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Abstract—As a knowledge graph for the field of ATM (Air 

Traffic Management), ATMGRAPH integrates aviation 

information from various sources, and provides a new way to 

comprehensively analyze ATM data, but the storage schema of 

ATMGRAPH is inefficient for trajectory-related queries which 

have typical spatial-temporal characteristics, thus cannot meet 

the application requirements. This paper presents an improved 

storage model of ATMGRAPH, specifically, we design a cluster 

structure to connect trajectory points and spatial-temporal 

information to speed up trajectory-related queries, and we link 

flights, airports, and weather information in an effective way to 

speed up weather-related queries. We create a dataset of about 

10,000 real domestic flights, and build a knowledge graph of it 

which contains about 11.66 million triplets. Experimental results 

show that ATM knowledge graph constructed by this storage 

model can significantly improve the efficiency of spatial-temporal 

related queries. 
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I. INTRODUCTION 

With the rapid development of the economy, people are 
willing to travel by air due to its efficiency and convenience. 
The civil aviation industry generates a large amount of data 
every day, coming from multiple departments such as airports, 
airlines, Air Traffic Managements (ATMs) and meteorological 
bureaus, with varying data forms and coding rules, make it a 
great challenge for semantic data query and analysis. As 
Aviation data are scattered in different systems, integrating 
them into a big semantic database seems to be a good idea. 
The most representative work is ATMGRAPH (Air Traffic 
Management Knowledge Graph) constructed by NASA. This 
KG (Knowledge Graph) integrates multiple aviation 
information and is benefit for semantic data analysis. Flight 
trajectory information accounts for the vast majority in 
ATMGRAPH, it has obvious spatial-temporal characteristics, 
and data analysis on trajectory is often about spatial and 
temporal. However, in practical applications, ATMGRAPH 
encounters great scale problems, especially when facing 
spatial-temporal related data queries, i.e. its performance 
decreases dramatically for huge data volumes. 

There are few works to address this problem, in order to 
fill this research gap, this paper conducts on spatial-temporal 
query optimization of ATMGRAPH. A knowledge graph can 
be logically divided into two layers: the data layer and the 
schema layer. The data layer stores knowledge facts, and the 
schema layer defines ontology to standardize a series of fact 
expressions in the data layer [7].This paper designs an 
improved storage model for ATMGRAPH to solve the 

problem of slow and inefficient processing of spatial-temporal 
related queries. Specifically, we design a cluster structure to 
connect trajectory points and spatial-temporal information to 
speed up trajectory-related queries, and we link flights, 
airports, and weather information in an effective way to speed 
up weather-related queries. Experimental results on real 
aviation data show that the query efficiency using our model is 
significantly improved in typical application scenarios. 

The rest of this paper is organized as follows. Section II is 
the related work. Section III is the problem definition, which 
introduces NASA's original ATMGRAPH model and analyzes 
its shortcomings in spatial-temporal related queries. In Section 
IV, we introduce our improved ATMGRAPH model in detail. 
Section V is the experimental results and discussion, and we 
conclude our work in the final section. 

II. RELATED WORK 

With the rapid development of the global transportation 
industry, air traffic flow has significantly increased. There 
were lots of research works on air traffic management such as 
airspace saturation, flight accidents, flight delays, and air 
control difficulties. The Federal Aviation Administration 
(FAA) used big data analysis to identify operational patterns, 
which can support the identification and prediction of airport 
data [2]. Rezo [3] introduced a paradox in aviation data 
processing and proposed a probable solution. Dorota [4] 
discussed the requirements of aviation data in Polish 
regulations and gave a practical proposal. Keller et al. [5] 
introduced a system for combining heterogeneous air traffic 
management with semantic integration techniques, which 
transforms data from disparate source formats into a unified 
semantic representation of ontology-based triplets. Liu et al. [6] 
implemented seamless communication and mutual 
cooperation between civil aviation systems through 
information sharing, which could support collaborative 
decision-making of air traffic management and improve the 
capacity of airspace systems. Lu et al. [7] proposed an 
integration architecture of cloud computing and blockchain for 
ATM systems, in which it pointed out the advantages of the 
new technology architecture over the traditional architecture 
of existing ATM systems. Europe and the United States are 
trying to use ontology technology to integrate and fuse 
aviation data from multiple sources, so as to provide a unified 
data exchange mechanism with semantic information for all 
participants in the aviation industry. For example, the Single 
European Sky Program launched the BEST project 

