maintaining 
structure details. A 3D CNN has been used in these models to 
process 3D volume data. As well as using the WGAN 
framework, we introduced an autoencoder generator structure 
and combined loss functions. We have also improved the 
performance of our models by adapting the mixture of SSL, 
SSIM, and VGG loss functions. According to the results of the 
experiments, the performance of RED-WGAN-SSL and RED-
WGAN-SSIM, which are based on the WGAN, SSL, SSIM, 
and perceptual loss, have been significantly improved both 
qualitatively and quantitatively. Compared with the RED-
WGAN model, they can suppress the noise at the same time as 
retaining a higher level of detail. A comparison of the results of 
all models at a noise level of 15% when a mini-batch size = 80 
is superior to a mini-batch size = 110. It is interesting to note 
that the RED-WGAN-SSL scores better metrics on the testing 
set at noise levels higher than 11%, whereas the RED-WGAN-
SSIM scores better metrics on the testing set at noise levels less 

than 11%. This leads us to conclude that our proposed models 
are both robust and generalizable and can therefore be viewed 
as a strong indication that our work is well worth the effort. A 
deep learning-based method has a high computational cost. 
Most of the costs are incurred during the training stage.  
Although most training is conducted on a GPU, it still takes a 
long time. In future work, the proposed models will be 
implemented in T1 and T2 brain image volumes. As well as 
this, we will apply our denoising methods to a variety of 
medical images with different types of noise. 
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