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Abstract—Medical image fusion plays a vital role in 

enhancing the quality and accuracy of diagnostic procedures by 

integrating complementary information from multiple imaging 

modalities. In this study, we propose an ensemble learning 

approach for multi-modal medical image fusion utilizing deep 

convolutional neural networks (DCNNs) to predict brain tumour. 

The proposed method aims to exploit the inherent characteristics 

of different modalities and leverage the power of CNNs for 

improved fusion results. The Generative Adversarial Network 

(GAN) strengthens the input images. The ensemble learning 

framework comprises two main stages. Firstly, a set of DCNN 

models is trained independently on the respective input 

modalities, extracting high-level features that capture modality-

specific information. Each DCNN model is fine-tuned to optimize 

its performance for fusion. Secondly, a fusion module is designed 

to aggregate the individual modality features and generate a 

fused image. The fusion module employs a weighted averaging 

technique to assign appropriate weights to the features based on 

their relevance and significance. The fused image obtained 

through this process exhibits enhanced spatial details and 

improved overall quality compared to the individual modalities. 

On a diversified dataset made up of multi-modal medical images, 

thorough tests are carried out to assess the efficacy of the 

suggested approach.  The fusion images exhibit improved visual 

quality, enhanced feature representation, and better preservation 

of diagnostic information. The BRATS 2018 dataset, which 

contains Multi-Modal MRI images and patients’ healthcare 

information were used. The proposed method also demonstrates 

robustness across different medical imaging modalities, 

highlighting its versatility and potential for widespread adoption 

in clinical practice. 

Keywords—Deep convolutional neural networks; image fusion; 

generative adversarial network; ensemble learning 

I. INTRODUCTION 

In recent years, the field of medical imaging has witnessed 
tremendous advancements with the availability of multiple 
imaging modalities. Each modality provides unique 
information about anatomical structures, functional processes, 
or disease characteristics, making it crucial to extract 
comprehensive insights by combining data from multiple 

modalities [1]. To effectively utilize the complementary 
information present in multi-modal medical images, 
researchers have turned to image fusion techniques. Image 
fusion aims to integrate data from different modalities into a 
unified representation, allowing for enhanced visualization, 
improved diagnostic accuracy, and better decision-making in 
clinical settings [2]. Several tasks related to computer vision, 
such as picture categorization, object identification, and 
categorization, have shown DCNN to be quite effective. In 
recent years, DCNNs have also gained significant attention in 
the domain of medical image analysis due to their ability to 
automatically learn complex features from large-scale data [3]. 

With the use of convolutional neural networks with deep 
layers, this work suggests a collaborative learning approach 
for fusing multimodal medical images. This    method aims to 
overcome the limitations of traditional fusion methods by 
automatically learning the optimal fusion strategy from the 
data itself. The ensemble learning framework involves training 
multiple DCNNs, each specializing in capturing distinct 
features from different modalities [4]. These networks are 
designed to learn a shared representation that combines the 
information from each modality effectively. The ensemble is 
formed by aggregating the predictions of these networks, 
yielding a fused image that encapsulates the strengths of each 
modality [5]. By adopting an ensemble approach, this method 
leverages the diversity and complementary nature of the 
individual networks, resulting in a more robust and accurate 
fusion outcome. Additionally, the ensemble enables us to 
address uncertainties associated with the fusion process by 
providing a measure of confidence for the final fused image 
[6]. 

We carried out comprehensive experiments on a wide 
range of multi-modal healthcare imaging datasets in order to 
assess the performance of the suggested technique. The results 
demonstrate the superiority of ensemble learning approach 
over traditional fusion methods and even single DCNN-based 
fusion techniques. The fused images exhibit improved clarity, 
enhanced structural details, and better discrimination of 
abnormal regions, making them highly valuable for clinical 
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decision support and medical research. ensemble learning 
approach for multi-modal medical image fusion, employing 
deep convolutional neural networks, offers a promising 
solution for extracting comprehensive information from multi-
modal medical images [7]. By effectively integrating the 
strengths of different imaging modalities, this method holds 
the potential to advance the field of medical imaging and 
facilitate more accurate and informed clinical diagnoses. The 
classification of medical images is crucial to both medical 
management and educational endeavors [8]. The traditional 
approach's performance has reached its apex, though. In 
addition, it takes a lot of effort and time to extract and select 
classification parameters when using them [9]. The DCNN is 
an innovative approach to machine learning that has proven 
beneficial for a variety of categorization issues. CNN excel at 
a number of picture categorization tasks, producing the best 
results. However, medical image collections are difficult to 
compile since classifying them calls for an exceptionally high 
degree of professional competency [10].  

Deep Convolutional Neural Networks (DCNNs) have also 
been employed for medical image fusion, offering several 
applications in healthcare. DCNNs can fuse low-resolution 
medical images with high-resolution images to generate 
enhanced, high-resolution images. This technique can be 
particularly beneficial in medical imaging, where higher 
resolution can provide better visualization of fine details, 
aiding in accurate diagnosis and treatment planning. DCNN-
based fusion methods can fuse multiple images to generate a 
fused image with improved segmentation accuracy. By 
integrating information from different imaging modalities or 
perspectives, the fused image can provide more accurate and 
reliable boundaries and regions of interest for subsequent 
analysis and treatment planning [11]. 

