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Abstract—Bringing more transparency to the decision making
process in fields deploying ML tools is important in various
fields. ML tools need to be designed in such a way that they
are more understandable and explainable to end users while
bringing trust. The field of XAI, although a mature area of
research, is increasingly being seen as a solution to address
these missing aspects of ML systems. In this paper, we focus on
transparency issues when using ML tools in the decision making
process in general, and specifically while recruiting candidates
to high-profile positions. In the field of software development, it
is important to correctly identify and differentiate highly skilled
developers from developers who are adept at only performing
regular and mundane programming jobs. If AI is used in the
decision process, HR recruiting agents need to justify to their
managers why certain candidates were selected and why some
were rejected. Online Judges (OJ) are increasingly being used for
developer recruitment across various levels attracting thousands
of candidates. Automating this decision-making process using
ML tools can bring speed while mitigating bias in the selection
process. However, the raw and huge dataset available on the
OJs need to be well curated and enhanced to make the decision
process accurate and explainable. To address this, we built and
subsequently enhanced a ML regressor model and the underlying
dataset using XAI tools. We evaluated the model to show how XAI
can be actively and iteratively used during pre-deployment stage
to improve the quality of the dataset and to improve the prediction
accuracy of the regression model. We show how these iterative
changes helped improve the r2-score of the GradientRegressor
model used in our experiments from 0.3507 to 0.9834 (an
improvement of 63.27%). We also show how the explainability of
LIME and SHAP tools were increased using these steps. A unique
contribution of this work is the application of XAI to a very niche
area in recruitment, i.e. in the evaluation of performance of users
on OJs in software developer recruitment.
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I. INTRODUCTION

The use of classification and regression models based on
Machine Learning and Deep learning techniques in various
domains is now common and ubiquitous. Advances in the
field have brought faster diagnosis to patients undergoing
life critical treatments in the medical domain, has made
autonomous driverless vehicles possible and has revolutionized
the commercial and financial world through prediction and rec-
ommendation systems. Although these systems are becoming
increasingly pervasive in many domains, their adoption has
become challenging in areas where trust, accountability and
transparency of the decision making process is important and
crucial to the users and other stakeholders of the application.
One of the main reasons is that most of these ML models are

closed black-boxes - they lack interpretability and explainabil-
ity. ML models exist on both side of the spectrum. Models
based on linear and logistic regression and classification are
simple to understand and decisions made by them are easily
explainable; but they lack accuracy and performance. On the
other hand, there are ML models built on deep learning
technologies which have great accuracy and performance but
are not interpretable and decisions made by them are not
explainable.

Besides this, there are other inherent problems in these
systems. For example, they are trained on existing datasets
and tested on an unseen dataset. However, this unseen data is,
in reality, not really unseen but available to the developers at
development and pre-deployment time. If there is a problem in
the data or the data is biased in some way, the model is trained
on this incorrect data and decisions it subsequently makes
would be biased. And because these systems are trained on
a specific data structure, they cannot be generalized or easily
extended to systems where structure of data may be different
or unknown.

In the early days of AI, systems were knowledge based [1]
built on strong formalisms, rules and symbolic representations
and thus decisions taken by them could, in most cases, be
explained in detail. AI systems today, that are based on
subsymbolic representations are skill based [1]. The focus
of these systems in largely on performance and lesser on
explainability. But for a ML system to be adopted in a life-
critical or similar domains the system has to be considered
trustworthy and transparent by the domain expert or the end
user.

The field of Explainable AI (XAI) has been addressing
the issue of bringing more transparency, understandability
and explainability to these closed ML models [2], [3], [4],
[5]. Bringing trust and explainability to ML systems while
eliminating bias in decision making is critical in fields like
Human Resources [6].

Systems based on ML are increasingly being used in
the business world in decision making, which is sometimes
leading to the decision making process being less transparent.
Managers may not have the necessary skills to understand the
decision making skills of the underlying black-box ML models
used to make the decision (prediction or classification) and the
XAI system should help them communicate with their team
in a natural and more understandable way. XAI also seeks
to addresses this concern to ensure that relationships between
managers and other decision makers in such domains, which
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are based on trust and transparency, are upheld. Ideally, if these
systems are deployed in areas like HR, they should be able to
bring accountability and address the big issue of eliminating
bias during recruitment [7]. Providing a detailed justification
when recruiting for a high-profile job may take a legal form
and if aided with ML models, and a human understandable
explanation will be sought as to why a candidate was ac-
cepted or rejected. Making algorithmic decision-making more
accountable has been made a part of the Right to Explanation
in the European Union General Data Protection Regulation
(GDPR) [8].

Recently, HR recruitment in the software industry is in-
creasingly being done using Online Judges through hackathons
and online contests [9]. They are increasingly being used by
companies to facilitate recruitment at different levels of skills
ranging from software developers for various IT projects [10]
to freshers in campus recruitment drives. Indeed, there are
dedicated OJs primarily used to support the recruitment pro-
cess like CodeEval, Codility, HackerRank, HackerEarth and
Qualified. Data on these OJs is automatically generated with
zero human intervention and is thus devoid of biases related
to ethnicity, sex and color, thus, presenting a great opportunity
to fields like recruitment where such discrimination is to be
avoided.

In this research we show how XAI tools can be better
used to bring more understandability and explainability to
the recruitment process using OJs. Specifically, we show how
XAI tools can be used for two main purposes during pre-
deployment:

1) to understand and improve the performance of the
ML model.

2) to improve the structure of the underlying dataset
such that it contributes to increase the understand-
ability and explainability of the ML model.

We designed and conducted iterative experiments to address
both of the above aspects. Our experiences from these exper-
iments are shared in the paper.

The rest of the paper is organized as follows. Section II
provides a background on Online Judges (OJs) and XAI in
the ML pipeline. Section III describes the first setup of the
experiment. Section IV describes how domain knowledge is
used to improvise both the model and the dataset. Observations
and analysis using XAI on the extended and modified dataset
are given in Section V. Related work is given in Section VI
followed by the Conclusion section.

