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Abstract—Smoke is often present in the early stages of a fire.
Detecting low smoke concentration and small targets during these
early stages can be challenging. This paper proposes an improved
smoke detection algorithm that leverages the characteristics of
smoke concentration using YOLOv7tiny. The improved algorithm
consists of the following components: 1) utilizing the dark channel
prior theory to extract smoke concentration characteristics and
using the synthesized αRGB image as an input feature to
enhance the features of sparse smoke; 2) designing a light-BiFPN
multi-scale feature fusion structure to improve the detection
performance of small target smoke; 3) using depth separable
convolution to replace the original standard convolution and
reduce the model parameter quantity. Experimental results on
a self-made dataset show that the improved algorithm performs
better in detecting sparse smoke and small target smoke, with
mAP@0.5 and Recall reaching 94.03% and 95.62% respectively,
and the detection FPS increasing to 118.78 frames/s. Moreover,
the model parameter quantity decreases to 4.97M. The improved
algorithm demonstrates superior performance in the detection of
sparse and small smoke in the early stages of a fire.
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I. INTRODUCTION

With the rapid development of the national economy and
various industries, factories are producing more production
materials, but they are also facing increased safety risks.
High-density residential buildings are increasingly engaging
in intensive fire and electricity usage behaviors. According to
statistics from the Ministry of Emergency Management as of
January 20, 2022, there were a total of 748,000 recorded fires
in 2021, resulting in over 4,000 casualties and direct economic
losses exceeding 6.75 billion yuan [1]. Therefore, it is crucial
to research fire and smoke detection methods to ensure public
property safety.

Currently, smoke detection research can be categorized into
methods based on hardware sensors and wireless signals, and
methods based on computer vision [2]. However, methods
based on hardware sensors and wireless signals have poor
adaptability in certain scenarios and do not perform well
[3]. To overcome these limitations, computer vision-based
smoke detection methods have been widely employed in recent
years. Surveillance systems have also evolved from simulation-
based, networked, and high-definition systems to intelligent
systems. Now, surveillance resources are not only utilized for
local monitoring functions but also integrated with computer
vision for intelligent monitoring. Object detection algorithms
based on deep learning have rapidly developed and become

the mainstream method for smoke detection, as they possess
powerful feature learning and representation capabilities, better
meeting the requirements of the big data era in comparison to
traditional machine learning methods [4].

He et al. [5] proposed a deep fusion convolutional neural
network for smoke detection based on efficient attention, in-
tegrating spatial and channel attention mechanisms to address
the issue of detecting small smoke. Sun et al. [6] presented an
improved convolutional neural network for the rapid identifi-
cation of forest fire smoke. However, the algorithm has poor
generalization ability and weak robustness, only exhibiting
high detection capability in specific scenarios. Wang et al.
[7] proposed a smoke detection algorithm based on Faster R-
CNN. Firstly, smoke is extracted based on its motion features,
and then the Faster R-CNN network is used to extract and
recognize the smoke image features, achieving high accuracy.
However, the Faster R-CNN network structure is complex, and
real-time detection is poor.

In recent years, the YOLO series models have garnered
extensive research in the field of object detection due to
their real-time performance, one-stage detection, simplicity,
and good accuracy. Ren et al. [8] implemented fire detection
and recognition using an improved YOLOv3 network. The
algorithm improves the accuracy and detection speed of small
smoke targets by modifying the predicted box sizes of the
K-means clustering algorithm in YOLOv3. Cao et al. [9] pro-
posed a precision enhancement strategy for YOLOv4 based on
multi-scale feature maps and made improvements in detecting
small objects by enhancing the feature extraction network.
However, this significantly increased the algorithm complexity,
resulting in a significant decrease in real-time detection. Xue
et al. [10] proposed an improved model based on YOLOv5s.
To address the issue of capturing effective information from
small-sized targets in long-distance forest fire images, transfer
learning methods were used to enhance the accuracy of small-
target forest fire smoke detection. However, this model has a
complex structure, and the detection accuracy is not sufficient
[11].