DCNNs can be utilized for medical image registration, 
which involves aligning images from different modalities or 
time points. By fusing information from multiple images, 
DCNN-based methods can improve the accuracy and 
robustness of image registration, allowing for more precise 
analysis, monitoring, and treatment planning. It can fuse 
images from different sources to synthesize new images with 
desired characteristics or properties [12]. For example, fusing 
images from different imaging modalities can create a 
synthesized image that combines the strengths of each 
modality, providing comprehensive information for clinical 
analysis and decision-making. DCNNs can be employed for 
restoring medical images that are corrupted by noise, artifacts, 
or other degradations [13]. By fusing multiple degraded 
images, DCNN-based methods can effectively de-noise and 
enhance the image quality, enabling better visualization and 
interpretation of medical conditions. These applications 
demonstrate the versatility and effectiveness of DCNN-based 
medical image fusion techniques in improving image quality, 
accuracy, and clinical decision-making in various healthcare 
scenarios [14]. 

The key Contributions of this Research work is: 

 The ensemble learning framework involves training 
multiple DCNN models independently on respective 

input modalities, capturing modality-specific 
information. 

 A fusion module is designed to combine the extracted 
features from individual modalities, employing a 
weighted averaging technique to assign relevant and 
significant weights. 

 The fused image obtained through this process exhibits 
improved spatial details, enhanced feature 
representation, and better preservation of diagnostic 
information. 

 Thorough testing on a diverse dataset confirms the 
efficacy, visual quality, and robustness of the proposed 
method, showcasing its potential for broad adoption in 
clinical practice. 

The manuscript of the approached paper is organized as 
follows: In Section II, some related works are reviewed. In 
Section III, Information regarding the problem statement is 
provided. In Section IV, the proposed Multi-Modal Image 
Fusion is covered in detail.  In Section V, experiment results 
are provided, and discussed in Section VI with an extensive 
evaluation of the proposed approach to current best practices 
is made. In Section VII, the conclusion of the paper is 
provided. 

II. RELATED WORKS 

Maqsood et al. [15] suggested a multimodal fusion of 
images approach is based on limited representation and two-
scale picture segmentation. The original heterogeneous images 
are initially subjected to contrast enrichment processing in the 
proposed system, which improves the brightness distribution 
for better visualization. The edge data gathered from intensity 
extended images is extracted using a spatial gradient-based 
edge detection method. The fundamental and detail layers are 
separated from the improved multiple mediums images at this 
point. Utilizing SSGSM, the final detailed layer is extracted. 
Finally, the fused image is produced utilizing an improved 
judgement maps and fusion scheme. By conducting both 
quantitative and qualitative evaluations, the experimental 
results demonstrate that the recommended multimodal picture 
fusion strategy outperforms several previous methods. 
However, it could happen for certain data from the initial 
images to be destroyed or distorted during the fusion process. 
The fusion mechanism may prioritize some qualities or 
aspects while ignoring others, resulting in the loss of crucial 
information or subtle traits. 

Dinh et al.[16] proposed that the following are the key 
phases in the unique strategy that was presented to address the 
aforementioned shortcomings. In order to acquire the basic 
and detail elements, the three-scale deconstruction (TSD) 
approach is initially presented. Second, the output picture is 
fused using a rule based on the nearby energy function and the 
Kirsch compass operator, which aids in the retention of critical 
information. Thirdly, to fuse base layers with the best 
characteristics and produce a high-quality picture, the Marine 
Processors Algorithm (MPA) is used. This work compared the 
effectiveness of the suggested technique using six photograph 
quality criteria and five cutting-edge medical image fusion 
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algorithms. Experiments revealed that the proposed method 
significantly increased the level of quality of the fusion picture 
and preserved edge information. The particular fusion 
algorithm used has a significant impact on the effectiveness of 
multidimensional picture fusion. Additionally, there doesn't 
exist a one-size-fits-all solution, and different techniques may 
yield different fusion results. The effectiveness and level of 
quality of the combined image can be considerably impacted 
by the algorithm choice. 

Diwakar et al. [17] proposed a novel shearlet region 
multiple modalities image fusion method. The recommended 
technique uses Non-Subsampled Shearlet Transformation 
(NSST) to separate input pictures into low- and high-
frequency parts. The localized extrema (LE) method is a 
unique technique used to separate and merge the fundamental 
layer and details layers. The co-occurring filter (CoF) is then 
used to combine the foundation layer and detail layer in 
harmonics with smaller elements. A high-frequency 
component is integrated using a sum modulated Laplacian 
(SML) as a component of an edge-preserving technique to 
image fusion. On the Multi-modal healthcare picture 
collection, experimental findings and contrasting assessment 
are performed using both recommended and modern 
methodologies. The recommended strategy beats cutting-edge 
fusion techniques in terms of blade retention in both objective 
and subjective assessment requirements, according to test 
findings and assessments. Numerous multidimensional 
merging of images algorithms is computationally demanding, 
requiring a significant amount of time and computing 
capacity. This could be a drawback in situations or real-time 
applications that need for quick fusion. 