II. RELATED WORK

Explainable Artificial Intelligence has drawn a lot of atten-
tion recently with lots of survey papers presented in literature
on the topic [2], [4], [11], [3] and has drawn a lot of citations.
It’s importance and significance can be seen by DARPA’s
increasing interest in the field [12], [13]. Also, there are various
domain specific papers that highlight the use and importance
of XAI in critical fields like pathology, cancer detection, AI
aided Alzheimer’s Disease detection and bioinformatics [1],
[14], [15], [5], [16]. It has also been used in non life-critical
fields like Credit Risk Analysis [17] and in Human Resources
in predicting employee attrition and implementing effective

employee retention strategies [6]. Although the field of XAI
has drawn a lot of attention recently creating new tracks
within conferences and workshops and initiating new research
initiatives and groups [2], it is not new. Researchers have been
working in the field since many decades as detailed in [2].

AI and XAI have recently been used by HR in an increasing
number of companies attempting to automate the recruitment
process. ML has been used for screening resumes to shortlist-
ing candidates, to analyzing employee churn, implementing
strategies to improve employee retention, to identifying train-
ing and development needs, and in designing personalized de-
velopment programs for employees. Some of these approaches
have been evaluated by researchers and external agencies for
their applicability. For example, [18] has applied the Design
Thinking approach to evaluate the explainability aspect of a
recruitment system by presenting counterfactuals generated by
XAI systems [18]. A group of handpicked volunteers were
selected for their experiment. However, their system is pretty
basic and considers just two generic personas for evaluation
and a relatively small data set.

XAI has also been adopted in fields closely related to
software development. For example, in the software develop-
ment process [19], in defect monitoring and prioritization [20],
in software analytics [21] and during software maintenance
[22]. There has been ongoing research in predicting developer
performance with and without using AI and XAI principles.
For example, the work done by [23] closely reflects our work
in predicting developer performance without using XAI tools
or techniques. Another similarity with our work is that it uses
data from Codeforces for analysis. They train four different
neural network models and obtain the best results for LSTM
with Attention. This work differs from ours in many ways.
Firstly, the dataset they use comprises of just 100 users. The
paper does not explain how these 100 users were selected
from about 140k registered users. The dataset seems too small
to be representative of the different categories of users on
Codeforces. Secondly, predictability of these users in terms of
their behavior between contests is relatively consistent. Also,
The paper does not consider temperamental performances of
users in contests. Also, in their research, they consider past
performances of users in both contests and practice sessions
after the contest to predict rating after the contest while we
use just contest data.

The work done in this paper differs from other previous
works in two main aspects. First, we use XAI to both un-
derstand and improve the performance and explainability of
the ML model. Second, we apply it to a system to predict
developer performance in OJs. To the best of our knowledge,
no work exists in this field. Moreover, the research work
presented in this paper has a very narrow focus, i.e. evaluation
of developer performance prediction during software develop-
ment which may be in the form of a hackathon session created
primarily for recruitment.

III. BACKGROUND

A. Online Judges

Online Judge (OJ) platforms like SPOJ, EulerProject,
Codeforces [24], Codechef, Topcoder, HackerEarth, etc. are
being used by a wide spectrum of developers across the world
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today to practice, sharpen and showcase their developmental
skills. They are being used as development platforms, as
crowd-sourcing platforms to hunt for solutions to industrial and
science-driven challenges, as online compilers, in education,
in workforce development and training, and more recently in
recruitment [10] and by coaches in Universities to train and
pick the best candidates to participate in the prestigious ICPC
Challenge drawing more than 50,000 students from over 3000
Universities worldwide [25].

Most of them regularly hold online rated contests of fixed
time durations in which thousands of users across the globe
participate. Contestants are expected to solve a certain number
of problems in each contest and are awarded ranks, ratings and
positions after every contest and these are reflected on the OJ’s
leaderboard. These are described below in more detail.

1) Problems and verdicts: Each rated contest on an OJs
presents contestants with problems at various difficulty levels
ranging from elementary (easy) to hard (complex) [26]. In
the context of this paper, we denote the difficulty level of a
problem with θ ranging from 1 to 5 where θ=1 represents
the difficulty level of the easiest problem in the contest and
θ = 5 represents the difficulty level of the hardest problem
in the contest. Each problem is accompanied by a clear,
and unambiguous description statement, sample inputs with
their corresponding expected outputs, and time, memory and
resource constraints under which the solution to the problem is
to be executed to be successfully accepted by the OJ. Simple
problems can be implemented with the use of simple logic
and simple data structures while hard problems require the use
of more sophisticated algorithms and efficient data structures
in producing complete and correct solutions in addition to
optimization to meet the specified performance and resource
constraints.

For each submission made by a user, the OJ returns a
verdict which can take one of the values specified in the first
column of Table I.

2) Rating and divisions: When users participate in rated
contests, they see a positive or negative change in rating that
reflects their ability to solve the problems (tasks) in that contest
relative to the previous contests. According to the rating, the
contestants are split into multiple divisions based on their
current rating. Division 1 on Codeforces consists of users
who have the highest rankings (1900+), and problems in rated
contests at this Division are generally the hardest to solve.

B. XAI Phases in a ML Pipeline

Consider a typical ML Pipeline indicated in Fig. 1 showing
the two main phases where the use of XAI tools and techniques
can be productive. The first phase is the Understanding phase,
which subsumes the pre-deployment phases and comprises of
Feature Engineering, Model Training and Model Testing. The
second phase, is the Explaining phase, which subsumes the
later two or more post-deployment phases.

The level of detail in the XAI generated explanations
vary between the phases. For example, the explanation in the
Understanding phase can be technical and given in semantics
and formalism used by statisticians, mathematicians and in-
formaticians. The first phase involves XAI tools being used

Fig. 1. A typical ML pipeline indicating XAI phases.

by the developer to improve the model during the training and
testing stages and ensure that it works as intended [4] when it is
deployed in the real-world. In the Explaining phase, however,
the preferred way of explanation would be in Natural Language
and/or intuitive and simple-to-understand visualizations. This
phase would involve XAI tools being used by domain experts
(a physician or a recruiting agent, for example) and end-users
(a patient or a candidate for a job, for example) to interpret
and better understand the reasons behind the decisions taken
by the ML model deployed in real-life applications [4].

