
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

Core Scheduler Task Duplication for Multicore
Multiprocessor System

Aya A. Eladgham, Nesreen I. Ziedan, Ibrahim Ziedan
Computer and Systems Engineering Department-Faculty of Engineering, Zagazig University, Egypt

Abstract—The increasing complexity of multi-core multipro-
cessor systems presents significant challenges in task scheduling.
The scheduling of tasks across multiple cores remains a significant
challenge due to its NP-complete nature, especially with the in-
creasing complexity of multi-core / multi-processors architectures.
This paper focuses on Multi-Core Oriented (MCO) scheduling
algorithms, which specifically target multi-core multi-processor
systems. This paper proposes a novel scheduling algorithm,
Core Scheduler Task Duplication (CSD), specifically designed
for multi-core multi-processors environment. The CSD algorithm
combines static and dynamic task prioritization to enhance
processor utilization and performance. The proposed algorithm
clusters related tasks to the same cores to improve efficiency
and reduce execution time. By leveraging task duplication, the
proposed algorithm improves processor utilization and reduces
task waiting times. To evaluate the CSD algorithm’s perfor-
mance, the algorithm was implemented and compared against
the Modified Critical Path (MCP) scheduling algorithm. A series
of experimental tests were conducted on diverse task sets, varying
in size and complexity. Simulation results demonstrate that CSD
outperforms existing compared approaches in task scheduling and
processor utilization, making it a promising solution for multi-
core systems.

Keywords—MultiCore; multiprocessor; DAG scheduling; dy-
namic priority; task duplication; clustering; MCP

I. INTRODUCTION

With the increasing demand of high-performance and low
energy consumption processing, which is a basic requirement
in many applications such as image and video processing [1]
[2] [3] [4], climate modeling [5] [6] [7], artificial intelligence
[8] [9] [10]. Parallel processing is needed to speed up applica-
tions performance by splitting its overall job into smaller tasks
[11] [12] [13], execute and complete its work across multiple
processors. There is an increasing interest in addressing issues
related to multi-core chips. The shift to multi-core has emerged
because of reaching the physical limits of single core chips,
especially clock speed bottleneck [14] [15]. In the last few
decades, multi-core processors have evolved from just two
cores in a single CPU to multiple cores [11] [12]. It is
challenging to find a computer with single-core CPU, as even
low-power CPUs are now designed with two or more core
per chip [16]. Intel already launches Intel® Xeon® 6 server
processor, code-named Sierra Forest with up to 144 cores [17].

In traditional multiple processors, scheduling problem ap-
pears to solve the contention between concurrent parts of pro-
grams, or arrange programs execution to guarantee enhance-
ment in the overall performance [13]. In multi-core processors
the scheduling problem gets worse with the presence of many
cores, where a program can be seen as a set of tasks which

can run serially or parallelly. The relationship among these
tasks may or may not include precedence constrains [11] [12].
Precedence constrains indicates when one task begins or ends
in relation to another task [13]. If precedence constrains exist,
a Directed Acyclic Graph (DAG) is used to build a task model
[12] [13] [18].

The presence and use of multi-core processors is more
popular than the traditional multiple processors. In multi-core
processors, the scheduling problem is magnified, which is
a non-deterministic polynomial (NP-complete) problem [19]
[20]. Most of the traditional parallel processing algorithms
are designed to handle one-core processors or designed for
multi-core processor, but it does not fit multi-core multi-
processors [18]. The primary goal of all these algorithms is
to try to reduce the program execution time. The DAG based
Heuristic algorithms, which can be divided into four categories,
which are List based task scheduling algorithms [21] [22] [23]
[24] [25] [26], Task Duplication-based scheduling algorithms
[27] [28] [29], Cluster based scheduling algorithms [21] [30]
[31], and Multi-Core Oriented scheduling algorithms (MCO),
which specialize in the types that deal with multi-core multi-
processors machines.

Multi-Core Oriented scheduling algorithms are the focus
in this paper. Despite the many advantages and the ongoing
manufacturing of multi-core multi-processors systems [17].
MCO scheduling algorithms are not independent types, but
they apply concepts and methods from previous types target-
ing multi-core multi-processors systems (MCMP). This paper
introduces some attempts.