Stimpel et al. [18] demonstrated the globally linear guided 
filter for general medical image processing when coupled with 
a learning guiding map. The guided filter is the only element 
processing the output images, and its direction map may be 
trained to do the task optimally from beginning to end. The 
demising and graphic high-resolution tests are the two most 
often used activities when using this method to measure 
performance. The evaluation is based on cross-modal data sets 
that are paired. Modern methods are coupled with the 
provided procedure to achieve both goals. This can also show 
that the input image's information is basically unaltered after 
treatment, in contrast to conventional deep neural network 
approaches. The suggested pipeline also offers greater 
resilience against adversarial attacks and deteriorated input. 
Image fusion requires accurate registration of images from 
different modalities to align corresponding anatomical or 
functional structures. However, image registration can be 
challenging due to differences in acquisition protocols, patient 
motion, and anatomical variations. Registration errors can lead 
to misalignment and distortions in the fused image, affecting 
the accuracy of subsequent analysis. 

Asha et al. [19] suggested a chaotic grey wolf optimization 
algorithm-based balanced blending of high-energy sub-bands 
of the Non-Subsampled Shearlet Transform (NSST) domain. 
The raw images are first dissected into their many scales and 
multi-directional components using the NSST. The modest 
number of pathways were combined according to a simple 
maximum rule in order to sustain the energy of an individual. 

In order to combine images of various frequencies and 
minimize the difference between the resultant image and the 
starting point pictures while retaining the textural 
characteristics of the input images, a collection of 
automatically adjusted high-frequency images is used. The 
major goals of the entire procedure are to maintain the energy 
of a low-frequency region while transferring textural details 
from the source images to the fused image. In order to 
construct the fused picture, the inverse NSST of the 
combining minimal and high-energy bands is used. Eight 
distinct illness datasets from Brain Atlas are used in the trials. 
More than 100 picture pairings are used to evaluate the 
efficacy of the suggested strategy using both objective and 
subjective quality evaluation. Due to the lack of 
contemporaneous collection of several modalities or the 
difficulty in gathering ground truth annotation for fusion 
quality, obtaining grounding truth for multipurpose fusion in 
medical imaging is problematic. Due to this, evaluating and 
comparing fusion procedures quantitatively is more difficult 
and frequently relies on opinions or substitute measurements. 

Li et al. [20] To address the issue of poor contrast detail, a 
powerful image fusion technique employing numerous 
prominent features and a guided image filter was presented. 
The input photos were first divided into a number of calming 
and thorough images that had different scales before being 
subjected to the directed picture filter. Second, two different 
algorithms are used to extract important characteristics from 
the broken-down dependent upon visuals alongside the 
complete images in order to develop the combination rules. 
These two algorithms are the spectral residual (SR) technique 
for the mainframe gathering and the graph-based visually 
prominence model for a gradient saliency information 
extraction. The decomposition factors are combined using a 
process known as generalized intensity-hue-saturation (GIHS). 
The fused image is then reconstructed from the combined 
smoother and detailed images. The experimental findings 
show that, in the fields of MRI-PET and MRI-SPECT fusion, 
the proposed algorithm can outperform previous fusion 
approaches. The acceptability and use of fusion procedures in 
clinical practice, where openness and comprehensibility are 
vital, may be hampered by this lack of comprehension. The 
availability of information for the various modalities in 
multipurpose medical imaging may not be equal, meaning that 
one modality may contain greater numbers of specimens than 
the others. The fusion process may be impacted by this 
modality imbalance, which might result in biased fusion 
findings or a restricted representation of less common 
modalities. 

Dai et al. [21] suggested that transformers have enormous 
promise for multimodal medical picture categorization. The 
proposed approach is based on the successful extraction of the 
link among sequences by the transformer. However, due to the 
small dimensions of medical information sets for pictures and 
the lack of sufficient data to establish the connection between 
low-level semantic variables, the precision of pure 
transformation systems based on ViT and DeiT is not good in 
versatile classification of medical images. TransMed is 
therefore suggested as a way to collect both cross-modality 
high-level information and low-level characteristics. 
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TransMed combines the benefits of both CNN and 
Transformer. TransMed converts the multimodal pictures into 
sequences, delivers them to CNN for processing, and then use 
transformers to discover the connections between each 
sequence and provide predictions. TransMed beats the current 
multipurpose fusion approaches when it comes to of 
parameters, operating speed, and accuracy because the 
transformer successfully models the global aspects of 
multifaceted pictures. Finding the best fusion approach, 
though, is a challenging task. Different fusion methods, each 
with various advantages and disadvantages, may be used, 
including pixel-level, decision-level fusion and feature-level. 
For a certain application or modality combination, choosing 
the best fusion approach necessitates extensive thought and 
skill. 