IV. ML MODEL WITH TRADITIONAL STATS

1) Data collection: For this research, we used Codeforces
as the choice of OJ as they have easily accessible and large
repositories and have a well documented API to access these
repositories. First, user profiles of all 143,853 registered users
on Codeforces was obtained using the Codeforces API. Next,
for each of these users, details of all submissions made by these
users to Codeforces was fetched for this study. This included
more than 72 million submissions made to Codeforces. Sub-
missions made to rated contests during its specified duration,
submissions made to problems for practice, submissions that
were successfully accepted or not, and those made in all
accepted languages by the judge (including C/C++, Java, Ruby,
Rust, Python, PHP, Kotlin, etc.) were included for analysis.
The data obtained was largely clean except for missing entries
for features that were not relevant to this research.

Features describing each user submission are shown in
Table II. To this set of features, two new features - Experience
based on time (exp time) and experience based on the count
of rated contests participated by the user (exp contests) -
were calculated and added for each submission entry. exp time
was calculated in days as the difference between the current
date and the date of registration of the user on Codeforces.
exp contests involved more steps. First, to classify contests
as rated contest hosted by Codeforces, details of all con-
tests had to be obtained. Next, contestId for all Codeforces’
rated contests were shortlisted and used to filter user’s sub-
missions based on the problem.contestId field to only in-
clude submissions made to rated contests. Next, using the
author.participantType field, only submissions made by the
user to the contest as a Participant were filtered. From this
truncated submission list for each user, his exp contests was
then obtained.

Next, the nominal variable, verdict, in each submission,
was converted to a numeric variable 0 ≤ score ≤ 1 based
on the verdict obtained against the test suite (testset) , where
score = 0 implies that no submission has been made and
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TABLE I. OJ RESPONSES TO USER SUBMISSIONS BASED ON QUALITY SUB-CHARACTERISTICS

OJ Verdict Status of submission’s execution A B C
Wrong Answer (WA) wrong output or some requirements not satisfied X X -

Time Limit Exceeded (TLE) exceeded maximal specified processing time limit - - X
Memory Limit Exceeded (MLE) exceeded specified RAM utilization limit (stack or heap) - - X

Runtime Error (RTE) runtime error occurred during execution - - X
Accepted (AC) passed all tests without exceeding resource or time limits Y Y Y

Y - Satisfied, X - Not satisfied A-correct, B-complete, C-meets all specified performance and resource constraints

TABLE II. FEATURES DESCRIBING EACH SUBMISSIONS

# Feature name Datatype
1 id int64
2 user object
3 contestId int64
4 creationTimeSeconds int64
5 relativeTimeSeconds int64
6 programmingLanguage object
7 verdict object
8 testset object
9 passedTestCount int64

# Feature name Datatype
10 timeConsumedMillis int64
11 memoryConsumedBytes int64
12 points float64
13 problem.contestId int64
14 problem.index object
15 problem.name object
16 problem.type object
17 problem.tags object
18 author.contestId int64

# Feature name Datatype
19 author.members object
20 author.participantType object
21 author.ghost bool
22 author.startTimeSeconds float64
23 problem.points float64
24 problem.rating float64
25 author.room float64
26 author.teamId float64
27 author.teamName object

score = 1 indicates an AC. Concept of score, and calculations
related to score have been elaborated in [27].

A. ML Model Setup

In this experiment, we trained and tested seven ML regres-
sion models using traditional developer stats directly provided
by OJs and use it to predict the score of developer in an
unseen contest in a problem (E) at difficulty level θ = 5
which was used as the target variable, Y. Traditional stats
used as input features to the ML regression models were as
follows: X = [’rank’, ’maxRank’, ’rating’, ’maxRating’, ’posi-
tion’, ’exp years’, ’exp contests’], The statistical distribution
of features in X are given in Table III.

We decided to use symbolic ML representations in this
experiments to better assess and study the explainability of a
regression model as using subsymbolic models such as Deep
Neural Networks or ensembles of simpler regression models
will require the deciphering and subsequent understanding of
the underlying complex black-box models which still remains
a challenge [2].

The seven ML regression models were successfully trained
and tested based on data of 143,853 registered users. The
RMSE values and the prediction accuracy obtained using the
seven ML regression models are given in Table IV. As the
purpose of this research was not primarily to improve the
prediction of a regression model by tuning the hyperparameters
of the model, but to study the effect of features in improving
the explainability of a model, we decided to use just one among
the seven models. Among the seven ML regression models
used, the GradientBoost regressor provided the least RMSE and
the best score in our first experiments and was, thus, retained
as the model of choice in this research.

The next section explains the evaluation of LIME and
SHAP [28], two popular model-agnostic XAI tools that can be
easily applied to comprehend ML models based on symbolic
representations.

TABLE III. STATISTICS OF TRADITIONAL STATS

Feature mean std min max
rating 1074.4 454.9 -53.0 3757.0

maxRating 1130.3 473.7 227.0 3979.0
rank 1.0 1.8 0.0 10.0

maxRank 1.2 1.9 0.0 10.0
position 71927.0 41526.9 1.0 143853.0
exp time 773.2 755.2 4.0 5234.0

exp contests 12.6 23.7 0.0 816.0

TABLE IV. MODEL PREDICTION USING TRADITIONAL DEVELOPER
STATS

ML Model used RMSE values accuracy
Elastic 0.1409 0.3106

Gradient Boost 0.1367 0.3507
Lasso 0.1408 0.3118
Linear 0.1407 0.3129

Random Forest 0.1442 0.2780
Ridge 0.1407 0.3129

XGBoost 0.1436 0.2837

B. LIME Analysis

LIME explains a prediction of a machine learning model,
in our case the GradientBoost Regressor model, for a query
point by finding important predictors and fitting a simple
interpretable model. We applied LIME on our model and tested
its behavior with ten randomly chosen query points, specifying
five as the number of most important predictors to report.
Based on these parameters, LIME was applied to our testset;
LIME internally generated a synthetic data set, fitted a simple
interpretable model of important predictors to it, and then used
it to explain the predictions around the specified externally
supplied ten selected query points. The explanations generated
by LIME for the 10 query points and for our ML regression
model are given in Table V.