The aforementioned fire smoke detection algorithms have
improved the accuracy of smoke detection to some extent.
However, they still face the following difficulties in the early
stages of actual fire scenarios: 1) high false negative rate for
thin smoke with a slow initial spread in fires; 2) difficulty in
detecting small smoke targets captured from long distances;
3) high complexity of model algorithms, making real-time
detection challenging.
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To address these issues, this paper proposes a YOLOv7tiny
lightweight improved network based on smoke concentration
features, which significantly enhances the original network
for complex smoke detection scenarios. The algorithm mainly
includes 1) Extracting smoke concentration features based
on the atmospheric transmission principle to enhance smoke
characteristics and improve the detection capability for thin
smoke; 2) Using a weighted bidirectional feature fusion struc-
ture to replace the original PAN+FPN feature fusion method,
enhancing the algorithm’s ability to detect small smoke targets;
3) Replacing the regular convolutions in the original network
with depthwise separable convolutions with fewer parameters.
The main contributions of this paper are:

1) Extracting smoke image concentration features based
on the dark channel prior theory and enhancing the original
RGB image to an αRGB image with smoke concentration
features as the network input have been proven to enhance
the detection capability of early-stage fires with thin smoke
through experiments.

2) Proposing a lightweight feature fusion structure (light-
BiFPN) to enhance the detection of small smoke targets in
the YOLOv7tiny network and reduce the false negative rate of
small smoke targets.

3) Replacing the standard convolutions of the original algo-
rithm with depthwise separable convolutions, and experimental
results show a significant reduction in parameters with minimal
impact on accuracy.

Finally, the superiority of the proposed improvement algo-
rithm was confirmed by analyzing the experimental results.

4) A dataset was created for detecting smoke objects in

outdoor real-world scenes. The dataset comprises 1671 smoke
images with corresponding labels indicating the position of
the smoke bounding boxes. This dataset holds immense sig-
nificance for researching the detection of smoke in the initial
phases of actual fire scenarios.

II. BACKGROUND

The YOLOv7 algorithm is a novel object detection algo-
rithm introduced by the original development team of YOLOv4
in July 2022. Compared to previous versions of the YOLO
series, this algorithm enhances the learning capability of the
network through the use of the C5 module in the aggrega-
tion network. Additionally, it introduces attention mechanisms
in the backbone feature extraction network to optimize the
representation of target features, thereby achieving real-time
detection. However, this algorithm has a relatively lower aver-
age precision. To achieve high-precision fire smoke detection
in complex outdoor environments while reducing the number
of algorithm parameters and improving detection speed, this
study proposes improvements to the YOLOv7tiny algorithm.
The improved algorithm includes the incorporation of a smoke
concentration feature extraction structure and the use of a more
lightweight multi-scale feature fusion network and optimized
depthwise separable convolutions. With these enhancements,
the algorithm can adapt to complex scenarios and achieve good
real-time detection capability.

YOLOv7tiny is a deep learning-based object detection
model composed of four parts: Input, Backbone, Neck, and
Head. Fig. 1 shows the diagram of the YOLOv7tiny model.
The Input part applies random mosaic data augmentation
and K-means clustering to optimize the model training by
designing anchor boxes for preprocessing the input images.

Fig. 1. The general architecture of the YOLOv7tiny network.
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The Backbone part consists of multiple CBL modules, a C5
layer, and an MP layer. The CBL module is composed of a
Convolution layer, a Batch Normalization layer, and a Leaky
ReLU function. The C5 layer is formed by concatenating
multiple CBL modules, and the MP layer includes CBL
modules and Maxpool. The Neck part employs a feature fusion
network, which adopts the YOLOv5 series Path Aggregation
Feature Pyramid Network (PAFPN) architecture and combines
Feature Pyramid Networks (FPN) [12] and Path Aggregation
Networks (PAN) [13] to achieve multi-scale learning and
retain small object features before downsampling. However,
tensor concatenation for feature fusion lacks comprehensive
integration of adjacent layer information, and nearest-neighbor
interpolation for upsampling cannot effectively balance speed
and accuracy in smoke detection tasks. The fusion network
does not adequately focus on small object feature information,
which can result in feature loss. The Head part uses a detection
head similar to the YOLOR model, introducing the Implicit
representation strategy [14] to refine the predictions. Based on
the fused feature values, the images are classified into large,
medium, and small categories, with the small image prediction
branch primarily focusing on small defect objects. However,
the detection head’s use of IDetect to connect ordinary con-
volution prevents the fusion results from emphasizing the
intended targets. Additionally, the detection head lacks targeted
strategies to enhance small object detection performance.