The utilization of multi-core processor architecture is grow-
ing more common in the realm of high-powered computing.
This is considered one of the reasons for the emergence of the
MCO scheduling algorithms. Some examples of MCO schedul-
ing algorithms are weighted Earliest Finish Time (wEFT)
[32], the Priority Queue Task Duplication scheduling algorithm
(PQTD) and Genetic-based Scheduling Algorithm on Multi-
core (GSAM) [33].

The wEFT [32] algorithm is designed for multi-core pro-
cessor systems, where it assigns the task with minimum earliest
completion time to a certain processor core. wEFT performs
well when compared with existing task scheduling algorithms,
but wEFT is not the best in average waiting time of the tasks.
The PQTD is proposed in [18] for multi-core processors.
PQTD uses priority queue and task duplication concepts to
map the generated task model to processors. As mentioned in
[18] The PQTD algorithm has better performance and better
processor utilization compared to TDS [34], and CPFD [35].

www.ijacsa.thesai.org 1019 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

The GSAM [33] is try to take advantage of multi-core
multi-processors and provided solution for the scheduling
problem based on genetic approach. The algorithm is repeat-
edly executed until it reaches a fixed number of iterations.
The GSAM algorithm inherits some defects form GA and
multi-cores, such as high computation and time consumption.
In addition, GSAM suffers from high power need in multi-
core architectures. Existing GA based scheduling algorithms
have some disadvantages such as high complexity, high power
consumption, poor efficiency, poor processors utilization, etc.
[36] [37] [15]. The GA and multi core algorithms are intended
for some specific applications and are not suitable for other
applications.

The proposed scheduling algorithm combines the qualities
of multi-core processors algorithms and multi-processors. The
proposed algorithm deals with fine grain task graph applica-
tions. It overcomes some problems and combines some of
the advantages found in others. It increases the processor
utilization and tries to cluster the related tasks to run in
the same processor cores to improve the performance. The
proposed algorithm first uses static priority for level catego-
rization, and then dynamic priority for tasks in each level while
assigning tasks. The proposed algorithm Core Scheduler task
Duplication, which is CSD.

The remainder of this paper is organized as follows. The
proposed scheduling algorithm is presented in Section II.
Section III introduces an application example illustrating the
proposed scheduling algorithms steps. Section IV provides the
simulation results and discussions. Finally, the conclusion is
provided in the last section.

II. THE PROPOSED CSD SCHEDULING ALGORITHM
DESIGN

A. Task Mode

The properties associated with any parallel program such as
processing time, data dependencies, communication cost, and
synchronization requirements must be known before schedul-
ing. The parallel program is represented by node and edge
DAG [13].The DAG task model G = {T, E, C, W} where
the set of nodes T is a set of n tasks, where n is the total
number of tasks. E is a set of edges in the DAG between two
vertices (nodes) Ti, and Tj,where 0≤ i,j ≤ n. Cij is as set
of communication time between two tasks, where 0 ≤ i,j ≤
n. W is a set of processing time of each task. Fig. 1 is an
example of DAG with four tasks numbered. from T1 to T4,
T1 has processing time equal to 2 unit of time. T1 and T2 are
connected with an edge with communication weight equal to
1 unit of time.

B. Assumptions and Constraints

Some restrictions are necessary to explain the CSD
scheduling algorithm, which are as follows:

• CSD targets a machine with a set of n homogenous
Processing Elements (PE), where each PE contains
a set of m homogenous cores idiomatically called
(n) multiprocessor (m) multi-cores system. The core j
inside Processing Element i is called (PEi-ci).

Fig. 1. Example of Directed Acyclic Graph (DAG).

• The processors are fully connected, where link con-
tention and routing strategies used for communication
are neglected.

• The communication delay Cij between two cores in
the same processor element is negligible (Cij ≈ 0),
while it takes cij units of time if the two cores belong
to different processor elements.

• Any task cannot be started until all its predecessors
are completed.

• Assignment procedure will be initiated if either any
core is free or the task has been completed, which
leads to a free core.