III. PROBLEM STATEMENT 

Multi-modal medical imaging provides valuable 
complementary information for accurate diagnosis, treatment 
planning, and monitoring of various diseases. The issue of 
successfully integrating and fusing data from many imaging 
modalities is still difficult. Traditional fusion methods' 
dependence on ad hoc extraction of features and fusion 
techniques that commonly use handmade feature extraction 
that approximate complicated interactions between paradigms 
may restrict the quality of the merged image. Furthermore, the 
actual applicability of these approaches in clinical contexts is 
hampered by their lack of stability and interpretability.  
CNN have proven to perform exceptionally well in a variety 

of computer vision applications, including the processing of 
medical images. CNNs have not yet been extensively used in 
multi-modal medical picture fusion, nevertheless. The 
research gap in the mentioned existing works lies in the need 
for more comprehensive and adaptable multimodal image 
fusion techniques that can simultaneously address various 
aspects of quality enhancement, edge preservation, and overall 
visual fidelity. The proposed DCNN aims to overcome the 
limitations of traditional fusion methods and single CNN-
based approaches by effectively capturing the complementary 
information present in multiple modalities and improving the 
fusion quality. The ensemble learning framework is expected 
to leverage the diversity and strengths of individual networks 
to enhance the accuracy, robustness, and interpretability of the 
fusion process [22]. 

IV. PROPOSED ENSEMBLE LEARNING APPROACH 

The suggested method entails enhancing the supplied 
image. Then DCNN are used to accomplish Medical Image 
Fusion. The performance is then assessed. The suggested 
method for Multi-Modal Medical Image Fusion using 
DCNN is shown in Fig. 1. The input photographs are first 
preprocessed by converting them to a standard scale and using 
the proper transformations to improve image details. Then, 
using a sizable dataset of aligned multi-modal pictures and a 
fusion-specific loss function, a CNN architecture is created, 
consisting of shared and modality-specific convolutional 
layers. From each modality, high-level feature maps are 
retrieved using the trained CNN. 

 

Fig. 1. Proposed approach for multi-modal medical image fusion. 

A. Data Collection 

The BRATS 2018 dataset, which contains Multi-Modal 
MRI images and patients’ healthcare information with distinct 
heterogeneous histologic sub-regions, different levels of 
aggression, and variable prognosis, was used for training and 
testing in this work. These clinical multi-modal MR images 
have been generated using a range of magnetic field intensities 
and scanners [23]. Table I describe the dataset for Training 
and Validation. 

TABLE I. THE COLLECTED DATASETS 

 Training data Testing data 

Unhealthy 350 350 

Healthy 250 250 

Overall data 600 600 

B. Data Augmentation using GAN 

Data analysis, enhancement, combination, and rescaling 
are all part of preprocessing.  The acquired source photographs 
are transformed to RGB images before augmentation. The 
improvement method is used to build more powerful simpler 
models that are impervious to some sorts of picture 
manipulation, following which the image's quality is altered to 
improve the information's integrity and degree of variability. 
The layering placement of the original photos is important for 
the concatenation. The first phase is the R channel of an MRI, 
and the second layer is the R channel of a PET scan (positron 
emission tomography). In the second layer, the B(Blue) 
channels of MRI and the B channels of PET are placed after 
the G(Green) channels of MRI and the G channel of PET, 
respectively. The pictures that offer practical details must be 
maintained below the photos that offer structural details in all 
pathways, it must be highlighted [24]. 
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Fig. 2 the generator creates a picture according to the 
parameters that are collected from the image, based on the 
number of channels supplied in the layers for input and output. 
The modelled output picture of the suggested method contains 
three channels and six input channels. The generator 
automatically fits the obtained parameters into the three stated 
channels during training. The stacked order is set to 
RR1GG1BB1 and the training data is compressed to prevent 
the color space from being disrupted. The RGB components of 
the first source picture are R, G, and B, while the RGB 
components of the additional source image are R1G1B1. 
Random switching and unpredictability are employed for data 
augmentation. With random flipping, there is a 50% chance 
that the picture will be turned. The picture is accompanied 
with random noise, which is Gaussian in nature with an 
average value of 0 and a variation of 0.1. This method can be 
used to learn the aggregate breakdown of single-modality 
imaging information as well as for recording the broad 
distribution of imaging data from several modalities. The 
primary producer can learn to produce many modalities at 
once since different modalities' information collected from a 
single ROI share identical information with unique appearance 
patterns. Such a generator can be used to complete missing 
modes of operation or supplement data [25]. 

As an estimate Kdata(u), GAN aims to learn an estimate of 
probabilities, kG(u), from the actual distribution. u= G(v), the 
sample, where the noise variable is called v. It resolves the 
issue by simultaneously instructing the generator N and a 
discriminator D to create a process that is adversarial. By 
sampling noise, G produces samples from latent space. 
Whether the sample comes from KG(u) or Kdata(u) is 
determined by D. G samples eventually approach genuine or 
real samples through the continuous unfavorable effect. The 
definition of the optimization formula D is represented in 
Eq. (1) [26]. 

             (  ( )      ( )) (1) 

Where Div (*) indicates the divergence among the two 
distributions. N may be used to compute the divergence and 
generate the following objective function as represented in 
Eq. (2) 

           (   ) (2) 

Where, 

 (   )          [    ( )       [   (   ( ))]](3) 

Hence, the Eq.  (1) is transformed as 

               (   ) (4) 

In contrast to a traditional GAN, which consists of a single 
generator and a discriminator, pix2pixHD uses an auxiliary 

producer and a primary generator to output pictures at two 
distinct resolutions, which are 3x448x448 and 3x224x224 in 
this instance. Therefore, two entirely convolutional network-
based discrimination named Dp and Dq are in charge of the two 
solutions. 