(http://www.project-best.eu), which designed AIRM (ATM 
Information Reference Model) and constructed an ontology 
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model for aeronautical and meteorological information [8]. At 
the same time, NASA constructed ATMONTO (ATM 
Ontology), involving ATM core data such as aircraft, flight, 

airport, airline, route, and navigation facility [9]. It includes 

over 150 classes, over 150 datatype properties, and over 100 
object properties. Based on ATMONTO, NASA also built 
ATMGRAPH, a knowledge graph containing 260 million 

triplets [10]. Many information of ATM has temporal and 

spatial characteristics, e.g. when an airport is temporarily 
closed due to snow conditions, the airport operation status in 
KG should be changed to CLOSED, and the start and end time 

should also be indicated. Therefore, Schuetz et al. [11] 

proposed the concept of Contextualized Knowledge Graphs by 
adding semantic dimensions such as time, space, and data 
source in KG to solve the problem of information distribution 

and acquisition for all participants in the aviation industry. 

III. PROBLEM DEFINITION 

As the latest achievement of symbolism, knowledge graph 
is an important milestone of artificial intelligence. Knowledge 
graph can provide valuable structured information by data 
integration and standardization, and it has been widely used in 
information retrieval, automatic question answering, decision 
making and other fields, and it is also an important basic 
technology to promote data mining and intelligent information 
services [12]. With the growing scale of the knowledge graph, 
data management issues become increasingly prominent [13]. 
KG is generally divided into general knowledge graph and 
domain knowledge graph, and the latter usually needs to 
carefully design the storage model according to the industry 
data's characteristics in order to meet the retrieval 
requirements under large-scale data. 

Consider the following two representative queries in ATM： 

 Find all flights passing through the ZBAAAR20 sector 
of Beijing on July 20, 2022 and landing at Beijing 
Capital International Airport under strong wind 
conditions. 

 Find which sector controlled the most flights between 
9am and 10am on July 16, 2022. 

ATMGRAPH consists of one month's flights 
(approximately 100,000 flights) and weather data in the New 

York metropolitan area ， which includes eight classes: 

airspace structure and facilities, flight routes and procedures 
about takeoff and landing, traffic management measures, 
flight carriers and aircrafts related, airport and ground 
operations, weather, sequence related, and spatial-temporal 
related. Fig. 1 is a segment of ATMGRAPH, with a specific 
flight instance at its center: UAL535, which took off at 
00:19:00 on July 15, 2014. Connected to it includes the 
departure and arrival airport of the flight, the carrier airline, 

the aircraft model, the planned route and the actual route. 
The lower part of the figure represents the track points of the 
flight, each contains information such as time, longitude, 
latitude, altitude, speed etc. (not listed in the figure for 
brevity). Although there are classes about weather and sectors 
in ATMGRAPH, getting the results of the two representative 
queries above is very inefficient, cause it must check all points 

one by one whether it matches the corresponding constraint. 
For example, when querying the workload of a sector during a 
certain period of time (i.e. the number of flights flying within 
the sector during this time), at first we must find all track 
points within that period of time, then for all of them we need 
to check whether their positions are within that sector, and 
finally output the corresponding flight information. Obviously, 
these kinds of operations are quite inefficient. 
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Fig. 1. Flight information storage segment. 