• Transition from any level to another is not allowed
until the assignment of all tasks at this level are
completed.

C. CSD Scheduling Algorithm Procedure

CSD scheduling algorithm is formalized in this section.
Input:

• A DAG describes tasks workloads, their weights, com-
munication cost between any tasks, and precedence
relation.

• The number of PE and how many cores each one
contains.

Output: Gantt chart illustrates the list of all tasks allocated
to each core ordered by their starting, finishing, and execution
time. Gantt chart also indicated Idle periods for every core.

Steps: Fig. 2 shows the steps of CSD algorithm, while the
part concerned with selecting task from unassigned level list
is illustrated in Fig. 3. These steps are listed as follows:

1) Arrange the given M cores of each processing ele-
ments PE lexicographically in a queue.

www.ijacsa.thesai.org 1020 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

2) Build the static task queue, where this queue is
divided into static priority levels starting from Level1
(L1) to Levelm (Lm). Tasks belonging to any level Li
only depend on the tasks belonging to the previous
level Li-1. Tasks arranged at this point have no order.
Only the tasks belonging to the same level are stacked
together with no priority. Each level is rearranged
during the assignment procedure step and accordingly
the priorities of the tasks are changed during the
successive stages of CSD algorithm within the same
level. Because of this change, the task static priorities
turn to dynamic priorities.

3) Collect and compute all the following characteristics
for each task before the assignment procedure:

• weight of the task i, 0 ≤ i ≤ n (Wi),
• list of the predecessors of the task, i.e. parents

(predi),
• successors of the task, i.e. children (succi),
• the task should be duplicated or not and

how many times it should be duplicated (D)
according to Eq. (1).

min(#ofPEs, ceil(
#ofchildren

#ofcores
)) (1)

As the number of tasks in the same level increases,
the congestion problem emerges and worsens with
the duplication according to the (1). This problem
was resolved using Eq. (2).

min(#ofPEs, floor(
#ofchildren

#ofcores
)/#oftasks)

(2)
• The task found in critical path (CP) in the

DAG, which is the longest path in the DAG
or not,

• degree of the CP, which is number of tasks in
the CP, the more tasks the higher the degree
(DCP), and located on more than one CP.

• Select the tasks that can be duplicated if
possible and mark it as duplicated task. The
selection process satisfies the inequality: # of
children > # of cores.

• Any task chosen for duplication is indeed
duplicated in the task queue many times as
Eq. (1) or Eq. (2).

4) Assign previously arranged tasks to cores: this step is
called assignment procedure, which assigns the tasks
to cores and is carried out periodically in every time
slot. The procedure is divided into two phases. The
first phase is called core phase and deals with the
cores. Meanwhile the second phase is called task
phase and deals with the selection of the task to be
performed. Each phase is explained as follows.
Core phase: Roll over all free cores to see if they can
start any selected task from the next phase. It should
be noted that the list of free cores changes every time
slot, where the algorithm picks all free cores. The
CSD algorithm determines, which core suitable for
the priority based ordered tasks.
Task phase: Priorities change at this phase based on
a number of criteria to choose the task, which has the

highest priority. These priorities change periodically
with each start of task selection. CSD considers all
the tasks in the same level and rearrange them again,
then choose the task that will be executed if:
• One of its predecessors is completed, and none
of its duplicated is running in the same processing
element PE. If a tie occurs, then go to the next step.
• When CSD algorithm reaches this step, there is
more than one choice, which are:
First: There is only one task in CP,
Second: There are two or more tasks in CP.
Third: no task in CP.
For the first case the algorithm chooses this task to
be scheduled. For the second and third track, the
algorithm calculates the longest path of Ti where the
task is on (LPi). The LPi can be calculated using Eq.
(3):

LPi = longestpathbefore+longestpathafter−Wi
(3)

for each task, if two or more tasks have the same
LPi length, then the algorithm calculates Forest Cost
of task i (FCi). FCi is the number of edges in the
following subgraph for this task. If tie occurs again
then the algorithm moves to the next action.

• Choose the task with greater number of chil-
dren if tie occurs then.

• Choose the one with lower weight, if tie
occurs then.