C. Multi-Modal Fusion-CNN 

Patch incorporation, class insertion, position integration, 
class token and patch token are the five insertions and tokens 
that are present in the input layer. While class anchoring is an 
adaptable vector, patch anchoring represents each patches’ 
input from CNN. Using position embedded data and patched 
embedded data; this technique preserves the geographical and 
geographical data of a patch by encoding it into patch tokens. 
Class signaling and class anchoring are equal since category 
anchoring does not provide patch embedding. The Eq. (5) and 
(6) represents the input is u, the adaptable vector is Va, the 
location embedding is upa, the patch tokens are upq, and the 
class token is ude. 

        ( )      (5) 

     
   (6) 

The type token connects to the patched tokens preceding 
the converters' input layer, goes via the conversion layer, and 
is subsequently generated from the fully connected layer in 
order to foresee the class. The core of the arrangement is an 
image power source, which receives images from various 
input modalities and generates a task-optimal unified depiction 
of the required guiding map. In extracting the most important 
information directly from data, convolutional neural networks 
(CNN) have demonstrated significant success. A CNN is 
applied to build the guiding map as a result. De-noising and 
picture super resolution are the two tasks we focus on. The 
guide maps for both are generated using tested network 
designs for the sake of repeatability. The necessity to handle 
numerous input photos led to the sole adjustments. The 
inclusion of more guiding photos would logically be 
conceivable and is only constrained by availability and 
processing capacity. In order to determine how the selected 
network design affects the guided filtering process, employs 
using two separate networks for super resolution [27]. 

Fig. 3 represents the CNN architecture where a layer of 
neurons is fully linked, every neuron in that layer is also 
connected to every neuron in the layer underneath it. The 
value should indicate the degree to which of the connection 
between the neuron that is j

th
 in this particular stratum and the 

kth neurons in the preceding layer     . Let     be the bias of 

the jth neuron in the current layer. The result of the layer's j
th 

neuron is given by Eq.  (7). 

    ∑              (7) 
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Fig. 2. GAN in data augmentation. 

 

Fig. 3. CNN architecture. 

The convolutional layer's neurons that are frequently 
utilized to produce a kernel or filtration have the same biases 
and values. If the dimensions of the filtering are set to nxn, 
every neuron in the corresponding layer will be linked to a nxn 
area of the neurons that are in the layer above it. In line with 
this, the (j, k)

th
 neuron's outputs will be in Eq.  (8) 

      ∑ ∑      
   
   

   
               (8) 

Examples of regularly used activation functions include 
Tanh, Sigmoid, and the inverted linear unit, which is now the 
de facto recommendation for contemporary neural networks. 
Convolutional or completely linked layers are typically 
followed by activation layers to provide elementwise non-
linear behavior. By using the activation function, is defined in 
Eq.  (9) 

  ( )      (   ) (9) 

The downwards sampling method for every sub-area in the 
pooling layer provides the dimension of a single neuron in the 
present one by dividing the neurons of the layer preceding it 
into an array of not overlapping rectangles. Maximum pooling 
and average-pooling, the two most popular pooling 
procedures, offer the subarea's maximum value and average 
value, respectively. A convolutional neural network usually 
sets up a sequence of convolutional (Conv)-ReLU layers, 
before adding the pooling layers (Pool), and continues doing 
this till the picture gets spatially combined to a compact size. 

At certain points, it is usual to switch to fully-connected layers 
(FC). Three different parts make up each neuron: the receiving 
domain, a modulation domain, and a pulse-generating domain. 
Feedback is created by the connections between many 
neurons. An external input signal is first received in the 
receiving domain, after which it is amplified in the modulating 
domain and the final output pulse is produced in the pulse 
generating domain. The fundamental procedure is as follows: 
signals from the feedback channel domain and the link domain 
are received in the receiving domain, and they travel through 
Channels L and F into the modulation domain. 

The necessary feature pixels in the layer of convolution are 
added to each image's output pixel after synchronizing the 
characteristics from the source pictures. Add every value of a 
pixel together, and then divide the result by the total number 
of pixels in the description. The feature map has been added to 
the computed values, causing the improvement to be applied 
to the whole image. The characteristics map has a slot for each 
computed value. All of the traits are therefore processed, and 
several feature maps are produced. The Eq. (10) to obtain the 
convolutional layer is the following, 

     ∑ ∑ ∑                
(   )   

   
   
   

   
         (10) 

Where      is generally set to which is not contingent on 

the image's component position.         as an identical value 
of weight. Since it recovers the distinguishing properties of the 
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image using various convolution kernel sizes, the layer of 
convolution is a critical part of CNN. The layers of inversion 
can be continuously applied to the input photos to create a set 
of feature maps. Ki may then be created by using the 
characteristic map of the i-th layer in CNN as it is represented 
in Eq. (11) 

    (         ) (11) 

Where Ki is the current networks layer's mapping of 
features, Di-1 is the previous layer’s convolution feature.  Vi is 
the i-th layer weight, ki is the i-th layer offset vector, and   (·) 
represents the rectified function. Layer pooling's goal is to 
reduce the total amount of space, that can cut processing costs 
and effectively reduce the danger of over-fitting. The resultant 
characteristic on the ith localized responsive field is 
determined in Eq. (12) in the k-th layer of pooling. 

