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Abstract—The synchronization of neural activity in the 

human brain has great significance for coordinating its various 

cognitive functions. It changes throughout time and in response 

to frequency. The activity is measured in terms of brain signals, 

like an electroencephalogram (EEG). The time-frequency (TF) 

synchronization among several EEG channels is measured in this 

research using an efficient approach. Most frequently, the 

windowed Fourier transforms-short-time Fourier transform 

(STFT), as well as wavelet transform (WT), and are used to 

measure the TF coherence. The information provided by these 

model-based methods in the TF domain is insufficient. The 

proposed synchro squeezing transform (SST)-based TF 

representation is a data-adaptive approach for resolving the 

problem of the traditional one. It enables more perfect estimation 

and better tracking of TF components. The SST generates a 

clearly defined TF depiction because of its data flexibility and 

frequency reassignment capabilities. Furthermore, a non-

identical smoothing operator is used to smooth the TF coherence, 

which enhances the statistical consistency of neural 

synchronization. The experiment is run using both simulated and 

actual EEG data. The outcomes show that the suggested SST-

dependent system performs significantly better than the 

previously mentioned traditional approaches. As a result, the 

coherences dependent on the suggested approach clearly 

distinguish between various forms of motor imagery movement. 

The TF coherence can be used to measure the interdependencies 

of neural activities. 

Keywords—Brain-Computer Interface (BCI); 
Electroencephalogram (EEG); Short-time Fourier Transform 
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I. INTRODUCTION 

Brain signals (EEG) can be used to build the Brain 
Computer Interface (BCI), which is a more convenient and 
affordable method. EEG signals are captured by spatially 
scattered scalp sensors. The connections between the various 
areas of the brain, which is the primary organ of the nervous 
system, are becoming important in BCI research. The various 
sensors record the EEG signals, and coherence analysis is used 
to determine how coherent the signals are [1, 2, 3]. Coherence 
is typically estimated using spectral methods such as a Fourier 
or wavelet [4] transform. Coherence analysis is challenging to 
implement because cerebral activity signals are inherently 
non-stationary. Although the time-dependent Fourier 
transform (STFT) is one approach to solving the issue, it has 
not been completely effective for the aforementioned reasons: 
one cannot guarantee the stationarity of brain signals during 
each brief time interval and two the Heisenberg uncertainty 

principle limits the resolution of time-frequency 
representation. Despite being a data-adaptive signal analysis 
technique, the mother wavelet basis function is used in the 
wavelet transform to decompose signals. The approach also 
has difficulty with time-frequency resolution, where the 
resolution of the frequency is greater at low frequencies and 
less so at high frequencies. Also, this method is founded on 
choosing a mother wavelet. Because the mother wavelet was 
arbitrarily chosen without being matched to the analyzing 
signal, that led to an inaccurate and irreversible breakdown. 

When combined with the continuous wavelet transform 
(CWT), the technique, known as synchrosqueezing transform 
(SST) [5], produced astoundingly precise time-frequency 
depictions of nonstationary as well as nonlinear data. This 
aspect of SST addresses the drawbacks of linear perception 
time-frequency techniques, such as windowed Fourier 
transforms (STFT) as well as continuous wavelet transforms. 
The synchrosqueezing transformation focuses the coefficient 
values around the frequency response graph of the tuned 
oscillations by dispersing the STFT and CWT strengths [6]. 
The frequency redistribution approach used in time-frequency 
representation [7] improves the proper location of 
instantaneous amplitude in the time and frequency domains. 