This paper designs an improved storage model, which not 
only considers the strongly correlated characteristics between 
flight and weather information, flight and spatial-temporal 
information, but also links the trajectory points with spatial-
temporal entities, so as to speed up spatial-temporal related 
queries. Experimental results on real flight data show that our 
proposed model greatly improves the query speed for 
representative queries and for some queries which the original 
model may take hours, our model can finish them in just a few 
seconds. 

IV. IMPROVED STORAGE MODEL 

Although there are already eight major classes in 
ATMGRAPH to represent various knowledge in ATM field, 
some of them are relatively independent, making it difficult to 
obtain results using a single query statement involving 
multiple classes. The nodes of flight trajectories in 
ATMGRAPH account for nearly 70% of the entire graph, and 
each track point is only connected in chronological order 
using the hasNextTrackPoint relationship. This kind of storage 
model not only occupies a large amount of storage space but 
also reduces query efficiency. On the premise of being 
consistent with the original structure of the ATMGRAPH, this 
paper extends it to express more spatial-temporal information 
without taking up more storage space. 
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Fig. 2 illustrates our improved storage model, where 
ellipses represent the newly added classes and dashed edges 
represent the newly added relationships. TimeInterval is a new 
class for standard time segment, which connects the 
Trackpoint class through belongToTimeInterval relationship 
to express track points with the standard time segment 
information. The relationship belongToSector connects the 
Trackpoint class with the Sector class representing which 
sector the track point is located in. The new class 
WeatherInterval represents weather conditions of each airport 
in different time periods, and it also connects to the Flight 
class through two new edges: hasArriveWeather and 
hasDepartureWeather. The class ActualRoute represents the 
actual flight route, which contains the first and last track 
points of the trajectory through the edge of hasFirstTrackpoint 
and hasLastTrackpoint. 
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Fig. 2. Improved storage model of ATMGRAPH. 

Through this storage model, track points has a direct 
connection to time and sector information, thus alleviates the 
problem of inefficient spatial-temporal related queries in the 
original ATMGRAPH. At the same time, weather information 
also has a direct connection to flights, which can solve the 
problem of slow query speed for weather and flight related 
queries. 

A. Standard Time Interval 

In the real world, many facts have time attributes, which 
play an important role in knowledge graph [14]. For example, 
the fact represented by a triplet (Steve Jobs, diedIn, California) 
is that Steve Jobs died in California, which occurred on 
October 5, 2011; The fact (Ronaldo, playing for A.C. Milan) 
was only valid between 2007 and 2008. In air transportation, 
when an aircraft performs a complete flight mission, time 

information cannot be ignored. In our experiment, the flight 
data comes from ADS-B, which broadcasts real-time 
information including aircraft position, speed, identification 
code, flight number, and air-ground status to ATC (Air Traffic 
Control system) or other aircrafts through the air-to-air and 
air-to-ground data links [15]. Table I shows an ADS-B data 
fragment that contains three track points of flight EPA6206 
during its mission on July 27, 2020. The specific information 
includes the flight number, aircraft number, and the current 
position (longitude, latitude, altitude), speed, heading, and 
data transmission time expressed in UTC (Universal Time 
Coordinated). 

In ATM data analysis, usually we do not care much about 
the instantaneous state of an aircraft at a specific time point, 
and the time unit in queries is mostly hours or days. For 
example, finding the number of flights flying at altitudes 
above 6000m from 8:00 to 10:00 on July 10, 2022. To quickly 
retrieve the flight status of many flights within a same time 
segment, creating standard time intervals seems to be a 
feasible and effective method. This paper takes ten minutes as 
a standard time interval. If it is too long, it will lead to too 
many track points within a time interval, which will affect the 
query performance. If it is too short, it will cause too many 
TimeInterval nodes in the graph, and waste the storage space. 
Track points belonging to a same time interval are all linked to 
the TimeInterval entity representing that time segment, 
forming a cluster structure. Fig. 3 shows some track points of 
flight KNA8202 and flight CSZ9106 during the time interval 
from 7:00 to 7:10 on July 18, 2022. It can be seen that this 
cluster structure can gather all track points within the standard 
time interval without damaging the original relationships in 
the graph. Due to the fact that each track point is connected to 
its corresponding standard time interval node, related track 
points can be directly retrieved, without checking all track 
points one by one to judge whether they meet time constraints. 
This provides a more efficient way for time related query tasks. 