  
      (  

     ) (12) 

where down (·) indicates the function for down-sampling, 

  
    is the feature vector in the previous layer, and r is the 

pooling size. Following the pooling and convolutional layers, 
there may be one or more fully-connected (FC) layers, which 
use the collected features for picture categorization. It 
classifies the input brain images into healthy and unhealthy. 

D. Multi-Modal Fusion 

In order to process sources of any size, the conversion 
phase is employed throughout the picture checking and fusion 
procedure on the totally connected layer. Using the same 
kernel size, the entire connected layer is split into two 
comparable convolutional layers. The network may then 
combine pictures of any size, X and Y, to produce a dense 
prediction map, I. Each prediction Is on the map is represented 
by a vector with two dimensions with values between 0 and 1. 
If one dimension of a prediction is bigger than the other, it is 
normalized to 1 while the other dimension is set to 0, making 
the weights given to related image blocks easier.  With an 

outcome aspect value of 1, this ensures that the weight of 
every image block is decreased. Two near forecasts in S have 
overlapping areas in their corresponding picture blocks. The 
weights of the photos in these overlapped portions are added 
to determine the mean value of the adjacent picture blocks. 
The network may be given pictures of any size, both X and Y, 
using this technique, and a weight map W of the same size is 
generated. This guarantees a weight reduction for each picture 
block with an output aspect value of 1. 

E. Fusion Rules 

In order to attain better look, richer details, and spectacular 
fusion impacts, this study suggests novel fusion principles and 
the average weighted fusion operations in accordance with 
area peculiarities. The fusion guidelines and commands are as 
follows: 

Stage 1: It determines the energy   
        

  of matching 
localized areas in each breakdown layer o of source images x 
and y, accordingly, using the contrast pyramid deconstruction: 

  
 (   )  ∑ ∑   

 (       )    (13) 

  
 (   )  ∑ ∑   

 (       )    (14) 

Where Equations (13) and (14) the regional area power 
  
 (   ) on the o

th 
layer of difference is centered at (a, b). 

structure, where u and v stand for the size of the region in 
question, and represents the image of the contrast between the 
structuring fourth layer. 

Stage 2: Determine how similar the respective local areas 
in two source photos are to one another. 

Stage 3: Decide who the fusion operators. 

As a consequence, the strategy selects the center pixel 
based on energy variations when the degree of similarity is 
below the threshold of significance and employs the weighted 
fusion operator when it is equal to or above. 

Algorithm 1:   Multi-Modal Medical Image Fusion using Deep Convolutional Neural Networks 

Input: Medical Images 

Output:   fusion result 

The two source images and the initial fused one are given 

Train the input images vi in the system, where i = 1 to n                                                                           

Data Augmentation of images                                                                     

Let U(i) be the input images from the dataset // using GAN 

                     for every  Ui   

                                           Vv(i) = V(i) – N // V denotes unwanted noise 

 

Segmentation of images 

 Initialize the starting point of  the highlighted portion 

 if (image detected) 

  Gather the subset 

  Identify the highlights in the hyperspectral image using Eq.  (7) 

        Else 

                           

 Repeat until the stopping condition is reached                   // until the image is identified 

 End if 

Return  

Image Fusion using CNN  
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Fig. 4. Flow chart of the proposed system. 

Fig. 4 represents the Ensemble Learning Approach for 
Multi-Modal Medical Image Fusion using Deep Convolutional 
Neural Networks. 

V. RESULTS 

The recommended method has been evaluated using 
datasets and executed in MATLAB software on the Windows 
10 platform. In order to solve this issue, deep CNNs are 
utilized in the article to extract high-level characteristics from 
the data modalities and NMF is employed to discover the 
fused image's underlying structure. The use of deep CNNs, 
which have demonstrated extraordinary capacity in 
understanding intricate patterns and characteristics from 
pictures, is a key benefit of the suggested technique. The 

model can accurately capture and reflect the unique qualities 
of each modality by utilizing the power of deep learning, 
thereby enabling a more thorough synthesis of information. In 
order to evaluate the effectiveness of their strategy, the authors 
additionally offer quantitative assessment criteria including 
precision, recall, precision, accuracy, F-score, specificity, and 
sensitivity. The suggested approach's robustness and 
dependability are highlighted by the excellent scores in these 
criteria that were attained. Overall, multi-modal image fusion 
using deep CNNs and NMF makes a significant addition to the 
discipline. The suggested approach successfully combines 
deep learning for feature extraction with NMF to train the 
fused representation, producing better fusion results. The 
results of the investigation and analyses show how this 
approach can be used for a range of applications, including 
mapping, and imaging in medicine. The use of multipurpose 
image fusion techniques in the health care imaging field is 
essential for better medical diagnosis and therapy. The 
research study suggests a unique method for fusing 
multimodal medical images that incorporates deep 
convolutional neural networks (CNNs). 