It can be seen that position is consistently being used in
all 10 explanations as the feature contributing the most to
the prediction. It appears that LIME has identified four crisp
categories of positions which are then used in the explanation.
The second most important feature appears to be maxRating
which also appears to have been divided into four separate
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TABLE V. LIME EXPLAINABILITY

Feature contribution 1 Feature contribution 2 Feature contribution 3 Feature contribution 4 Feature contribution 5
1 60871.00 ¡ position ¡= 93407.50 929.00 ¡ maxRating ¡= 1184.00 exp contests ¿ 17.00 rank ¡= 0.00 870.00 ¡ rating ¡= 1107.00
2 position ¿ 93407.50 maxRating ¡= 929.00 maxRank ¡= 0.00 exp contests ¡= 2.00 exp time ¡= 295.00
3 30101.50 ¡ position ¡= 60871.00 1184.00 ¡ maxRating ¡= 1480.50 exp time ¿ 1139.00 1107.00 ¡ rating ¡= 1422.00 0.00 ¡ maxRank ¡= 3.00
4 30101.50 ¡ position ¡= 60871.00 1184.00 ¡ maxRating ¡= 1480.50 exp time ¿ 1139.00 0.00 ¡ maxRank ¡= 3.00 0.00 ¡ rank ¡= 3.00
5 position ¡= 30101.50 maxRating ¿ 1480.50 rating ¿ 1422.00 exp contests ¿ 17.00 exp time ¿ 1139.00
6 30101.50 ¡ position ¡= 60871.00 exp time ¿ 1139.00 1184.00 ¡ maxRating ¡= 1480.50 1107.00 ¡ rating ¡= 1422.00 0.00 ¡ rank ¡= 3.00
7 60871.00 ¡ position ¡= 93407.50 929.00 ¡ maxRating ¡= 1184.00 2.00 ¡ exp contests ¡= 6.00 maxRank ¡= 0.00 870.00 ¡ rating ¡= 1107.00
8 30101.50 ¡ position ¡= 60871.00 1184.00 ¡ maxRating ¡= 1480.50 295.00 ¡ exp time ¡= 604.00 6.00 ¡ exp contests ¡= 17.00 1107.00 ¡ rating ¡= 1422.00
9 60871.00 ¡ position ¡= 93407.50 929.00 ¡ maxRating ¡= 1184.00 exp contests ¿ 17.00 295.00 ¡ exp time ¡= 604.00 870.00 ¡ rating ¡= 1107.00

10 position ¿ 93407.50 929.00 ¡ maxRating ¡= 1184.00 maxRank ¡= 0.00 rating ¡= 870.00 2.00 ¡ exp contests ¡= 6.00

categories and are used in the explanation. The exception to
this is the 6th datapoint where LIME uses exp time to provide
the explanation. For the third and next important features there
is a variation between the importance of features in prediction.
For example, an XAI output generated in Natural Language to
explain the first point may be as follows:

“Since the user was placed between positions 60871 and
93497.50, and had a rating between 929 and 1184, and had
participated in more than 17 contests and ranked at the lowest
level, and had a rating between 870 and 1107, ... .”

Similarly, for the second point the explanation would have
read as follows:

Since the user was placed at a position higher than
93497.50, and had a rating lower than or equal to 929, and
had always been ranked at the lowest level, and participated
in no more than 2 rated contests, and made his debut on
Codeforces 295 days back , ... .

Although this is easily understandable from the domain
expert point of view, such explanations involving wide and
deep decision trees and which have mathematics at their core,
may overwhelm a typical end user even when provided in
Natural Language.

To identify the feature importance in explanations, we
executed LIME on 3000 separate data points and collated the
results as shown in Table VI. Each row in the table shows
details of one the six traditional stats, as specified below
the table. The columns specify the feature importance. For
example, rating (Feature 4) is the most important feature
used in explaining 2925 of the 3000 points (97.5%) and is
used as the second most important feature used to explain 75
of the total 3000 points (2.5%). Another important feature is
maxRating (Feature 1) which was used as the most important
feature to explain 75 of the 3000 data points (2.5%) and
the second most important feature in explaining 2558 of the
3000 (85.26%) points. However, we see that the numbers are
widely distributed among other features in the table cells. Such
distribution of numbers in the table implies that the decision
tree used in the explanation by LIME can get very wide
clouding the explanation in NL when explaining multiple data
points.

A metric that could capture this information could be
represented as a k-tuple where k is the number of features
used. In this experiment we have used k = 5 so we have a
5-tuple as follows: < 97.5, 85.26, 37.2, 24.97, 19.7 > where
each number in the tuple indicates the percent contribution
of the feature to the k-th position. In this example, we have

TABLE VI. FEATURE IMPORTANCE USING LIME

1 2 3 4 5 %
Feature 4 2925 75 0 0 0 20.15
Feature 1 75 2558 285 52 26 20.12
Feature 0 0 105 1116 762 449 16.33
Feature 5 0 134 650 749 591 14.26
Feature 6 0 134 650 749 591 14.26
Feature 3 0 4 132 359 695 7.99
Feature 2 0 1 84 296 645 6.89

features = [rating, maxRating, rank, maxRank, position, exp time, exp contests]

Feature 4 being used 97.5% of the time as the first feature in
explaining a data point and Feature 1 being used 85.26% of
the time as the second feature in explaining a data point. In an
ideal case (a fully and consistently explainable model), each
number in the k-tuple should be 100.

An ideal matrix for XAI would be a left diagonal sparse
matrix of size k × k, where k is the parameter to LIME
specifying the number of features to include in the explanation.

C. SHAP Analysis

SHAP, like LIME, is model-agnostic and can be applied
to explain models based on symbolic representations. It stands
for SHapley Additive exPlanations and attempts to explain the
prediction of an instance by computing the contribution of each
feature to the prediction. We applied SHAP to our regression
model and to evaluate its explainability on our dataset. Fig.
2 shows the SHAP plot for the seven traditional stats (listed
below the figure). Similar to LIME, SHAP also ranked position
as its most important feature followed by maxRating. But we
can see that exp contests, rating, and exp time are also highly
used.

Having a plot shape which is top-heavy, like an exaggerated
overgrown mushroom, helps improve the explainability of an
XAI tool. Carefully assembling and curating a good dataset can
bring such a shape to the plot and increase its explainability.