Since neural synchronization is characterized by several 
frequency bands but is anticipated to change over time, TF 
coherence is typically employed for measuring it. Smoothing 
the cross as well as auto-spectra between the signals is 
essential since noise has a significant impact on coherence. 
One of the following techniques is used to execute the 
smoothing operation: periodogram smoothing can be 
accomplished in one of three ways: (i) Periodogram 
smoothing through ensemble averaging using the WOSA 
(Welch's overlapped segment averaging) technique; (ii) the 
temporal or frequency domains may be smoothed separately 
or together [8, 9]; and (iii) By averaging a collection of spectra 
generated using various orthogonal taper functions, cross and 
auto spectra are smoothed. The cross and auto spectra are 
typically smoothed with the same smoothing agents in all of 
the approaches mentioned above to estimate TF consistency. 
The employment of the same smoothing operator constrained 
the coherence to the range [0, 1] since the TF coherence 
satisfies the Cauchy-Schwarz inequality. Furthermore, the 
estimator using the same operation fails when the smoothing 
coefficient rises to one. Selected auto spectra smoothing can 
be used to get the improved temporal resolution. However, 
since the cross spectra are therefore not flattened when non-
identical smoothing operators are used, the bias of the 
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estimator cannot reach one [8]. As a result, the estimator has 
better time resolution. In order to properly depict TF 
consistency and uncover weak correlations among signals, 
non-identical smoothing agents may be used. Bispectrum-
based channel selection (BCS) was employed in this study 
[10] for MI-based BCIs. In this paper [11], the performance of 
the BCI model may be considerably impacted by using 
different time segments for training the data. They recommend 
against using any other temporal data as training data besides 
that utilized for motor imaging. For BCI Competition IV 2a 
and 2b, models using machine learning and deep learning 
suggested a potential improvement in visual display time, 
categorization efficiency. It was argued that models might be 
picking up more visual information. In fact, during the visual 
presentation, spatial topography revealed activation of the 
visual cortex. In the research [12], MI classification using 
EEG signals is accomplished using a supervised feature 
selection method. Another work [25] suggests a technique for 
producing a spatio spectral feature representation that can 
maintain the multivariate information of EEG data. In 
particular, subject-optimized and subject-independent 
spectrum filters were combined, and the filtered data were 
then stacked into tensors to create 3-D feature maps. In order 
to automatically choose the best frequency bands based on 
MIF [13], the MIFCSP method combines multivariate iterative 
filtering (MIF) and CSP. This method may then be used to 
extract discriminant features. 

The SST approach is employed in the present study to 
calculate the TF coherence of brain signals, as well as the 
coherence is therefore subjected to a non-identical smoothing 
procedure. Moreover, the same analysis is carried out using 
the short-time Fourier transform rather than the SST. With 
synthetic and actual EEG signals, both findings are validated. 
The SST-dependent TF consistency outperforms the STFT-
dependent technique, according to the observation in both 
synthetic and real data. The following is how the paper is set 
up: The time-frequency representation techniques, such as 
STFT and SST, are covered in Section II, along with the 
consistency in the TF domain in Section II, the synchronized 
transformation research findings in Section III, and discussion 
and some closing thoughts in Sections IV and V, respectively. 

II. METHODS 

The neuronal synchronization changes both over time and 
with frequency. Any signal’s energy is described as a function 
of both times as well as frequency by the time-frequency 
representation (TFR). It converts a single-dimensional time-
series signal through a double-dimensional function 
integrating frequency and period. The TFR space value gives a 
sense of which spectral components are present. Non-
stationary or time-varying signals can be analyzed and created 
using the TFR. 

A. Windowed Fourier Transform 

An approach that works well for the TF characterization of 
non-stationary EEG signals is the short-time Fourier transform 
(STFT). A kind of trade-off between a signal’s time and 
frequency is made by the STFT, which contains all the data on 

frequency variations with the period. A signal event’s timing 
and frequency are also disclosed through this information. The 
signal is broken up into manageable chunks for the duration of 
the STFT, and it may be expected that each of these chunks 
will remain stationary. A window function (w) is selected in 
order to achieve this. This window must have the same width 
as the area of the signal when the normality of the data is 
guaranteed. The definition of the STFT for a non-stationary 
signal s(t) is 

 




 dtettwtsft ft2)].'().([),(

 (1) 

where even the window function w(t) and the complex 
conjugate * are both present. The signal’s STFT is the signal’s 
Fourier transform times a tapering function [27]. 