The process of adding standard time intervals is as follows: 
Create all standard time intervals in the graph, and then 
calculate the corresponding TimeInterval for each track point 
according to UTC Time, and connect it with the relationship 
belongToTimeInterval. After that, the above query can be 
solved through a single Cypher query statement: 

match(n:Trackpoint)-[r:belongToTimeInterval]- 
(m:TimeInterval) 

where n.height >= 6000  

and m.startTime >= 2022/07/10 08:00:00  

and m.endTime <= 2022/07/10 10:00:00 

TABLE I. ADS-B DATA SEGMENT 

Fnum UTC Time Latitude Anum Angle Speed Height Longitude 

EPA6206 2022/7/27 11:59:16 30.5709 B204N 21 361.14 1013.46 103.94346 

EPA6206 2022/7/27 11:59:31 30.61871 B204N 22 355.584 1226.82 103.96566 

EPA6206 2022/7/27 11:59:46 30.63263 B204N 22 357.436 1325.88 103.97208 
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Fig. 3. Temporal cluster structure based on TimeInterval. 

B. Spatial Sector Clusters 

Spatial is an essential attribute of geographic data, which is 
mainly used to describe the spatial features of geographical 
entities, including position, shape, and spatial relationships 
[16]. Sector is a major geospatial entity in ATMGRAPH, 
usually formed as a polygon with height range, and the 
polygon is consisted of multiple points with longitude and 
latitude coordinates connected from head to tail. Sector is a 
fundamental unit of air traffic management services and is an 
important component for airspace planning and allocation [17]. 
In the field of ATM, many typical queries focus on the 
workload of a sector over a period of time (i.e. the number of 
flights in that sector within a specific time period). For 
example, finding the workload of sector ZBAAAR18 from 
8:00 to 10:00 on July 10, 2022. 

Traditional way to answer this kind of question in 
ATMGRAPH is to check trajectory points one by one if it is 
located in the given sector, which is very time consuming. To 
address this, this paper takes the sector as a central node and 
connects all track points within the sector to it, thus forming a 
cluster structure. When executing above queries, we only need 
to search the corresponding sector first, and find all track 
points connected to it. After filtering out duplicate flight 
numbers, the query results can be obtained immediately. Due 
to the fact that adjacent trajectory points may belong to two 
different sectors, how to determine whether a track point is 
within a sector? The ray crossing number method is generally 
used to determine whether a point falls inside a polygon. 
Specifically, firstly we draw a ray emitted from that point, and 
then we calculate the number of intersections between the ray 
and the polygon boundary: if the number of intersections is 
odd, then the point is inside the polygon, otherwise it is 
outside the polygon. In Fig. 4, a ray passes through an 
irregular polygon, and if the starting point of the ray is located 
in the thin line section, it has an even number of intersections 
with the polygon, and if it is located in the thick line section, it 
has an odd number. According to the above method, the points 
in the thick line section are inside the polygon, and the points 
in the thin line section are outside. 

Fig. 5 shows a cluster structure fragment centered on 
sector ZBAAAR18 in the Beijing flight control area, with 
surrounding nodes of trajectory points. The names displayed 
in the nodes are the flight numbers and instantaneous times. 

Similar to the temporal cluster, this structure also does not 
disrupt the original track point connection relationship in the 
graph. When conducting a query about workload of an air 
traffic control sector, it is possible to directly find the Sector 
node and use the belongToSector relationship to reversely find 
its connected track points, and it is not necessary to calculate 
the position of each track point any more, thus greatly 
reducing the query time. 
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Fig. 4. Ray crossing number method to determine whether a point is inside 

the polygon. 
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Fig. 5. Spatial cluster structure based on sector. 