V. ADDING DOMAIN KNOWLEDGE TO DATASET

Based on lessons learnt from the previous experiment,
we decided to incorporate some domain knowledge directly
into the dataset. This first involved basic feature engineering
to identify and eliminate unimportant features. Next, having
studied different OJ environments, their rated contests and
user behavior during contests over the past several years, we
decided to include features that implicitly incorporated domain
knowledge into the dataset. The next subsections give a few
illustrative examples of domain knowledge missing from the
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features = [rating, maxRating, rank, maxRank, position, exp time, exp contests]

features = [rating, maxRating, rank, maxRank, position, exp time, exp contests]

Fig. 2. SHAP Plot showing feature importance for traditional stats.

previous dataset because of which both the predictability of
the model and the XAI aspect of the model were affected.
This involved introducing new features, deriving new features
from existing features, identifying outliers based on these
newly generated features, classifying and segregating classes
of submissions, we created a new dataset comprising of
more than 40 new features in addition to the previous seven
traditional stats used in the previous experiment. By including
this domain knowledge into the dataset as additional features,
and appropriately segregating and curating data, and training
the ML regression model on this dataset, we show that the
predictability and explainability of the trained model can be
substantially increased.

A. Explaining Rank, Rating and Positional Related Inconsis-
tencies

Rank, rating and position on an OJ may not give a complete
picture of the ability and skills of a developer. For example, a
low rank and rating on the OJ does not necessarily imply that
the developer has poor programming ability. This is because
every new user registering on an OJ, is assigned a default
low rank, rating and position regardless of his programming
experience or capability. It will take regular participation in
rated contests on the OJ and consistently good performances
in them for a developer to rise up the leaderboard and to be
assigned a high rank, rating or position by the OJ. The rating
algorithm used by Codeforces is a variation of the Elo rating
[29] used in sports. Understanding the Elo rating system will
help explain why an old user on the OJ with good rating
can fall down the leaderboard with a few bad consecutive
performances in contests. This knowledge is not explicitly
built into the previous dataset. Identifying and explaining
such instances will be challenging to an XAI tool in the
existing case. For example, how could an XAI tool explain
the situation of a newly registered user on the OJ consistently
and successfully solving the difficult problems in contests?

1) Correction mechanism: By associating user submission
history to user performances, could help generate better and
more reasonable XAI outputs.

B. Upsets in Contests

Similar to contests in sports, seeing upsets happen in rated
contests is not uncommon. As illustration of upsets, consider

the two examples given in Fig. 4. The first example shows the
five most recent performances of an average programmer. We
can see that he had successfully solved only two easy problems
while consistently attempting to solve the third one (θ = 3).
However, in the unseen contest he was able to successfully
solve the first four problems (score = 1) and obtain a high
score in problem E (at θ = 5). The second example, shows the
performances of a good programmer in the last five most recent
contests.We can see that he consistently obtained high scores
in all the five problems. But in the unseen contest, however,
he performs very badly, not able to successfully solve even
the two most easy problems. How could such datapoints be
presented by XAI tools?

1) A possible XAI explanation in natural language: “This
average user has caused an upset by solving the most difficult
problems in the contest.”

2) Correction mechanism: These upsets or erratic and
temperamental performances [27] by contestants can be seen
as outliers or stray occurrences in the dataset. Correctly iden-
tifying and labelling such upsets in the dataset or eliminating
them altogether will help improve the accuracy of the model
and increase the explainability aspect of the model.

C. Divisions: Different Playing Fields

The problem.index field in the submissions table (Feature
no. 14 in Table II) indicates the problem index (A..E) and
hence specifies the problem’s difficulty level (1 ≤ θ ≤ 5).
Closer inspection of the dataset reveals a strange trend - higher
ranked and rated contestants have difficulty in successfully
solving problems D and E, while many lower ranked and rated
contestants regularly seem to be successfully solving problem
E. Domain knowledge says that all E’s are not equal. Users
on Codeforces are classified into four divisions based on their
rating. Higher rated contestants play (participate) in the highest
Division (Division 1). Rated contests are held separately for
each Division. While users from higher Divisions can register
and participate in contests targeted for lower Divisions, they
are not counted towards their rating. Problems in all rated
contests, regardless of Division, are indexed from A to E. This
implies that a problem indexed as E in a contest at a lower
Division could be presented as index A in a contest at a higher
Division. This muddles the concept of problem difficulty (θ)
and brings inconsistency in the predictability of the regression
model. How could such datapoints be presented by XAI tools?

1) A possible XAI explanation in natural language: “This
user is from a lower Division and thus could solve problem E
which, in reality, may not be too difficult to solve”

2) Correction mechanism: Classifying and segregating
submissions based on contestant rating into Divisions and
possibly training and testing separate ML regression models
based on Divisions. This mechanism will ensure the XAI
outputs are more natural and understandable.

D. Oscillations Between Divisions

Oscillations between Divisions is an extension of the
previous explanation of Divisions. Consider a developer whose
current rating is close to the boundary of the next higher
Division. A good performance in a rated contest in his existing
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(a) Good programmer in good health (b) Good programmer in poor health

(c) Average programmer in good health (d) Average programmer in poor health

(e) A healthy programmer showing consistently good growth (f) A programmer showing a chronic health condition

Fig. 3. Sample health cards showing developer health over a 7-contest window (w = 7).

Fig. 4. Upsets in contests.

Division will increase his rating and will subsequently place
him in the next higher Division. Similarly, a poor performance
by a user in a contest whose rating is close to the boundary of
the lower Division, may be placed in the lower Division after
the contest. A situation may occur when the ratings fluctuate
at the Division boundary causing a user to consistently solve
problems D and E when placed in the lower division, and
afterward fail to solve problems D and E when placed in the

higher Division and vice versa. We refer to this as phenomenon
as oscillations between Divisions. This common but strange
behavior negatively impacts the prediction of a ML model and
can be difficult to explain by an XAI tool. How could such
datapoints be presented to end user of an XAI tool?

1) A possible XAI explanation in natural language: “This
user’s currently rating is at the Division boundary and he is,
thus, demonstrating this oscillating behavior.”