III. PROPOSED METHOD

A. Smoke Concentration Feature Extraction Based on Dark
Channel

Smoke concentration is a characteristic of smoke that
directly reflects the content of smoke in the air per unit
volume. In images, smoke concentration is closely related to
the transmittance of the smoke image.

α = 1− t (1)

Generally, the larger the smoke concentration (α), the smaller
the transmittance of the image (t). The transmittance can
be described by the smoke diffusion equation, which is a
commonly used mathematical model for describing smoke
concentration. Its form is as follows:

I = J × t+A× (1− t) (2)

Here, I represents the original foggy image, J represents the
clear image after defogging, t represents the image transmis-
sion rate, and A represents the atmospheric light intensity. The
dark channel prior theory [15] is a commonly used image
defogging algorithm. It is based on the fog equation in Eq.
(2) and analyzes the dark channel of the image to extract the
transmission rate of the foggy image, thereby achieving image-
defogging. The formula for the dark channel prior theory is as
follows:

min
Ω

(min
C

IC

AC
) =

{
min
Ω

(min
C

JC

AC
)

}
t+ 1− t (3)

In the equation, IC represents the RGB channels of the original
foggy image, and JC represents the clear and fog-free image.
Through the analysis conducted by He et al. [15], it has been

revealed that the majority of images in real outdoor fog-free
scenes have a significant amount of dark channels with very
low pixel values, i.e., min

Ω
(min

C

JC

AC ) → 0. Therefore, after
simplifying Equation (3), we can proceed with the processing:

t = 1−min
Ω

(min
C

IC

AC
) (4)

In the equation, Ω represents the sliding window size. First,
the brightest region is searched in the dark channel image, and
then the brightness of the corresponding region in the original
image is taken as the atmospheric light intensity (AC). As
a result, the transmission rate of the foggy image (t) can be
calculated.

Fig. 2. Smoke image and corresponding transmittance grayscale image.

Fig. 3. Extraction of concentration features.

Mo et al. [16] extracted smoke transmittance based on the
smoke aerosol equation and measured smoke concentration
under different lighting conditions. The experiments demon-
strated that using smoke transmittance for estimating smoke
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concentration is feasible and accurate. According to Eq. (4),
the transmittance of smoke images can be calculated pixel
by pixel. Mapping the transmittance of smoke to a grayscale
image allows for a visual representation of the transmittance
map as shown in Fig. 2 (bottom).

The transmittance grayscale image exhibits dark areas that
indicate low transmittance, suggesting a blockage of light, sim-
ilar to smoke particles. Consequently, the smoke transmittance
image is combined with the RGB image of the smoke, creating
a four-dimensional vector as the input for the network model.
This merged αRGB image, as depicted in Fig. 3, retains the
original image’s shape, color, and texture, while also reflecting
the inherent concentration features of the smoke.

B. Improved Feature Fusion Network

Fig. 4 shows the PAN, BiFPN, and light-BiFPN feature
fusion structures. In object detection tasks, feature fusion plays
a crucial role in enhancing model accuracy. Traditional feature
fusion methods focus on top-down and bottom-up feature
propagation processes, with the PAN structure (Fig. 4(a)) being
the most representative method [13]. By cascading, the PAN
structure merges feature information from different levels and
scales to expand the model’s receptive field and improve detec-
tion accuracy. Its main advantage lies in effectively leveraging
information from features of various scales to obtain a richer
and more accurate representation.

However, the PAN structure does have some deficiencies
when dealing with small objects, which can be manifested in
the following two aspects:

1) Feature Information Loss: When merging feature
information from different levels and scales, the PAN
structure is prone to information loss, especially
impacting the detection performance of small objects.

2) Unstable Fusion Effects: The cascading approach
utilized in the PAN structure tends to encounter prob-
lems like gradient vanishing or explosion, leading to
unstable feature fusion effects.

To address these issues, this study replaces the original
PAN structure with the light-BiFPN (Bidirectional Feature
Pyramid Network) [17]. The BiFPN structure [Fig. 4(b)]
introduces lateral connections during the top-down and bottom-
up fusion processes, effectively enhancing the exchange and
transmission of feature information, particularly improving the
detection performance of small targets.