In the interests of demonstrating the time-frequency 
depiction, a noise-free artificial signal is created that is called 
δ(t) by chaining three sinusoids s1(t), s2(t), and s3(t) with 
frequencies of 10Hz, 5Hz, and 20Hz, respectively, with the 
formula as δ(t) = [s1(t) s2(t) s3(t)]. For sampling, 500 hertz 
(Hz) is employed. The STFT-based synthetic signal and TFR 
are shown in Fig. 1(a) and 1(b), respectively. A Hamming 
window with a 50% overlap and a length of 256 is employed 
in the STFT. Although with poor resolution, the STFT can 
distinguish between the three factors. 

B. Synchronized Transformation 

A useful method for the Continuous Wavelet Transform 
(CWT) is the Synchrosqueezing Transform (SST). This 
method is employed to concentrate the frequency elements of 
non-stationary signals in the TF space. The CWT successfully 
creates a high-resolution TF representation. In Fig.1, the SST-
dependent TF visualization derived from the artificial signal 
δ(t) is displayed. The right CWT scales are used for 
discretization, and a bump mother wavelet is used to achieve 
SST. It has been highlighted that STFT-based TF space suffers 
from extremely poor frequency resolution and reduced 
temporal resolution owing to the employment of the window 
function. Using a set of wavelets, which are time-frequency 
filters, the CWT method detects oscillatory elements in a 
signal. The CWT is used to create wavelets from a successive 
time function. In the following form, a signal s(t) is convolved 
with a mother wavelet Φ(t), which is a finite oscillatory 
consequence.  
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(a) 

 
(b) 

 
(c) 

Fig. 1. A synthetic signal δ(t) with three sinusoids is represented by TF 

utilizing (a) the simulated signal δ(t) and (b) STFT as well as (c) SST. 

With TF representation, the information from the time-
scale frame is translated to the time-frequency frame. During 
the synchrosqueezing procedure, each value is changed to 

)),(,( qpq s  [5]. It is able to have a scaling step because p  

and q are distinct numbers; for each, kp , where ),( qps  is 

calculated. When projecting from the time-scale frame to the 

time-frequency frame )),(,(),( qpwqpq inst , the SST 

),( ql is only calculated [11] in the centres l  located in the 
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Eq. (4) demonstrates that only the frequency (or scale) axis 
is synchrosqueezed in the TF representation of the signal [14, 
28]. To obtain a focused image over the time-frequency plane 
for the SST, the CWT coefficients are reallocated [15]. The 
instantaneous frequencies are then taken from this image. 

C. Coherence Evaluation 

Effective communication between two parties can be 
achieved through coherence. Cohesiveness in neuroscience 
describes the systematic constancy among two neuronal cells. 
The establishment of more or less uniformity between 
oscillating modulations in different neurons’ brain activity is 
known as neuronal coordination. Synchronization has a 
substantial impact on how the different neuronal regions 
synchronize their stimulatory behavior [16, 17, 18]. 

D. Frequency Coherence 

A common technique for assessing consistency within 
brain waves is frequency consistency. Frequency coherence’s 
major benefits include being highly implicit, hard, and noise-
resistant while allowing for a quick overview of pertinent 
consistent frequencies in the sample [19]. The frequency 
coherence is a measure of how well multiple signals’ cross-
spectral levels hold up when normalized with respective auto-
spectral levels. As functions of frequency, consider x and y, 
two stationary random processes. According to [26], the 
familiar consistency function of x, as well as y, is as follows:  

)(,)(,
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)(,

fyyJfxxJ

fyxJ
fyxC 

 (5) 

wherever         is the cross-spectral density among the 

two processes.         and         are the auto spectral density 

functions of x as well as y, respectively, at frequency, f. The 
EEG is a non-stationary signal; hence the conventional 
coherence function is insufficient. 