• Choose task with small index.
After selecting the task, the CSD determines if the
task is duplicated and how many times. CSD has to
decide whether to start all the duplicated tasks all at
the same time at available free cores and remove the
exceeded copies from task queue. The other choice
for CSD is to start the duplicated task any time as
there are free cores.
Repeat step 4 till each free core from core phase gains
a task. Consequently, the same steps are repeated and
moved from one level to another until the assignment
procedure is completed for all tasks.

III. AN APPLICATION EXAMPLE

The following example illustrates how CSD algorithm
works.

Assume that the DAG shown in Fig. 4 is given. The
objective is to schedule this DAG to 2 PE with 2 cores each.
The DAG has 10 nodes, 14 edges, and with CP equal to 13.
In the Fig. 4, CP is shown with thick arrows.

1) Arrange the PE, with its cores in processor queue as
shown in Fig. 5.

2) Arrange tasks in static levels as shown in Fig. 5.
3) collect all the information about each task in advance

as Shown in Table I.
4) Assignment procedure:

• L1 has only one node (entry node) which is
marked as duplicated (2-times) on different
cores (PE0-c0), and (PE1-c0).

www.ijacsa.thesai.org 1021 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

Fig. 2. CSD Scheduling algorithm flowchart.

• The assignment procedure suspended till T1
finished.

• CSD algorithm dynamically rearranges tasks
in L2 to get ready list1, followed by
ready list2: Ready list1: T2, T3, T4, T5
Ready list2: T2, T3, T4, T5
Final arrangement in this step: T3, T2, T4, T5

• CSD algorithm assigns T3 to (PE0-c0). At
the same time slot, it assigns T2 to (PE0-
c1), T4 to (PE1-c0), and T5 to (PE1-c1).
T4 is marked as duplicated, but there are no
free cores available for duplication. At this
moment all cores are busy, so CSD waits until

one becomes free. The beginning of time slot
4 (PE0-c0), and (PE1-c0) will be free.

• At this moment when L2 is finished CSD
algorithm goes to L3, but there are no tasks
ready. Therefore, the algorithm waits until the
next time slot.

• The algorithm rearranges tasks in L3 until it
reaches the final arrangement according to the
illustrated criteria in the algorithm procedure.
The Final arrangement became T6, T7, T8.

• The algorithm assigns T6 to (PE0-c0).
• T7 is assigned to any of the following (PE0-

c1) or (PE1-c0) or (PE1-c1), where (PE0-c1)

www.ijacsa.thesai.org 1022 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

Fig. 3. Task selection flowchart.

TABLE I. TASK CHARACTERISTICS

T1 T6

ID 1 6

Wi 1 2

Duplicated yes no

D 2 2

predi 2 2

succi − 2

found in CP or not yes yes

DCP 5 5

starts after 2 time slots from time slot 4, and
(PE1-c0) or (PE1-c1) start immediately, so
assign T7 to (PE1-c0).

• T8 has similar situations as T7, so the algo-
rithm assigns T8 to (PE1-c1).

• (PE0-c1) is free, and L3 is finished, but T9
cannot start until T6 is finished, so the algo-
rithm waits.

• When T6, T7, and T8 are also finished, then
all cores are free. However, the most suitable
core is (PE0-c0), so the algorithm assigns T9
to (PE0-c0).

• T10 cannot start until all predecessors are
finished (T9, T7, and T8). Once finished, all
cores become free. Either PE0 or PE1 starts
the execution of T10 at the beginning of the
8th time slot, so all cores have the same
chance to execute it, so the algorithm assigns
T10 to (PE0-c0).

• The output of the previous steps represented
in Gantt chart shown in Fig. 6. The Gantt chart
represents the Schedule Length (SL). SL is the
total duration or makespan of the schedule,
which emphasizes all the tasks is completed.

www.ijacsa.thesai.org 1023 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

Fig. 4. A sample DAG from [18].

Fig. 5. Arrangement of core queue, and static task levels.

IV. SIMULATION AND RESULTS

The performance of the proposed scheduling algorithm is
evaluated using randomly generated task graphs or task graphs
modeled from actual application programs from Standard Task
Graph set, which is presented in [38].