The process of adding spatial sector nodes is as follows: 
First, import the information of all sectors into the knowledge 
graph, then use ray crossing number method to calculate each 
track point to judge its relationship to the sectors, and finally 
connect each track point with its sector through the 
belongToSector relationship. With the spatial cluster structure, 
it is very easy to answer sector related queries. For example, 
when solving the query mentioned in this section, we can 
obtain the results in Neo4j by a single Cypher query statement: 

match(n:Trackpoint) -[r1:belongToTimeInterval]- 
(m:TimeInterval)  

where m.startTime >= 2022/07/10 08:00:00  

and m.endTime <= 2022/07/10 10:00:00  
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with n match(n)-[r2:belongToSector]-
(o:sector{ name:’ZBAAAR18’})  

return count(distinct(n.fnum)) 

After adding temporal and spatial clusters to ATMGRAPH, 
all track points are connected with their corresponding 
temporal and spatial information. Fig. 6 shows a segment 
about the connection relationship between TimeInterval, 
sector and Trackpoint of our improved knowledge graph. At 
this point, when considering a query like 'Which sector 
controlled the most flights between 9:00 am and 10:00 am on 
July 16, 2022', we can simply find the six TimeIntervals that 
represent this period of time, filter out all the track points 
within them, and then count the number of flights included in 
each sector to obtain the final results. 

C. Airport Nodes with WeatherIntervals 

Weather conditions are very important for aircraft takeoff 
and landing. For the first representative query mentioned in 
Section II about finding all flights that pass through the 
ZBAAAR20 sector and land at Beijing Capital International 
Airport (BCIA) under strong wind conditions on July 20, 2022, 
the usual processing method requires two query operations 
(querying the time span of strong wind conditions at BCIA 
that day, and querying all flights that land at BCIA that day) 
and one comparison operation (check those flights one by one 
if its landing time is in the time period of strong wind). If the 
weather information when an aircraft arrives at or departures 
from an airport is directly stored in the knowledge graph, then 
the speed of answering such questions will be significantly 
improved. 

This paper adds weather information to each airport based 
on the class WeatherInterval, and each flight is also directly 
connected to its weather information during departure and 
arrival. Considering that weather generally does not change 
frequently in a short period of time, unlike TimeInterval, the 
span of the WeatherInterval is set to 12 hours. As shown in 
Fig. 7, flight CHH7810 landed at Beijing Capital International 
Airport on July 18, 2022, and the weather when landing was 
rainy. Airports may have different weather conditions at 
different time periods and are connected to WeatherInterval by 
the relationship of hasWeather. Flights are also connected to 
WeatherInterval by relationships of hasArriveWeather and 
hasDepartureWeather. Using the new schema, when 
processing queries related to weather conditions, there is no 
need to match the landing time and corresponding weather 
information of flights one by one anymore, and it can be 
obtained directly through WeatherInterval. For the typical 
query mentioned in this section, we can obtain the results in 
Neo4j by a single Cypher query statement: 

match(n:flight)-[r:arriveAirport]-(m:Airport{code{’PEK’})  

where n.endtime >= 2022/07/20 00:00:00  

and n.endtime < 2022/07/21 00:00:00  

with n match(n)- 

[:hasArriveWeather]- (:weatherInterval{weather：’strong 

wind’}) 

 

Fig. 6. A fragment of our improved ATMGRAPH. 
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Fig. 7. A fragment of flights, airports and WeatherIntervals. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental environment is a 64bit Windows system 
(Intel i7-7700HQ CPU, 16GB memory), 4.2.2 community 
version Neo4j, implemented using Python language. 