E. Coherence of Time and Frequency 

Typically, coherence analysis only works with stationary 
signals since it calculates the relationship between two signals 
throughout the frequency region. Consequently, much like 
with non-stationary signals, traditional coherence analysis is 
unable to reveal the temporal features of EEG [20]. The 
sequential relationship among both processes in the time-
frequency dimension is measured using an advanced ruling 
technique. The TF consistency has been employed to gauge 
the synchronization of cortical activity in the brain-computer 
interaction motor imagery experiment. The coherence 
characteristic of the TF is described as 
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At this point,                          is the distinct 
frequency and the signal is divided into T segments. The 
measurements of the sectional as well as auto-spectral 
concentrations are 
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where ),( ftX and ),( ftY  are the respective x also y of TF 

transforms coefficients, besides ),( ftY is the complex 

quantity of ).,( ftY  

The TF consistency definitions are simple and also use a 
method akin to the Fourier analysis. Based on the spectrogram 
approach, which involves averaging the signal segments to 
arrive at the estimates, the spectra and the frequency 
coherence in the Fourier analysis can be calculated. As both 
time and frequency have two dimensions, the time-frequency 
consistency encounters challenges throughout averaging. SST, 
which performs better than STFT, is used throughout this 
study to compute the TF translation parameters accompanied 
by TF consistency 

F. Smoothing Impacts on TF Coherence 

To get rid of noise, utilize the smoothing operator, and a 
convolution operator. The operators for smoothing cross- and 
auto-spectral densities can be the same or different. The 
employment of non-identical operators, as opposed to 
identical operators, produces time-frequency consistency that 
is unrestricted to [0, 1] and, as a result, improves temporal 
resolution [8]. Smoothing both time and frequency is 
necessary to increase the TF coherence’s constancy. 
Averaging a number of orthogonal-based spectrum 
estimations, such as those obtained using multi-taper methods, 
can serve as the smoothing operator. They are typically 
employed for amplitude- and auto-spectral densities. The non-
identical smoothing agents are two-dimensional in both time 
and frequency [21] or a single-dimensional function of time. 
Thus, the standard magnitude squared TF coherence is 
calculated as [8] 
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Here, ][w also ][w remain two different ( ][w ≠ ][w )) 

leveling windows of cross-spectral concentration and auto 

spectral concentration, accordingly, and  denote the 

convolution operator. The impacts of smoothing in TF 
consistency are demonstrated in Fig. 2, where two artificial 
signals x1=[sin(2πf1t) sin(2πf2t)], x2=[sin(2πf1t) sin(2πf2t)] with 
f1=5Hz also f2=10Hz and their TF consistency remain 
accessible. According to Fig. 2(a) and 2(d), respectively, the 
individual sinusoids that make up x1 and x2 have various 
temporal lengths. 

As shown in Fig. 2(e), and 2(f), smoothing operations are 
shown to increase the TF coherence’s representativeness and 
clarity for both STFT and SST-based methods. On the other 
hand, as seen in Fig. 2(b) and 2(c), when the smoothing 
procedure is not carried out, a significant amount of irrelevant 
coherence is introduced. Hence, the measurement of time-
frequency coherence is enhanced by utilizing diverse 
smoothing agents. Several 2-D Gaussian smoothing windows 
with various lengths are employed in this research. The 
kernel’s height in hertz and width in seconds are denoted by h 

and d, respectively, to reflect the window length ][ dhw  . 

G. Proposed Algorithm for TF Coherence 

The steps that make up the suggested technique for 
calculating the time-frequency coherence amongst two signals 
dependent on SST are as follows: 

1) Choose two EEG channels or two brain signals at 

random.  

2) The time-frequency coefficients can be obtained by 

applying the SST to each individual signal. 

3) The cross and auto spectral distributions should be 

calculated using the SST coefficients. 

4) Using two acceptable non-identical (various window 

lengths) smoothing processes, amplify the cross and auto 

spectral densities. 

5) Lastly, use Eq. (8) to get the time-frequency coherence 

by using smoothed auto and cross-spectral densities. 