1) The first task graph t50 rand1 is composed of 50
tasks and 985 edges with computation to communi-
cation ratio (CCR) equal 0.1.

2) t100 rand2 composed of 100 tasks and 3943 edges
with CCR equal 0.02.

Fig. 6. The schedule generated by CSD algorithm.

3) and robot control application with 88 tasks and 131
edges with CCR equal 0.85 and 5.

The CSD scheduling algorithm simulation is conducted using
Python running several times with various processing elements
/ cores settings. Fig. 7 presents the simulation results of the
CSD scheduling algorithm with varying numbers of Processing
Elements (PEs), each containing only one core. The x-axis
represents the number of PEs, while the y-axis indicates the
Schedule Length (SL). The figure also compares the perfor-
mance of different versions of the CSD scheduling algorithm
with the Modified Critical Path (MCP) scheduling algorithm.
The difference between the multiple versions of CSD is when
to duplicate the chosen task to be duplicated and how many
times:

• If duplication occurs during the first copy assignment
process at the same level according to (1) Version CSD
(once nolvl) is generated.

• If duplication occurs any time according to (1) Version
CSD (any nolvl) is generated.

• If duplication occurs during the first copy assignment
process at the same level according to (2) Version CSD
(once lvl) is generated.

• If duplication occurs any time according to (2) Version
CSD (any lvl) is generated.

• CSD (none) is generated when no duplication occurs.

Fig. 7. Scheduling for t50 rand1 DAG.

As seen in Fig. 7 the SL is improved with the CSD
(once lvl and once nolvl) versions compared to other algo-

www.ijacsa.thesai.org 1024 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

rithms. CSD (once lvl) outperforms CSD (once nolvl) when
the number of tasks in the same level increases. The per-
formance of CSD (none) algorithm coincides with MCP al-
gorithm. Both CSD (none) and MCP algorithms outperform
all the reset versions of CSD. While the CSD (any nolvl)
and (any lvl) deviated too far as it exhausted the free cores
in duplication while there are already tasks to begin execu-
tion. This scenario is reflected in a significant increase in
SL. CSD(Any nolvl) and CSD(any lvl) and the results are
ignored. Fig. 8 illustrates SL for t100 rand2, which is like
t50 rand1. It is noticeable that there is an improvement of
CSD (once lvl) over MCP, as the number of parallel paths
increase. Fig. 9 illustrates the average SL output behavior
with robot control application generated with CCR equal
0.85 and 5. Robot control DAG in contrast to other DAGs
shows a significant improvement performance of MCP over
all version of the proposed CSD. This is due to the decrease
in parallel paths, which is the primary motivation and cause
for duplication.

Fig. 8. Scheduling for t100 rand2 DAG.

Fig. 9. Average SL for robot control with (0.85,5) CCR.

The CSD scheduling algorithm is simulated again with one
PE only that has varying number of cores. Fig. 10 shows the
SL with robot control DAG described before. The chosen DAG
indicates almost the same response as robot task graph when
applying this PE/Cores configuration. The comparisons here
are between the versions of CSD and the optimal SL. Optimal
SL is the length of CP without communication. The primary

goal of the CSD algorithm is to reduce SL by clustering the
tasks related to others and give higher priority to CP tasks.
CSD algorithm closely approach the optimal demonstrating
its effectiveness in finding near-optimal SL.

Fig. 10. Scheduling for robot control 88 tasks DAG.

Fig. 11 shows the result when the CSD algorithm is
simulated with different number of PEs that have varying
number of cores. Given that the total number of processing
units (i.e. PE or core) is fixed and equal to 24. xxx shows
the average SL for CSD versions on all the task graphs with
different CCR. CSD algorithm produces schedule close to
optimal as the number of cores increase.

Fig. 11. Average SL for all task graphs.