The BiFPN structure is composed of multiple cascaded
BiFPN modules. Each module comprises two feature propa-
gation paths (top-down and bottom-up) and lateral connection
paths. During the feature propagation process, the BiFPN
module adopts a multi-level feature fusion approach to com-
bine features from multiple sizes. These fused features are
then passed to the subsequent module until the final module
outputs the ultimate feature map. The lateral connection paths
employ learnable weights to facilitate effective feature fusion
between different layers. The weights of lateral connections
are obtained through convolutional operations. Assuming the
input feature map is xi, the weights of lateral connections wij

can be denoted as:

wij = ReLU(Wij [xi, xj ]) (5)

Here, Wij represents a learnable weight matrix, and [xi, xj ]
signifies the concatenation of feature maps xi and xj .

Compared to the PAN structure, the BiFPN structure bet-
ter preserves detailed information of small targets, thereby
improving the accuracy and robustness of object detection.
Additionally, due to the scalability of the BiFPN structure,
different numbers of modules and structural parameters can be
chosen according to the specific scenario to achieve optimal
detection performance. The light-BiFPN used in this study
[Fig. 4(c)] reduces the feature layers P6 and P7 to reduce
model parameters and optimize model speed.

C. Depthwise Separable Convolution

In object detection algorithms, convolutional neural net-
works (CNN) are commonly employed as backbone networks
to extract image features. Standard convolution serves as

Fig. 4. PAN, BiFPN, and light-BiFPN feature fusion structures.
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one of the most prevalent CNN modules, extracting features
by conducting convolution operations on input feature maps
and convolution kernels. However, when dealing with large-
scale feature maps, standard convolution leads to significantly
increased computational and memory consumption, restricting
the depth and complexity of the model.

To address this issue, this paper adopts Depthwise Sepa-
rable Convolution (DSC) [18] as a replacement for standard
convolution in the backbone network. Depthwise Separable
Convolution decomposes the standard convolution into depth-
wise convolution and pointwise convolution, performing con-
volution operations on each channel and each pixel of the input
feature map, respectively. This approach considerably reduces
the number of parameters and computations while ensuring the
accuracy and efficiency of the model.

Depthwise Separable Convolution can be represented by
the following formula:

Y& = PW (DW (X)) (6)

Where X represents the input feature map, DW represents
the depth convolution operation, PW represents the pointwise
convolution operation, and W represents the parameters of
the convolutional kernel. The depth convolution operation
and the pointwise convolution operation correspond to two
independent convolutional layers, with parameter quantities
of Dk and Dk × Do, respectively. Here, Dk represents the
number of channels in the input feature map, K represents
the size of the convolutional kernel, and Do represents the
number of channels in the output feature map. Compared to
standard convolution, depthwise separable convolution reduces
the parameter and computational requirements by K2 and Dk

times, respectively.

IV. EXPERIMENTAL AND RESULT ANALYSIS

To test the effectiveness of the improved algorithm, train-
ing and testing were conducted on a self-made dataset. The
optimization effects of various improvements were analyzed
through horizontal comparative experiments and vertical abla-
tion experiments.

Fig. 5. Sample images from a self-made fire smoke detection dataset.

Fig. 6. Example of image annotation.
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A. Dataset and Preprocessing

Currently, there is a limited availability of publicly ac-
cessible outdoor real fire smoke datasets. In this study, 3604
unlabeled smoke images were collected from publicly available
smoke image datasets, as shown in Fig. 5. After removing
low-quality images, 1671 smoke images were selected and
manually annotated using the LabelImg tool to create a self-
made smoke detection dataset in Pascal VOC2007 format.
Fig. 6 demonstrates the smoke targets and their corresponding
XML information. The dataset was split as follows:

(TrainingSet+ V alidationSet) : TestSet = 9 : 1

TrainingSet : V alidationSet = 9 : 1

The training set, validation set, and test set consist of 1352,
151, and 168 images, respectively.

In the data preprocessing stage of this experiment, in
addition to using traditional image processing techniques such
as image flipping and HSV color space enhancement, random
mosaic, and mixup image processing techniques [19] were also
applied to randomly augment the dataset, aiming to enhance
the robustness of the model.

The random mosaic technique combines multiple images
into a new image to enhance the diversity of the dataset,
while the mixup technique linearly blends two different images
to generate a new image. Both data augmentation techniques
effectively increase the sample size of the dataset, improving
the model’s generalization ability and further enhancing the
accuracy of smoke object detection.

B. Experimental Environment and Parameter Settings

1) Hardware and software Environment

The experimental hardware environment of this article is
shown in Table I.