We crawled ADS-B data from varflight website 
(https://www.variflight.com) about 10,000 flights from July 
16 to 27, 2020. The data of airports, flight information regions, 
and sectors are from AIP (Aeronautical Information 
Publication), and weather data is randomly set. Using these 
data, we built ATMGRAPH of two versions: NASA's original 
version and our improved version, with the latter containing 
5.5 million nodes and 11.66 million relationship edges. We 
then evaluate their performance using three typical query 
cases, and the results are shown in Table II. The evaluation 
metric is query time. The first query case is only temporal 
related, the second query case is spatial-temporal related, and 
the third query case is about time, airport, and weather 
condition. 

Table II shows the comparison results between NASA's 
original ATMGRAPH and our improved version on 
commonly used spatial-temporal related queries. The first is a 
common time related query in ATM data analysis. Using our 
storage model, due to the existence of standard time segment 
clusters, it is very easy to find all track points belonging to the 
TimeInterval from 9:00 to 12:00 on July 27, 2020. On the 
contrary, for the original ATMGRAPH we must compare the 
UTC value in each track point. From the results in Table II, 
we can see that our model is about eight times faster than 
ATMGRAPH. The second query adds spatial constraint to the 
first one. For ATMGRAPH, because there is no direct 
connection between track points and flight information 
regions, to get the query results, we must calculate all track 
points in the graph and judge the topological relationship 
between each track point and each flight sector. Because the 
number of track points is very huge and grows lineally with 
flight numbers, plus the position calculation is also very 
complex, thus it takes hours to obtain the query result. After 
adding a spatial cluster structure in our improved model, track 
points in the specified region can be directly found through the 
relationship belongToSector, and then the corresponding 
number of flights can be quickly obtained. The third query is 
related to the weather conditions at landing time. For this 
query, our model can directly get the flights that meet the 
conditions through a simple Cypher statement, while the 
original ATMGRAPH can be very complex: it should first 
identify the flights that land at the airport, and then find 
weather information of the airport during the landing time of 
the flights. Due to the fact that weather and flights in the 
original ATMGRAPH are not connected, the analyzer must 
manually check these flights one by one which is very time 
consuming, or develop a program to handle it which is very 
inconvenient. The result of ATMGRAPH for the 3rd query in 
Table II is gotten in a program way, which is about two 
seconds, while our model only uses five milliseconds, more 
than 400 times faster. 

The above experimental results and discussion indicate 
that adding the spatial-temporal cluster structure proposed in 
this paper to ATMGRAPH can quickly process queries related 
to spatial-temporal features and improve data analysis speed. 

TABLE II. PERFORMANCE COMPARISON OF TYPICAL QUERIES 

Query cases ATMGRAPH Version Query Time 

Find the number of flights from 9:00 to 12:00 on July 
27, 2022 

ORIGINAL 3748ms 

IMPROVED 421ms 

Find the number of flights passing over Beijing on 

July 25, 2022 

ORIGINAL 2.5h 

IMPROVED 1346ms 

Find the number of flights landed at  Beijing Capital 

International Airport from July 16 to 27, 2022 

ORIGINAL 2160ms 

IMPROVED 5ms 
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VI. CONCLUSION 

In order to solve the problem of low efficiency of spatial-
temporal related queries in ATMGRAPH, this paper proposes 
an improved storage model, which uses spatial-temporal 
clusters to represent flight information regarding time and 
location. In our improved model, trajectory points are 
connected to standard time intervals and sectors, and flight 
and airport entities are connected to weather intervals. 
Experimental results show that after adding the spatial-
temporal cluster structure to the knowledge graph, the speed 
of relevant queries is greatly improved. 

Due to the fact that the track data in ATMGRAPH 
accounts for approximately 70% of the total data volume, this 
article only focuses on improving the mode layer and cannot 
solve the redundancy problem of a large amount of track data. 
Aircraft trajectory points are stored as an unidirectional chain 
structure in Neo4j, and we can study a new storage structure 
for this typical kind of data in the future to save storage space 
and to optimize data query speed. 
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