A. Accuracy 

The model's total Accuracy shows how well it performs 
across all classifications.  In overall, it is the idea that every 
circumstance can be forecast with accuracy.  Eq.  (15) 
represents the Accuracy: 

  
         

                   
  (15) 

B. Precision 

Precision is calculated as the total amount of positive 
predictions multiplied by the number of correct positive 
estimations. It measures how many accurately merged multi-
modal medical pictures there are. Eq.  (16), which is used to 
compute the accuracy 

  
    

         
  (16) 

C. Recall 

The ratio of correct positive forecasts to true positives and 
false negatives is known as recall. It displays the proportion of 
correctly predicted events and picture fusion across different 
modes. The recall is represented by Eq.  (17), 

  
    

         
  (17) 

D. F1-Score 

Precision and recall are combined in the F1-Score 
calculation. The F1-Score as shown in Eq. 18) is created using 
precision and recall. 

  
                  

                
  (18) 

E. Sensitivity 

It is a measure of the proportion of correctly foretold true 
positives. Eq. (19) is used to calculate sensitivity as,  

            
    

         
 (19)
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F. Specificity 

The degree gauges identify precisely the true negatives. 
Eq. (20) is used to calculate the specificity value as, 

            
    

         
 (20) 

TABLE II. COMPARISON OF ACCURACY 

Classifier Accuracy 

CNN [10] 86.8 

RNN [11] 97.9 

KNN [14] 98.2 

AlexNet[16] 98.5 

DCNN 99.6 

 

Fig. 5. Comparison of accuracy. 

When compared to the current techniques, the suggested 
technique DCNN obtains a greater level of accuracy. The 
contrast of efficiency between DCNN and other approaches is 
shown in Table II and diagrammed in Fig. 5. 

TABLE III. COMPARISON OF PRECISION AND RECALL 

Methods Precision (%) Recall (%) 

KNN 89.5 89.1 

CNN 96.9 98.5 

GWO 97.9 95 

DCNN 99.9 99 

 

Fig. 6. Comparison of precision and recall. 

Table III demonstrates that the proposed technique of 
combined DCNN achieves higher precision and recall of 
99.9% and 99% when compared to the existing methods. The 
advanced DCNN gives better accuracy than the performance 
evaluated. Here, the achieved accuracy level is 99 using the 
DCNN model. Fig. 6 illustrates the precision and recall 
between DCNN and other methods. The model's balanced and 
trustworthy performance is further supported by the F-score 
which takes precision and recall into account. These findings 
support the suggested model's exceptional qualities, including 
precision, recall, precision, F-score, sensitivity, and 
specificity, which make it a trustworthy and efficient option 
for the task at issue. 

TABLE IV. SENSITIVITY AND SPECIFICITY FOR PROPOSED METHOD 

Proposed Model 

Sensitivity 98.14 

Specificity 96.68 

 
Fig. 7. Comparison of specificity and sensitivity. 

Fig. 7 and Table IV represents the model's specificity 
score of 98.14% shows that there is little chance of making 
false positives for negative predictions, while its sensitivity 
score of 96.68% emphasizes how well the model can 
recognize positive circumstances. 

The accuracy of the convolutional neural network used for 
both the training and testing stages is 99.4% and 97.5%, 
respectively, according to Table V. When DCNN is utilized, 
the accuracy of the testing and training processes increases to 
99.9% and 99.4%, respectively.  Fig. 8 shows an evaluation of 
performance. 

TABLE V. PERFORMANCE EVALUATION 

 CNN ABO-CNN 

Training 98.1 99.9 

Testing 97.5 99.4 
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Fig. 8. Performance evaluation. 

Table VI and Fig. 9 presents a comparison of medical 
image fusion techniques based on three evaluation metrics: 
Gradient-based quality, Information ratio, and Mutual 
information. Each metric is accompanied by corresponding 
percentages representing the performance of the techniques in 
relation to that metric. The Gradient-based quality metric is 
evaluated at 89%, 45.5%, and 67.7% for RMSE, indicating the 
percentage of quality achieved by the fusion techniques in 
terms of gradient-based measures. Similarly, the PSNR metric 
indicates a performance of 54%, 40%, and 79% for the 
techniques, representing the Peak Signal-to-Noise Ratio 
achieved by the fusion results. Lastly, the ASR metric is 
reported at 45%, 39.5%, and 59%, representing the Accuracy 
Success Rate of the fusion techniques. This table allows for a 
comparative analysis of different medical image fusion 
methods based on multiple evaluation metrics, providing 
insights into their respective performance levels across various 
quality measures. 

TABLE VI. MEDICAL IMAGE FUSION COMPARISON 

 
Gradient-based 

quality 

Information 

ratio 

Mutual 

information 

RMSE 89% 45.5% 67.7% 

PSNR 54% 40% 79% 

ASR 45% 39.5% 59% 

 

Fig. 9. Medical image fusion comparison. 

TABLE VII. COMPARISON OF PROCESSING TIME 

Methods Processing Time 

KNN 11.05 

CNN 14.58 

GWO 12.86 

DCNN 6.15 

 

Fig. 10. Evaluation Comparison of processing time. 