TABLE I. EXPERIMENTAL ENVIRONMENT

CPU AMD EPYC 7773X @ 3.50GHz
GPU GeForce RTX 3090
RAM 30G
Operating System Ubuntu
Programming Language Python 3.8
Deep Learning Framework PyTorch 1.8
GPU Acceleration Library CUDA 11.1

2) Training Hyperparameters Settings

The experimental hyperparameter settings of this article are
shown in Table II.

TABLE II. TRAINING HYPERPARAMETERS SETTINGS

Hyperparameter Value
Mosaic Probability 0.5
Mixup Probability 0.5
Maximum Learning Rate 0.01
Minimum Learning Rate 0.0001
Epoch 300

During the training process, the VOC pre-trained weights
of YOLOv7tiny were utilized. The first 50 epochs comprised

of frozen training, where only the Neck and Head parts’
parameters were trained while the backbone feature extraction
network remained frozen. From epoch 51 to 300, the unfrozen
training stage occurred, and the entire network was trained.
The batch size was set to 64 during the frozen training
stage, and it was reduced to 32 during the unfrozen training
stage to accommodate the increase in training parameters.
The cosine learning rate decay method was employed to
progressively decrease the learning rate from 0.01 to 0.0001.
The stochastic gradient descent method with a momentum of
0.937 was chosen as the parameter optimizer. Additionally, a
weight decay coefficient of 5e-4 was implemented to prevent
overfitting during the training process.

C. Evaluation Metrics

To evaluate the performance of the improved algorithm,
this study uses four metrics for algorithm assessment: Recall,
mean Average Precision (mAP), Frames Per Second (FPS),
and model parameter count (Params).

1) Recall: Recall measures the detection rate of a model
for all true positive samples. In smoke object detection tasks,
the calculation formula for Recall is as follows:

Recall =
TP

TP + FN
(7)

Where TP represents true positive, referring to the number
of positive samples correctly detected by the model, while
FN represents false negative, indicating the number of positive
samples that the model fails to detect. Recall is utilized in this
paper as one of the evaluation metrics to assess the detection
capability of the algorithm.

2) mAP: mAP stands for mean Average Precision, which
measures the average precision of a model at different confi-
dence thresholds. In smoke object detection tasks, the formula
to calculate mAP is as follows:

mAP =
1

n

∑n

i=1
APi (8)

Where n represents the number of classes, and APi represents
the average precision of the ith class. In this paper, since only
smoke is involved as the target, mAP can be considered as AP,
used to evaluate the detection accuracy of the algorithm.

3) FPS: FPS stands for Frames Per Second, which mea-
sures the number of frames processed by a model per unit of
time. In the smoke detection task, the calculation formula for
FPS is as follows:

FPS =
1

t
(9)

In this case, t represents the average time for processing a
frame image. This paper utilizes Frames Per Second (FPS) as
one of the evaluation metrics to assess the detection speed of
the algorithm.

4) Params: The model parameter count refers to the num-
ber of trainable parameters in the model, which is an important
indicator for evaluating model complexity. In the task of smoke
object detection, the calculation formula for model parameter
count is given by Eq. 10.

N =
∑n

i=1
(wihicik

2
i + bi) (10)

www.ijacsa.thesai.org 1098 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 9, 2023

TABLE III. ABLATION EXPERIMENT RESULTS

Experimental Number Improvement Evaluation Metric
αRGB Light-BiFPN DSC Recall mAP@0.5 FPS Params(M)

1 é é é 88.21% 89.48% 106.65 6.23
2 Ë é é 91.12% 92.33% 95.40 6.23
3 é Ë é 91.99% 91.54% 94.46 6.31
4 é é Ë 86.63% 87.80% 124.68 4.82
5 Ë Ë Ë 95.62% 94.03% 118.78 4.97

Here, n represents the number of layers in the model. wi, hi,
and ci represent the width, height, and number of channels of
layer i, respectively. ki represents the size of the convolutional
kernel in layer i, and bi represents the bias term in layer i. In
this study, the model complexity is evaluated based on the
number of model parameters.

D. Ablation Experiment

To validate the benefits of each improvement point on the
network model, five ablation experiments were conducted. The
experimental environment and parameter settings were kept
consistent. The results of the ablation experiments are shown
in Table III.

1) The first set of experiments is conducted using the
YOLOv7tiny algorithm, serving as a comparative benchmark
for the subsequent improvement experiments.