 
Fig. 2. The impact of smoothing operations on the TF consistency among the artificial signals x1 (a) as well as x2 (d). (b) STFT and (c) SST dependent TF 

lacking levelling, STFT and I STFT and (f) SST-dependent TF consistency through smoothing.
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III. RESULTS 

Both real EEG data and synthetic signals are utilized to 
evaluate the performance of the proposed SST-based time-
frequency consistency. The outcomes are contrasted with 
time-frequency consistency dependent on STFT. With regard 
to STFT, a hamming window of length 100 is employed. 
Then, using non-identical smoothing windows, the spectral 
coefficients are smoothed for the calculation of TF coherence. 
The cross- and auto-spectral concentrations are levelled with 
Gaussian smoothing windows with lengths of w [2 1] and w 
[10 1], respectively. To execute the SST, a mother wavelet 
with bumps is utilized, and then the CWT scales’ 
discretization is set at 32. The cross-spectral density is 
smoothed over in the SST because the Gaussian smoothing 
windows are w [3 1] and w [50 1] long. The Gaussian 
smoothing windows in the SST have lengths of w [3 1] and w 
[50 1], meaning that the cross and auto spectral densities are 
flattened across TF areas of 3 Hz and 1 s, respectively. 

1) Synthetic data: Three sinusoids with frequencies of 5 

Hz, 6 Hz, and 10 Hz are added together with a sampling 

frequency of 100 Hz to produce the trio of non- generated 

signals X, Y, and Z. As shown in Fig. 3, each of the simulated 

signals are made up of such three signals with various 

temporal alignments. The distinct synthetic waveforms X, Y, 

and Z are then each polluted with 5 dB, 0 dB, and -5 dB of 

Gaussian noise, accordingly. Fig. 4 and 5 show the time-

frequency consistencies within each couple of artificial signals 

produced by STFT and SST, separately. The consistency 

among the signals Y and Z (5Hz and 6Hz frequency) is 

displayed in Fig. 4. while Fig. 5 shows the cohesiveness 

between the exact same pair of signals is separated in a more 

pronounced manner, they overlapped each other. Fig. 6, which 

shows the marginal frequency coherences of two approaches, 

exemplifies the phenomena clearly (STFT and SST).  If 

f=1,2,...,F, the definition of the marginal frequency coherence 

is   T
t yxyx ftCfC 1

2
,, ),()(

~
. In STFT, values for closer 

frequency coherence values overlap, whereas, with SST, the 

coherence of each individual frequency component is strongly 

represented. It is believed that the SST-based technique has 

better resolution than the STFT-based time-frequency 

coherence technique. 

 
Fig. 3. Development of a multiple non-stationary [X, Y, Z] signal. Three separate frequencies sinusoids are present within the initial three rows (S1, S2, as well 

as S3). The three sinusoids in S1, S2, and S3 have, correspondingly, 10 Hz, 6 Hz, and 5 Hz frequency properties. To produce the artificial signals X, Y, and Z, 

alternative time alignments of the sinusoids are used. 5dB, 0dB and -5dB noises are inserted to sinusoids (a) to (c), (d) to (f) and (g) to (i) correspondingly. The 
synthesized signal in the fourth row is made up of the three sinusoids; X=(a)+(b)+(c), Y=(d)+I+(f) and Z=(g)+(h)+(i). 
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Fig. 4. Artificial signal STFT-depended TF consistency among (a) X and Y, (b) X and Z, and (c) Y and, Z. 

 
Fig. 5. Artificial signal coherence (a) between X as well as Y, (b) between X and Z, and (c) between Y and Z using SST-dependent TF. 

 
Fig. 6. Marginal frequency consistencies of STFT-depended coherence (black line) with SST-depended coherence (red line) between the artificial signals Y and 

Z. 

2) Real data: The actual EEG data was gathered from the 

calib_ds1a. (IV dataset) generated from the 4
th

 Brain-

Computer Interface (BCI) Competition, which is openly 

accessible. The information is used to determine how well the 

suggested strategy performs. It is noted in subjects who are in 

good health. Motor imagery is accomplished during the entire 

session without any input. Two kinds of motor images are 

chosen from left hand, right hand, and foot movement for each 

subject. Movement signals of the left hand and foot are 

present continuously in the calibration dataset calib_ds1a. 59 

EEG channels comprising 200 trials lasting four seconds each 

make up the data. The data are sampled at a rate of 100 Hz. 