V. CONCLUSION

This paper proposed multiple versions of a scheduling algo-
rithm called CSD. Each version introduces enhancements and
modifications that change with the workload behavior. CSD in
its primitive version with no duplication matches MCP in the
case the used architecture has only one core with different PEs.
When comparing the (once nolvl) version of CSD with MCP,
the proposed algorithm outperforms MCP in SL, throughput
and processors utilization. The results indicate that no single
algorithm outperforms others in all scenarios. Instead, the
effectiveness of a scheduling algorithm is dependent on factors

www.ijacsa.thesai.org 1025 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 10, 2024

such as the nature of workload and architecture of multi-
processor/multi-core system.

REFERENCES

[1] A. Kika and S. Greca, “Multithreading image processing in single-
core and multi-core cpu using java,” International Journal of advanced
computer science and applications, vol. 4, no. 9, 2013.

[2] K. M. Hosny, A. Salah, and A. Magdi, “Parallel image processing
applications using raspberry pi,” in Recent Advances in Computer Vision
Applications Using Parallel Processing. Springer, 2023, pp. 107–119.

[3] A. Kamalakannan and G. Rajamanickam, “High performance color
image processing in multicore cpu using mfc multithreading,” Interna-
tional Journal of Advanced Computer Science and Applications, vol. 4,
no. 12, pp. 42–47, 2013.

[4] K. Mia, T. Islam, M. Assaduzzaman, T. M. N. U. Akhund, A. Saha,
S. P. Shaha, M. A. Razzak, and A. Dhar, “Parallelizing image processing
algorithms for face recognition on multicore platforms,” International
Journal of Advanced Computer Science and Applications, vol. 13,
no. 11, 2022.

[5] T. Radhika, K. Gouda, and S. S. Kumar, “Novel approach for spa-
tiotemporal weather data analysis,” International Journal of Advanced
Computer Science and Applications, vol. 13, no. 7, 2022.

[6] L. Su and S. Naffziger, “1.1 innovation for the next decade of compute
efficiency,” in 2023 IEEE International Solid-State Circuits Conference
(ISSCC). IEEE, 2023, pp. 8–12.

[7] J. Subha and S. Saudia, “Integrating regression models and clima-
tological data for improved precipitation forecast in southern india,”
International Journal of Advanced Computer Science and Applications,
vol. 14, no. 5, 2023.

[8] M. N. Al-Andoli, K. S. Sim, S. C. Tan, P. Y. Goh, and C. P.
Lim, “An ensemble-based parallel deep learning classifier with pso-bp
optimization for malware detection,” IEEE Access, 2023.

[9] R. Pirayeshshirazinezhad, S. G. Biedroń, J. A. D. Cruz, S. S. Güitrón,
and M. Martı́nez-Ramón, “Designing monte carlo simulation and an
optimal machine learning to optimize and model space missions,” IEEE
Access, vol. 10, 2022.

[10] R. A. Jain and D. V. Padole, “Scalable and flexible heterogeneous multi-
core system,” International Journal of Advanced Computer Science and
Applications, vol. 3, no. 12, 2012.

[11] G. S. Almasi and A. Gottlieb, Highly parallel computing. Benjamin-
Cummings Publishing Co., Inc., 1994.

[12] T. Rauber and G. Rünger, “Parallel programming: For multicore and
cluster systems,” Citado na, p. 30, 2013.

[13] H. El-Rewini and M. Abd-El-Barr, Advanced computer architecture and
parallel processing. John Wiley & Sons, 2005.

[14] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th annual international symposium on Computer
architecture, 2011, pp. 365–376.

[15] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, 2008.

[16] M. Gupta, L. Bhargava, and S. Indu, “Mapping techniques in multicore
processors: current and future trends,” The Journal of Supercomputing,
vol. 77, no. 8, pp. 9308–9363, 2021.

[17] I. Website, “Intel.” [Online]. Available:
https://www.intel.com/content/www/us/en/products/details/processors.html

[18] X. Yao, P. Geng, and X. Du, “A task scheduling algorithm for multi-
core processors,” in 2013 International Conference on Parallel and
Distributed Computing, Applications and Technologies. IEEE, 2013,
pp. 259–264.

[19] X. Xiao and Z. Li, “Chemical reaction multi-objective optimization for
cloud task dag scheduling,” IEEE Access, vol. 7, pp. 102 598–102 605,
2019.