2) Correction mechanism: Specifying a boundary thresh-
old (δ) and segregating users from the dataset whose rating
falls within this threshold (±δ) at the Division boundary. This
mechanism will ensure the XAI outputs are more natural and
understandable.

E. Joint Contests

OJs frequently organize joint contests between two differ-
ent Divisions with problem being identified using the same
problem index. However, the rating change calculations differ
between divisions. This is not very explicit in the dataset and
such contests will have to be identified and marked as such in
the dataset.

1) A possible XAI explanation in natural language: “This
user’s participation is probably in a joint contest between
Divisions and thus has not been able to solve problem E in
the higher Division level.”
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2) Correction mechanism: Manually identifying and tag-
ging joint contests as such, will help generate better XAI
outputs which are more natural and understandable.

F. Health Card and Development History

Similar to clinical history of a patient [16] and player stats
which show past performances and record of a soccer player,
a development history could record the history of a developer.
This history could provide various insights into a developer’s
behavior over time. This could be semantically arranged and
structured to provide a valuable source of information for XAI
applications . Unfortunately, there is currently no standard way
of documenting this history - past achievements related to code
development, role and contribution to open-source projects,
awards obtained in hackathons and programing contests, etc.
remain disparate entities and connected together only on the
CV of a developer if a job change is desired or to a social
media page.

A performance in a single recruitment contest or a
hackathon cannot be used as the sole criteria by HR to recruit
a candidate. There may be cases of false positive or false
negatives.

1) A bad programmer being classified as good - An
average candidate may perform extremely well in
such a contest if he is lucky enough to get a problem
previously ’seen’ by him or that he has worked on

2) A good programmer being classified as bad - A good
programmer who may not perform well in such a
contest because of health-related or personal reasons
on that particular day.

However, a record of the developer’s recent history augmented
with the performance in the recruitment contest can aid HR in
better decision making.

1) Reflection of developer health: A health card of a de-
veloper provides an clear insight into the health, maturity level
and growth of a developer. Fig. 3 shows examples of five health
cards. Each health card shows a windows into scores obtained
by contestants in their last seven rated contests (w = 7) with
the rightmost contest being the most recent contest that the
user participated in. Each contest has five problems (A..E)
at varying difficulty levels (θ) with A being at the lowest
level of difficulty (θ = 1) and E at relatively the highest
level of difficulty (θ = 5) among the five problems. Good
developers are identified by their capability of successfully and
consistently solving all five problems with an AC (score ∼ 1).
Average developers are able to solve the first few problems
(θ ≤ 3) consistently with a score = 1, but have difficulty
successfully solving problems at the higher level of difficulty
(θ ≥ 4) and usually end up obtaining 0 ≤ score < 0.7 for
these problems.

As can be seen from Fig. 3(a), the first user appears to
be good developer as demonstrated by his consistently and
(almost) successfully solving all five problems in all his seven
past contests. His rank, position and rating on the OJ will
continue to remain stable with minor fluctuations. On the other
hand, the health card of the second user shown in Fig. 3(b)
shows a different trend. The user appears to have a history of
solving all five problems in contests. However, his performance

in the more recent contests seems to have deteriorated. We
refer to this performance deterioration as a sign of poor health
of the developer. The term poor health is not absolute but
relative to a developers’s past performances. In this example,
the user has successfully solved a few problems. But based
on his demonstrated capability of solving all problems in the
past, we say that his health is poor. Because of his poor recent
performances, his rank, position and rating will take a beating
and fall to levels that may not reflect the developer’s actual
capability.

Likewise, we have the health cards of two average pro-
grammers. Fig. 3(c) shows the health card of a healthy average
programmer. We label him healthy as his health card shows a
consistent performance with the developer consistently solving
the first few problems in the most recent seven contests. The
rank, position and rating of this developer on the OJ will
continue to remain stable with minor fluctuations. On the other
hand, the average programmer’s health card in Fig. 3(d) shows
a deteriorating performance - although he had a history of
demonstrated capability in solving problems A and B in a few
recent contests, he has consistently failed to successfully solve
these problems in the more recent contests. Similar to the effect
of deteriorating health of a good developer, the rank, position
and rating on this developer on the OJ will drop to levels that
do not rightly indicate the capability of this developer.

This poor health that we refer to in this paper is similar to
the loss of form of a player referred to in sports. There is a high
probability that a developer in poor health may not be able to
perform his best in a recruitment hackathon or a contest much
like an out-of-form player’s performance in a game because
of an injury, illness or some personal issue. This developer, as
such, should not be evaluated by a single contest in his current
poor form.

The health card in Fig. 3(e) shows a developer in good
health and demonstrating good and steady growth. We see
that his capability as a developer has matured over the last
few contests. A few contests back, he was only able to solve
problems at θ ≤ 2 but has grown in his capability as a
developer to successfully solve problems at θ ≤ 4 while able
to attempt problems at 5.

These health cards in the figure show contests over a
window size of w = 7. Larger window sizes will give more
meaningful and deeper insights into the growth, consistency
and maturity of a programmer over a longer time period.

2) Structure of a developer’s health card: A health card
reflects the performance of a user in each of the rated contests
that he has attempted on the OJ. A contest is defined as
C = {c1, c2, ..., cn} where each ci gives a summary of the
performance of the developer in the contest i. The size of the
set, |C|, gives the contest experience or the number of rated
contests the developer has participated in on the OJ. For the
scope of this paper, each contest has five problems (A..E) at
increasing level of difficulty, with A being at the easiest level
(θ = 1) and E at the most difficult level (θ = 5).

Each c in turn consists of sets of 5-tuples represented
formally as c = {s1, s2, ...sm}. where each s is a 5-tuple
representing values associated with the five problems (A..E)
in the contest. The size of the set, m, is contextual and can be
varied based on the user need. For example, s1 could be used to
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represent the final verdict awarded by the OJ for the contest
where verdicts are assigned representative scores between 0
and 1.0 where 0 indicates that the user has made no submission
to the problem in the contest and 1.0 represents an AC with
other verdicts (WA, RTE, TLE, MLE, etc.) falling within this
range. Similarly, s2 could be used to record attempts made for
each problem in a contest. Other stats that could be stored are
numbers of WAs for each problem, number of TLEs obtained
for each problem, etc.