The data offset from the EEG signals has been eliminated 

during pre-processing. In order to get the alpha frequency 

band, which has intricate patterns of intermittent 

synchronization, The brain wave then goes across a 4
th

-order 
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Butterworth band transfer filter with a frequency range of 8 

Hz to 12 Hz. [8]. The inter-channel coherence is measured in 

this experiment using the two channels T7 and T8. Fig. 7 

shows the unprocessed EEG signal, the purified alpha 

ingredient, as well as the spectrum of alpha for the left-hand 

movement channels T7 and T8. The foot movement data from 

channels T7 and T8 are similarly depicted in Fig. 8. The 

STFT-based time-frequency coherence for left hand and foot 

movement motor images are shown in Fig. 9(a) and 9(c) for 

channels T7 and T8. The time-frequency coherence between 

channels T7 and T8 of left hand and foot movement, based on 

SST, are shown in Fig. 9(b) as well as 9(d), correspondingly. 

Fig. 9 shows how SST-based TF coherence, in contrast to 

STFT, exhibits remarkable localization of extremely small 

band frequency components. 

3) BCI interpretation: In this investigation, the time-

frequency coherence across channels in the left and right 

hemispheres of the human brain, is investigated. Moreover, 

the distinction involving left hand and left foot action in motor 

imagery is seen. Sensorimotor rhythms can be managed with 

the help of motor imagery [22], and the patterns are more 

active in the central region of the brain [23]. The 59 EEG 

channels are therefore divided into three channels from each 

hemisphere (T7, FC5, and CP5) and three channels from each 

hemisphere (T8, FC6, and CP6) for coherence assessment. Fig. 

11 depicts the spatial distribution of the scalp’s channels in the 

10/20 EEG system. To evaluate time-frequency coherences, 

there are eight-channel clusters used: FC5FC6, FC5T8, 

FC5CP6, T7FC6, T7T8, T7CP6, CP5FC6, CP5T8, as well as 

CP5CP6. On every one of the chosen channel pairings, time-

frequency coherences based on STFT and SST are assessed. 

Eq. (9) determines how to weight the time-frequency 

coherences 

(
)(

~
),(),( ,

2

,

2

, fCftCftC yxyx
weighted

yx 
  (9) 

Here, the weight matrix is the marginal frequency 
coherence and the notation  is a binary singleton 
multiplication function. Using the weighted time-frequency 
coherence, the marginal time coherence is computed. It is said 
that minimal time coherence is 

TtftCtC
weightedyx

f
yx ,...,3,2,1);),((maxarg)(

~ 2

,, 

(10) 

The minimal time consistency in this study is determined 
by averaging the marginal time coherence throughout 100 
trials. The normalized readings during the time for several 
connection pairs of left-hand and foot swing data are 
displayed in Fig. 12. Data on left-hand movement is 
represented by solid lines, and information on foot movement 
is represented by dashed lines. Fig. 12’s left panel displays 
SST-based marginal temporal coherences, while the right 
panel displays STFT-dependent marginal time consistencies. 
For both the left hand as well as foot activities sensory motor 
imaging information are distinguishable using the SST-based 
marginal time coherence. 

Fig. 7. Left hand movement data: first row is the raw EEG signals, second and third row are the filtered EEG signals and spectrums of the filtered component 

respectively. 
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Fig. 8. Foot movement data: first row is the raw EEG signals, second and third row are the filtered EEG signals and spectrums of the filtered component 

respectively. 

Fig. 9. TF coherence between channels T7 and T8 based on (a) STFT and (b) SST of left hand movement data, (c) STFT and (d)  SST of foot movement data.
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Fig. 10. Left hand action (a) as well as foot action (b) of channels T7 and T8 with marginal frequency consistencies. 