[20] T. Lively, W. Long, and A. Pagnoni, “Analyzing branch-and-bound
algorithms for the multiprocessor scheduling problem,” arXiv preprint
arXiv:1901.07070, 2019.

[21] M.-Y. Wu and D. D. Gajski, “Hypertool: A programming aid for
message-passing systems,” IEEE transactions on parallel and dis-
tributed systems, vol. 1, no. 3, pp. 330–343, 1990.

[22] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms
for heterogeneous processors,” in Proceedings. Eighth Heterogeneous
Computing Workshop (HCW’99). IEEE, 1999, pp. 3–14.

[23] S. Branch and I. Shoushtar, “List-scheduling techniques in homoge-
neous multiprocessor environments: a survey,” International Journal of
Software Engineering and Its Applications, vol. 9, no. 4, pp. 123–132,
2015.

[24] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures,”
IEEE transactions on Parallel and Distributed systems, vol. 4, no. 2,
pp. 175–187, 1993.

[25] H. El-Rewini and T. G. Lewis, “Scheduling parallel program tasks
onto arbitrary target machines,” Journal of parallel and Distributed
Computing, vol. 9, no. 2, pp. 138–153, 1990.

[26] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors,” IEEE
transactions on parallel and distributed systems, vol. 7, no. 5, pp. 506–
521, 1996.

[27] I. Ahmad and Y.-K. K. Y.-K. Kwok, “A new approach to scheduling
parallel programs using task duplication,” in 1994 Internatonal Confer-
ence on Parallel Processing Vol. 2, vol. 2. IEEE, 1994, pp. 47–51.

[28] Y.-C. Chung et al., “Applications and performance analysis of a
compile-time optimization approach for list scheduling algorithms on
distributed memory multiprocessors,” in SC Conference. IEEE Com-
puter Society, 1992, pp. 512–521.

[29] G.-L. Park, B. Shirazi, and J. Marquis, “Dfrn: A new approach for
duplication based scheduling for distributed memory multiprocessor
systems,” in Proceedings 11th international parallel processing sym-
posium. IEEE, 1997, pp. 157–166.

[30] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Schedul-
ing precedence graphs in systems with interprocessor communication
times,” siam journal on computing, vol. 18, no. 2, pp. 244–257, 1989.

[31] S. Cao and J. Bian, “Improved dag tasks stretching algorithm based on
multi-core processors,” in 2020 IEEE 11th International Conference on
Software Engineering and Service Science (ICSESS). IEEE, 2020, pp.
18–21.

[32] L. Liu and D. Qi, “An independent task scheduling algorithm in
heterogeneous multi-core processor environment,” in 2018 IEEE 3rd
Advanced Information Technology, Electronic and Automation Control
Conference (IAEAC). IEEE, 2018, pp. 142–146.

[33] J. Pecero, S. Varrette, and P. Bouvry, “Scheduling dag applications on
multi-core processor packages architectures,” 2010.

[34] S. Darbha and D. P. Agrawal, “Optimal scheduling algorithm for
distributed-memory machines,” IEEE transactions on parallel and dis-
tributed systems, vol. 9, no. 1, pp. 87–95, 1998.

[35] I. Ahmad and Y.-K. Kwok, “On exploiting task duplication in parallel
program scheduling,” IEEE Transactions on parallel and distributed
systems, vol. 9, no. 9, pp. 872–892, 1998.

[36] R. Medina, E. Borde, and L. Pautet, “Scheduling multi-periodic mixed-
criticality dags on multi-core architectures,” in 2018 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2018, pp. 254–264.

[37] S. Shah, A. Qahir, M. Safeer, S. Mazahir, and O. Hasan, “Comfast: A
comparative framework for analysis of scheduling techniques in multi-
core systems,” in 2018 Annual IEEE International Systems Conference
(SysCon). IEEE, 2018, pp. 1–7.

[38] Kasahara; H.; Tobita; T.; Matsuzawa; Sakaida,
“S.: Standard task graph set.” [Online]. Available:
https://www.kasahara.cs.waseda.ac.jp/schedule/

www.ijacsa.thesai.org 1026 | P a g e