For example, consider the following representation of data
of a programmer for contest j.

cj = {scorej , attemptsj , waj , tlej , rtej ...}

where each cjϵC represents a rated contest that a user
has participated in on the OJ. It could contain various details
about the performance of the user in problems in the contest at
difficulty levels 1 ≤ θ ≤ 5 as 5-tuples. Some of the important
statistics that could be included in cj are given below. score is
a 5-tuple that gives the maximum score that a user has been
able to attain among all attempts that were submitted to the
OJ during the contest. Consider the example below:

scorej = (1.0, 1.0, 1.0, 1.0, 0)

In this contest, the user has been able to successfully solve
the first four problems (A..D) but did not solve problem E.
The 5-tuple score does not indicate the number of attempts
(shots) that were taken. The 5-tuple attempts indicates the
total number of submissions, both successful and unsuccessful,
that the user made to the OJ during the contest. Consider the
example below

attemptsj = (1.0, 1.0, 1.0, 8.0, 0)

The user made one submission each to problem A..C, made
eight attempts to solve problem D and no attempts at solving
problem E. This 5-tuple gives an indication to the ability of
a developer to understand the given problem statement. The
verdicts returned by the OJ for each of the submissions and
for each of the problems are captured in their respective 5-
tuples. Consider the 5-tuple for waj below

waj = (1.0, 1.0, 1.0, 1.0, 0)

This indicates that the user has made one wrong submission
for each of the problems A..D. The 0 for problem could mean
two things - either he obtained no WA for problem E for any of
the submissions made or he obtained no WA because he made
no submission to problem E. This can be better understood
from attemptsj . Similarly, we have the 5-tuples tlej and
rtej , which give an indication to the submissions which were
awarded TLE and RTE for each of the five problems.

For contestants who have participated in many contests,
the size of set C can get large. Also, if we decide to store
a large set of data for each contest, the size of the encoding
vector can become fairly large. Although this could be seen as
a limitation, it adds more explainability to the model. However,

this limitation can be overcome by constraining the size of set
C. The set C could be seen in two forms:

1) The set C contains the complete history of the de-
veloper on the OJ where |C| gives the total sum of
rated contests that the developer has participated in.
Although this set can get large, this provides insights
into the growth and maturity of a developer since his
registration on the OJ.

2) The set C contains only a window to the most recent
w contests and provides a glimpse to the health or
most recent form of a developer. This can be see in
Fig. 3 (Health chart) with where w = 7.

[Explain the significance of the two sets] EAI can add trans-
parency and a clearer explanation and justification to the
decision making process by presenting the health chart of
the developer in a visually intuitive form while additionally
providing the set C. This will also help in increasing trust in
the system.

VI. ENHANCING XAI WITH DERIVED DATA

The main objective of this research was to bring more
explainability to the ML models by focusing more on the
data aspect rather than just enhancing the performance of ML
models though hyper-parameter tuning. This was achieved by
enhancing data quality through carefully creating and adding
new features to the dataset and by creatively mitigating the
effect of noise and outliers using knowledge of the domain.

One of the major changes made to the dataset used in
the previous experiment was to incorporate developer history.
This proved to be a double-edged sword - it increased the
performance of the model while providing more meaningful
data to enhance the explainability of the XAI tools. The
resultant dataset considerably improved the r2-score of the
GradientRegressor model from 0.3507 to 0.9834 (63.27% )
which was a substantial improvement.

Additionally, the health chart of a user can be easily
extracted from the dataset to add more human-understandable
explanation to the XAI generated output.

A. LIME - Results and Discussion

Similar to the previous experiment, we applied LIME to
the GradientBoost Regressor model trained on the enhanced
dataset and tested its behavior with ten randomly chosen
query points, specifying five as the number of most important
predictors to report. For these parameters, LIME internally
generated a synthetic data set, fitted a simple interpretable
model of important predictors to it, and then used it to explain
the predictions around the specified externally supplied ten
selected query points. The explanations generated by LIME
for the 10 query points and for our ML regression model in
this experiment are given in Table VII.

Compared to the explanations in the previous experiment,
we note that one feature is consistently and dominantly used
in all 10 explanations as the feature contributing the most to
the prediction and using the same decision. This is reflected
in the second and third most important features used in the
explanation of the query points with no exceptions. When

www.ijacsa.thesai.org 1004 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

generating an explanation for this in Natural Language, the
XAI output would be consistent across most, if not all, data
points. For example, explanations for the first two data points
could read as as follows:

1) “Since the user could not successfully solve problems
B, E and C even though he made feeble attempts to
solving problems E and C in the last five contests he
participated in .....”

2) “Since the user could not successfully solve problems
B, E, C and A and made no attempt to solve problem
D in the last five contests he participated in...,..”

Compared to the possible explanations that could be generated
in the previous experiments, these are more understandable and
consistently presented to the end user. A caveat - in the dataset
for Codeforces, and generally in most OJs, a large majority of
registered participants are not able to successfully solve most
problems. This explains the apparent bias visible in the choice
of query points in Table VII.

To further identify the feature importance in explanations,
we executed LIME on 3000 separate data points and collated
the results as shown in Table VIII.

The table has been limited to show just twenty of the
total features used in this experiment. Each row in the table
shows details of one feature. The columns specify the feature
importance. In this experiment, Feature 16 was the most
important feature used in explaining all of the 3000 points
(100%). The second and thirst most important features were
Feature 19 and Feature 17, respectively, which were used
to explain all of the 3000 data points (100%). However, we
see that the numbers are evenly distributed among other four
features in the table cells for the fourth and fifth most important
feature. This distribution of numbers in the table differs from
the numbers seen in the previous experiment. We can be infer
from the features and the range selected that the decision trees
used in the explanations may not be very wide which will aid
the visual explanation generated by LIME when explaining
multiple data points.

In this experiment 5-tuple used to capture the explainability
of the model read as follows: < 100, 100, 99.13, 24.8, 21.8 >.
This is a substantial improvement over the previous 5-tuple
which was < 97.5, 85.26, 37.2, 24.97, 19.7 >. Comparing the
two, we can observe that each feature contribution to the
explanation has improved.