2) The second group of experiments is a control experi-
ment with the inclusion of smoke concentration features. By
introducing smoke concentration features, the computational
burden of the model increases, resulting in a decrease in the
detection frame rate. However, it achieved good performance
in terms of Recall and mAP, with improvements of 2.91 and
2.85 percentage points, respectively.

3) By analyzing the experimental data of the first and third
groups, it is concluded that the light-BiFPN structure increases
the number of model parameters due to the addition of skip
connections, which leads to a decrease in the detection frame
rate. However, it demonstrates good performance in terms of
accuracy and recall rate, with improvements of 3.78 and 2.06
percentage points, respectively.

4) The fourth set of experiments replaced the standard
convolution in the original YOLOv7tiny network model with
depthwise separable convolution (DSC). Analyzing the experi-
mental data compared to the baseline network reveals that DSC
can significantly reduce the number of parameters and improve
the detection frame rate. However, the reduced number of
parameters limits the expressive power of the model.

5) In the fifth experiment, the improved YOLOv7tiny
network based on smoke concentration features proposed in
this paper is evaluated. From the experimental data, it can be
observed that compared to the baseline network, the Recall
and mAP have improved by 7.41 and 4.55 percentage points,
respectively. The FPS has improved by 12.13 frames/s, and the
number of parameters has decreased from 6.23M to 4.97M.
Therefore, it can be concluded that the algorithm proposed in
this paper is lighter and more accurate.

E. Comparative Experiment

To investigate the performance of the improved network in
detecting different targets, this study conducted three sets of
comparative experiments on a self-made dataset: comprehen-
sive comparison experiment, smoke concentration comparison
experiment, and multi-scale target comparison experiment. To
comprehensively assess the performance of the algorithm,
mainstream object detection models were selected as the com-
parison models, including RetinaNet [20], CenterNet [21], Ef-
ficientDet [22], Faster R-CNN [23], SSD [24], and YOLOv5s
[25].

1) Comprehensive comparative experiment: A comprehen-
sive comparative experiment was conducted by training six
mainstream detection algorithms on a self-made dataset for 300
epochs as comparison algorithms to the proposed algorithm
in this paper. From the variations of mAP@0.5 of each
algorithm during the training process (shown in Fig. 7), it
can be observed that, apart from the proposed algorithm,
Faster R-CNN and YOLOv5s performed remarkably well on
this dataset. Both the proposed algorithm and Faster R-CNN
converged quickly (basically converged at 50 epochs). The
proposed algorithm achieved an mAP of 94.03% after final
convergence, surpassing other algorithms.

Fig. 7. mAP@0.5 Variation Graph of Each Algorithm during Training
Process.

2) Smoke Concentration Comparison Experiment: The
concentration features are extracted from the smoke images
in the dataset. Then, the mean concentration of the smoke
region can be obtained by calculating the average of the con-
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centrations within the smoke bounding box. The distribution
of smoke concentrations in this dataset is shown in Fig. 8.

Fig. 8. Histogram of Smoke Target Concentration Distribution.

In Fig. 8, the x-axis represents the smoke concentration,
and the y-axis represents the number of smoke images cor-
responding to each concentration. In this experiment, the
smoke concentration is divided into low concentration and high
concentration. The low concentration is defined as below 0.5,
and the high concentration is defined as 0.5 and above. The
performance of the improved model and mainstream object
detection models are compared on the low-concentration and
high-concentration test image sets.

TABLE IV. EXPERIMENTAL RESULTS OF SMOKE CONCENTRATION
COMPARISON

Compare Models Low Concentration
mAP(%)

High Concentration
mAP(%) Params (M)

RetinaNet 84.75% 88.01% 36.33
CenterNet 83.35% 87.64% 32.67
EfficientDet 82.56% 86.51% 3.83
Faster R-CNN 90.45% 93.67% 136.69
SSD 82.96% 87.26% 23.61
YOLOv5s 86.75% 90.43% 46.63
Ours 93.27% 94.64% 4.97

From Table IV, it can be observed that both the mainstream
algorithm models and our proposed improved algorithm model
achieve similar detection accuracy for high-concentration
smoke. However, our improved algorithm model achieves a
significant reduction in parameter size, down to 4.97M. This
reduction is particularly important for deploying the model
on edge devices. Ordinary algorithms struggle to distinguish
low-concentration smoke due to its semi-transparent nature. In
contrast, our improved algorithm achieves good performance
on low-concentration smoke, thanks to the introduced αRGB
concentration feature.