Table VII and Fig. 10 presents a comparison of processing 
times for different methods, namely KNN, CNN, GWO, and 
DCNN. The Processing Time column indicates the time taken 
by each method for a specific task or process. From the table, 
it can be observed that KNN takes 11.05 units of time, CNN 
takes 14.58 units, GWO takes 12.86 units, and DCNN takes 
6.15 units. These values reflect the computational efficiency 
or speed of each method, with a lower processing time 
indicating faster execution. The table provides insights into 
the relative performance of these methods in terms of 
processing time, which can be valuable for selecting an 
appropriate method based on time constraints or efficiency 
requirements. 

G. ROC Curve 

Fig. 11 represents the ROC Curve of the proposed system. 
The proposed DCNN has the higher rate when compared to 
the existing methods. The ROC curve is a graphical 
representation of the performance of a binary classification 
system as its discrimination threshold is varied. However, the 
ROC curve is not directly applicable to evaluate multi-modal 
image fusion, as it is typically used for evaluating 
classification models. 

H. Accuracy and Loss for Training and Validation 

Fig. 12 represents the accuracy of a multi-modal image 
fusion model refers to how well it can effectively integrate and 
preserve relevant information from the input images while 
suppressing noise, artifacts, and inconsistencies. 
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Fig. 11. ROC curve. 

 

Fig. 12. Model accuracy for training and validation. 

 

Fig. 13. Model loss for training and validation. 

Fig. 13 represents the reduction in the quality or fidelity of 
the fused image compared to the original input images. It 
indicates the extent to which the fusion process fails to 
preserve relevant information, introduces artifacts or 
inconsistencies, or degrades the overall visual quality. 

VI. DISCUSSION 

Existing techniques frequently concentrate on certain 
aspects of image fusion, such as feature extraction, detail 
preservation, or computational effectiveness, but there are no 
complete solutions that handle all elements of quality, such as 
contrast augmentation, edge preservation, and overall visual 
fidelity. The performance of fusion approaches across diverse 
modalities, clinical applications, and data quantities cannot be 
fully evaluated due to the lack of defined assessment 
parameters. It is still difficult to get timely collections of 
multi-modal data and trustworthy annotations, hence the 
problem of ground truth annotation for quality evaluation in 
medical image fusion persists [28]. Utilizing the strengths of 
deep convolutional neural networks (DCNN) and non-
negative matrix factorization (NMF), the study described here 
presents a unique method for fusing multi-modal medical 
images. Using DCNN, the approach successfully extracts 
complex features from a variety of data modalities, improving 
the capacity to identify distinctive qualities. Applying NMF 
next reveals the fused image's underlying structure. Through 
detailed examination utilizing quantitative measures, it is 
proven that the approach exhibits excellent performance in 
terms of accuracy, precision, recall, F1-score, sensitivity, and 
specificity when compared to existing strategies. Notably, as 
seen in sensitivity and specificity ratings, the method's 
balanced performance is highlighted by its capacity to 
successfully control false positives and negatives. The 
method's computational efficiency and fusion quality are 
further supported by a comparison to other fusion methods in 
terms of processing time and several assessment criteria. 
Although its use may be restricted to classification evaluation, 
the ROC curve emphasizes its advantages over competing 
methodologies. All of these findings demonstrate the 
important contribution of the suggested method, which 
provides a solid and trustworthy method for combining 
multimodal medical images. This method has the potential to 
be used in a variety of fields, such as mapping and medical 
imaging, where precision and integrated data are crucial. 

VII. CONCLUSION 

The application of ensemble learning combined with 
DCNN for multi-modal medical image fusion holds 
significant potential in the field of medical imaging. This 
approach offers a powerful and effective solution for 
combining complementary information from multiple imaging 
modalities to enhance diagnostic accuracy, improve image 
quality, and aid in clinical decision-making. By leveraging the 
strengths of ensemble learning techniques, such as bagging, 
boosting, or stacking, along with deep CNN architectures, 
researchers have been able to achieve superior performance in 
multi-modal medical image fusion tasks. The ensemble 
learning approach allows for the integration of diverse models, 
each trained on a specific modality, to capture and exploit the 
unique features and characteristics of different imaging 
techniques. Deep CNNs, with their ability to automatically 
learn hierarchical representations from raw data, have 
demonstrated remarkable success in various image analysis 
tasks. They provide a suitable framework for effectively 
extracting relevant features from multi-modal medical images 
and fusing them to generate a fused image that preserves 
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crucial information from each modality. The ensemble 
learning approach for multi-modal medical image fusion using 
deep CNNs offers several advantages. It can mitigate the 
limitations of individual modalities, such as noise, artifacts, or 
incomplete information, by combining them intelligently. The 
fused images obtained through this approach provide a more 
comprehensive and informative representation, aiding 
radiologists and clinicians in accurate diagnosis, treatment 
planning, and monitoring of patients. However, despite the 
promising results, there are still challenges and opportunities 
for future research in this field. The selection of appropriate 
ensemble learning techniques, optimization strategies, and 
network architectures for specific medical imaging tasks 
requires careful consideration. Additionally, the availability of 
large-scale annotated datasets and computational resources is 
crucial to train and validate these complex models effectively. 
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