 
Fig. 11. The American EEG Society has standardized the electrode map of something like the 10/20 EEG system. For the dataset utilized in this experiment, the 

marked conductors T7, FC5, as well as CP5 beginning the left cerebral hemisphere and T8, FC6, as well as CP6 as of the right side of the brain were chosen. 
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Fig. 12. Movement information for the left hand and foot for STFT-depended (right panel)  and SST-based models (left panel) approaches exhibit a small amount 

of time coherence between distinct channel pairings. 

IV. DISCUSSION 

EEG outputs are used in the research to examine how well 
SST performs in time-frequency illustration. Fig. 9 displays 
the TFR derived from left hand and foot movement data 
utilizing STFT and SST motor images. Fig. 10 shows, for left 
hand and left foot movement data, the energy related to the 
marginal frequency consistency. Although the SST-based 
technique shows acute localization of each frequency element 
within a relatively small band of frequencies, the marginal 
frequency coherence depended on STFT displays weak 
localization of frequency agents. The frequencies of 9 Hz and 
11 Hz in Fig. 10(b) can be clearly distinguished using SST-
based marginal frequency coherence, whereas they cannot be 
achieved using an STFT-dependent method. From now, SST-
depended time-frequency consistency is better than STFT-
based time-frequency coherence. The fundamental cause is 
that the employment of something like a window function for 
covering in STFT results in the introduction of cross-spectral 
energy, which causes the energy to spread over a broad range 
of frequencies. The TFR performance of the SST has been 
evaluated in our previous work [24]. This paper is a 
development of our earlier paper [24]. Our prior work is 
expanded upon in this one. In addition, the smoothing 
operations on the TFR, as well as BCI interpretation, are 
introduced in this paper. BCI can use marginal frequency 
coherence followed by marginal time coherence based on 
SST. The coherence value for left-hand movement data in the 
left panel of Fig. 12 is at its highest in the time range of 1-2 
seconds, whereas the coherence value for foot movement data 

across all channel pairs is at its highest in the time range of 
two to three seconds. In the SST-based marginal temporal 
coherence, left-hand and foot measurement data are explicitly 
distinguished from one another. The marginal temporal 
coherence model based on STFT, however, does not exhibit 
this kind of selectivity (in the right panel). The main cause is 
the fact that the STFT has a fixed time-frequency window 
while the SST has a changeable one, making it difficult to 
accurately evaluate signals with broad bandwidths that 
fluctuate rapidly over time. Moreover, the STFT demands that 
the brain wave be stationary for a given time period, yet EEG 
signals exhibit non-stationary characteristics. 

V. CONCLUSIONS 

The analysis of the time-frequency (TF) consistency 
among two signals is offered in this work using an innovative 
approach. For each of the provided signals, the time-frequency 
densities of the crossed and auto spectrums are calculated. 
Then, using quasi smoothing agents, the spectral densities are 
smoothed. The TF coherence is calculated using smooth 
spectral densities for artificial signals with time-frequency 
representations based on STFT and SST. A genuine EEG 
signal with various motor images is used to test the suggested 
SST-based coherence estimate method. Comparing the two 
strategies’ performances reveals that the SST-based approach 
is more effective than STFT at locating frequency contents 
with greater spatial precision. Then, using both SST and 
STFT-based coherences, marginal time coherences are 
computed. It is clearly shown that the STFT-depended 
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marginal time consistencies are incapable to distinguish 
among left hand and foot activity data, in contrast to the SST-
depended marginal time coherences, which can. This implies 
that these marginal time coherences can enhance BCI design. 
In order to get greater performance, it is advised BCI 
designers to take these coherences as supplementary features 
when designing a BCI system. 

Future study might explore brand-new combinations of 
features and feature selection, as well as the use of these 
features for BCI tasks other than motor imagery. Additionally, 
there is a need for work in the design of novel algorithms, 
including physiologically realistic error functions for EEG 
signal predictions for the complexity feature. 
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