Also, and as pointed out earlier, an ideal matrix for XAI
would be a left diagonal sparse matrix of size k × k, where
k is the parameter to LIME specifying the number of features
to include in the explanation. Wee see that this matrix is a
left diagonal matrix at k = 3 which was not the case in the
previous experiment.

B. SHAP: Results and Discussion

We applied SHAP to evaluate the GradientBoost Regressor
model trained on the enhanced dataset for explainability. Fig.
5 show the SHAP plot for twenty of the total features present
in the dataset. Similar to LIME, SHAP also ranked Feature 16
as the most important feature followed by Feature 19 followed
by Features 17, 18 and 15.

Fig. 5. SHAP values for ML model using the enhanced dataset.

As pointed out earlier, and ideal SHAP plot shape would
be a top-heavy one, like an exaggerated overgrown mushroom.
The SHAP plot obtained in this experiment appeared to be just
that - this greatly aids in improving the explainability aspect
of the XAI tool. This was a result of carefully assembling and
curating the dataset to bring such a shape to the SHAP plot
and, subsequently, to increase its explainability.

VII. CONCLUSION

Bringing more transparency to the decision making process
in fields deploying ML tools is important in various fields.
This implies that ML tools need to be designed in such a way
that they are more understandable and explainable to the end
users while also increasing trust in them. The field of XAI,
although a mature area of research, is increasingly being seen
as a solution to address these missing aspects of ML systems.

The focus of this work was on improving the transparency
of the decision making process in recruitment of software
developers using Online Judges. As the field of software
development attracts talent at various levels for the high-paying
lucrative jobs that is has, it is important to correctly identify
and differentiate highly skilled developers from developers
who are adept at only performing regular and mundane pro-
gramming jobs. Also, HR recruiting agents needs to report
back to their managers and justify why certain candidates were
selected and why some were rejected.

To address this, we built a regressor model that can help
differentiate developers based on their ability, while identifying
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TABLE VII. LIME EXPLAINABILITY

Feature contribution 1 Feature contribution 2 Feature contribution 3 Feature contribution 4 Feature contribution 5
1 B solved 5 ¡= 0.00 E solved 5 ¡= 0.00 C solved 5 ¡= 0.00 E attempts 5 ¿ 1.33 C attempts 5 ¿ 0.50
2 B solved 5 ¡= 0.00 E solved 5 ¡= 0.00 C solved 5 ¡= 0.00 D attempts 5 ¡= 0.00 A solved 5 ¡= 0.00
3 B solved 5 ¡= 0.00 E solved 5 ¡= 0.00 C solved 5 ¡= 0.00 A solved 5 ¡= 0.00 D attempts 5 ¡= 0.00
4 B solved 5 ¡= 0.00 E solved 5 ¡= 0.00 C solved 5 ¡= 0.00 A solved 5 ¡= 0.00 E attempts 5 ¡= 0.00
5 B solved 5 ¡= 0.00 E solved 5 ¡= 0.00 C solved 5 ¡= 0.00 D solved 5 ¡= 0.00 E attempts 5 ¡= 0.00
6 B solved 5 ¡= 0.00 E solved 5 ¡= 0.00 C solved 5 ¡= 0.00 0.50 ¡ E attempts 5 ¡= 1.33 0.00 ¡ C attempts 5 ¡= 0.10
7 B solved 5 ¡= 0.00 E solved 5 ¡= 0.00 C solved 5 ¡= 0.00 A solved 5 ¡= 0.00 E attempts 5 ¡= 0.00
8 B solved 5 ¡= 0.00 E solved 5 ¡= 0.00 C solved 5 ¡= 0.00 C attempts 5 ¡= 0.00 E attempts 5 ¡= 0.00
9 B solved 5 ¡= 0.00 E solved 5 ¡= 0.00 C solved 5 ¡= 0.00 C attempts 5 ¡= 0.00 E attempts 5 ¡= 0.00
10 B solved 5 ¡= 0.00 E solved 5 ¡= 0.00 C solved 5 ¡= 0.00 D solved 5 ¡= 0.00 0.10 ¡ D attempts 5 ¡= 1.00

TABLE VIII. LIME VALUES FOR DERIVED FEATURES

1 2 3 4 5 %
Feature 16 3000 0 0 0 0 20
Feature 19 0 3000 0 0 0 20
Feature 17 0 0 2974 19 2 19.97
Feature 18 0 0 6 744 365 7.43
Feature 14 0 0 6 655 654 8.77
Feature 12 0 0 5 571 630 8.04
Feature 15 0 0 7 536 643 7.91
Feature 13 0 0 2 475 706 7.89
Feature 0 0 0 0 0 0 0
Feature 1 0 0 0 0 0 0
Feature 2 0 0 0 0 0 0
Feature 3 0 0 0 0 0 0
Feature 4 0 0 0 0 0 0
Feature 5 0 0 0 0 0 0
Feature 6 0 0 0 0 0 0
Feature 7 0 0 0 0 0 0
Feature 8 0 0 0 0 0 0
Feature 9 0 0 0 0 0 0

Feature 10 0 0 0 0 0 0
Feature 11 0 0 0 0 0 0

and ignoring their erratic (temperamental) performances during
contests. We showed how both the ML model and the under-
lying dataset used in training and testing the model can impact
the explainability of the model. The underlying dataset that was
readily available from the OJ, was enhanced by adding more
features and creating new derived features based on our knowl-
edge of the domain. This was done to add more explainability
to the model and to increase its predictability and performance
accuracy. We also showed how XAI can be actively and
iteratively used during pre-deployment to improve the quality
of the dataset and to improve the prediction accuracy of
the regression model. These iterative changes helped improve
the r2-score of our GradientRegressor model from 0.3507 to
0.9834 (63.27%) which was a substantial improvement. We
also showed how the consistency and explainability of LIME
and SHAP, the XAI tools used in this research, increased over
the iterations.

We believe that the work presented in this paper, has great
applicability to areas other than developer recruitment. For
example, it could be used by project managers to suggest fo-
cussed training regimes for developers in their team, to recruit
developers for specialized domains, by coaches at Universities
to better select their programming team, and in academia
where students’ performance in programming courses need be
predicted to take early remedial action.
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