3) Multi-scale Object Comparison Experiment: In the early
stage of a fire, the smoke volume is usually small. However,
the detection of smoke in the early stage is particularly
important for firefighting. Therefore, a small object comparison

experiment is designed to test the performance of different
algorithms in detecting smoke from small objects.

Using the K-means algorithm, a cluster analysis of the size
of smoke targets in the dataset was performed. The average
silhouette coefficient was found to be 1.74, and the center
points corresponded to large, medium, and small targets with
sizes of 33×23, 80×60, and 160×142, respectively. Fig. 9 shows
the distribution of width and height for the three scales of
smoke targets in the self-made dataset. The horizontal axis
represents the width of the smoke target, and the vertical axis
represents the height of the smoke target.

The scale analysis of 168 smoke images in the test set
reveals that there are 36 large objects, 47 medium-sized
objects, and 85 small objects. As shown in Fig. 10, it can be
observed that small smoke objects occupy a significant portion.
The detection results of various algorithm models on this test
set are shown in Fig. 10.

From the multi-scale object comparison experimental re-
sults in Fig. 11, it can be seen that although CenterNet, Effi-
cientDet, SSD, and YOLOv5s have higher mAP in detecting
large and medium objects, they are slightly inferior in detecting
small objects. RetinaNet and Faster R-CNN perform well in
detecting objects of different scales, but overall, the mAP is
relatively low. By using improved algorithms, especially the
optimization of light-BiFPN, the detection accuracy of small
objects is significantly improved, and they have higher mAP
in object detection at various scales.

Fig. 9. Distribution of smoke objects in self-made dataset.

Fig. 10. Proportion of smoke objects at various scales in the test set.
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Fig. 11. Multi-scale object comparison experimental results.

Based on the multi-scale object comparison experimental
results shown in Fig. 11, it can be observed that CenterNet,
EfficientDet, SSD, and YOLOv5s have higher mean Aver-
age Precision (mAP) in detecting large and medium objects.
However, they are slightly inferior in detecting small objects.
RetinaNet and Faster R-CNN perform well in detecting objects
of different scales but have relatively low overall mAP. On
the other hand, our improved algorithms, especially with
the optimization of light-BiFPN, achieve significantly better
detection accuracy for small objects and higher mAP in object
detection at various scales.

F. Detection Performance Analysis

The YOLOv7tiny algorithm performs poorly in detecting
sparse smoke due to its low concentration in the early stages of
a fire. This is because sparse smoke appears semi-transparent,
often leading to false alarms [Fig. 12(a), Fig. 12(b)], missed
detections [Fig. 12(d)], and low detection accuracy [Fig. 12(c)].
However, after introducing the αRGB feature, our algorithm
significantly improves the detection capability of sparse smoke
[Fig. 13(a-d)]. Nonetheless, due to the limited proportion
of low-concentration smoke in the dataset, occasional cases
may arise where the detected bounding boxes do not align
with the actual ones [Fig. 13(f)]. By optimizing the light-
BiFPN, our algorithm achieves more accurate detection of
small targets [Fig. 13(d)] and performs closer to ideal in
complex environments [Fig. 13(e)].

Fig. 12 shows the detection performance of the
YOLOv7tiny algorithm, while Fig. 13 depicts the detection
performance of our improved algorithm.

V. CONCLUSION

Fire and smoke detection plays a significant role in en-
suring fire safety. By combining computer vision technology
to accurately locate early-stage smoke in a fire, it serves
as an important tool for fire warning and prevention of fire
spread. To improve the detection of small and sparse smoke
in the early stages of a fire, this study extracts features related
to smoke concentration, improves feature fusion structures,
and optimizes algorithm complexity. By comparing with other
models on a self-made dataset, the recall rate reaches 95.62%,
mAP reaches 94.03%, and the detection FPS is increased

to 118.78. The algorithm complexity is reduced to 4.97M.
The experimental results demonstrate the superiority of the
improved algorithm in detecting sparse smoke. In future work,
the algorithm will be further optimized in two aspects: firstly,
by increasing the proportion of sparse smoke in the dataset
to enhance algorithm robustness; secondly, by attempting
to enhance algorithm expression capability through attention
mechanisms, thereby further improving detection accuracy.
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