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Abstract—Early and accurate detection of skin cancer is
critical for effective treatment. This research aims to enhance
skin cancer multi-class classification using transfer learning and
Vision Transformers (ViTs), addressing the challenges of imbal-
anced medical imaging data. We introduced data augmentation
techniques to the HAM10000 dataset to enhance the diversity of
the training and implemented 13 pre-trained transfer learning
models. These included DenseNet (121, 169, and 201), ResNet
(50V2, 101V2, and 152V2), VGG (16 and 19), NasNet (mobile and
large), InceptionV3, MobileNetV2, and InceptionResNetV2, as
well as two Vision Transformer architectures (ViT and deepViT).
After fine-tuning these models, DenseNet121 achieved the highest
accuracy of 94%, while deepViT reached 92%, highlighting
the effectiveness of these approaches in skin cancer detection.
Future work will focus on refining these models, exploring hybrid
approaches that combine convolutional neural networks and
transformers, and expanding the framework to other cancer types
to advance automated diagnostic tools in dermatology.

Keywords—Medical imaging; skin cancer; multi-class classifica-
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I. INTRODUCTION

Skin cancer [1] typically starts in the skin cells when skin
cells are damaged, usually from too much exposure to the sun’s
ultraviolet (UV) rays. The three main types of skin cancer are
basal cell carcinoma, squamous cell carcinoma, and melanoma,
where melanoma is the most serious. People with fair skin, a
history of sunburns, prolonged sun exposure, a family history
of skin cancer, or a weakened immune system are at the highest
risk. Symptoms of skin cancer include the appearance of new
or unusual skin growths, changes in the size, shape, or colour
of moles, and persistent non-healing sores. According to the
American Cancer Society [2], in 2024, there are estimated to
be 100,640 new cases of melanoma skin cancer (59,170 male
and 41,740 female) and an estimated 8,290 deaths (5,430 male
and 2,860 female). The National Cancer Institute [3] reported
that the relative survival rate for skin cancer over the five years
from 2014 to 2020 is 94.1%. Early skin cancer detection is
crucial, as it significantly enhances the likelihood of effective
therapy and survival.
Artificial intelligence plays a pivotal role in enhancing sus-
tainability across various sectors, including education [4],
transportation [5], cybersecurity [6], [7], social media [8], [9]
and healthcare. Notably, the field of healthcare has experienced
remarkable advancements, particularly in the early detection
of cancer, with AI’s contributions proving to be increasingly
impactful. The prompt identification of skin cancer enables
using less invasive treatment approaches, reducing the risk of
severe consequences and improving the patient’s prognosis.

The process of developing an early skin cancer detection
system involves integrating cutting-edge imaging technology
with advanced deep-learning algorithms. These appliances
have the capability to accurately analyse skin lesions, detecting
distinguishing patterns that may signify the presence of cancer.
Computer-aided diagnosis (CAD) is a vital component of
these systems, providing dermatologists with a valuable tool.
CAD systems enhance diagnostic accuracy by analyzing visual
data from skin images and distinguishing between benign and
malignant tumours. CAD systems are essential for improving
skin cancer’s early and accurate diagnosis [10], improving
patient outcomes by providing reliable views, and eliminating
diagnostic errors. Skin cancer detection encounters challenges,
including limited, diverse datasets, which hinder model gen-
eralization and class imbalance, leading to biased predictions.
The visual similarity between benign and malignant lesions
complicates detection, while the “black box” nature of AI
models raises interpretability issues. Overcoming these hurdles
is essential for enhancing skin cancer detection technologies.
Transfer learning and Vision Transformers (ViTs) enhance
model performance and generalization to overcome challenges
with skin cancer detection. Transfer learning utilizes pre-
trained models on extensive datasets to improve accuracy, even
when skin cancer data is limited, and to address the issue
of imbalanced classes. Vision Transformers (ViTs) improve
the distinction between visually similar benign and malignant
tumours by analyzing complex patterns and establishing con-
nections across long distances in images.

A. The Aim and Objectives

The aim of this research is to develop and evaluate a
robust multiclass skin cancer detection system by leveraging
transfer learning, Vision Transformers, and advanced data aug-
mentation techniques to achieve high accuracy. The research
contributions are as follows:

• Applied refined data augmentation techniques to ad-
dress challenges of limited and imbalanced datasets,
significantly improving model robustness and gener-
alization.

• Conducted a comprehensive analysis of 13 transfer
learning models, underlining their comparative perfor-
mance and demonstrating significant improvements in
skin cancer detection accuracy.

• Implemented two Vision Transformer models, ef-
fectively leveraging their ability to capture intricate
patterns in skin lesion images, enhancing detection
accuracy.
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The remainder of the paper is organised as follows:
Section II discusses the literature review and research gaps.
Section III discusses the proposed research methodology. Sec-
tion IV discusses the research outcomes for transfer learning
models and vision transformers models. Section V compares
the overall research outputs with existing research and dis-
cusses research challenges and limitations. Finally, Section VI
concludes by stating the future direction.

II. LITERATURE REVIEW

Kondaveeti et al. [11] proposed pre-trained models, such
as ResNet50, MobileNet, Xception, and InceptionV3 for 7
types of skin cancer detection. They achieved the highest 90%
accuracy, 89% weighted average precision, and 90% recall
for ResNet50 on the HAM10000 dataset. Naik et al. [12]
proposed MobileNetV2 for skin cancer detection and achieved
93.11% accuracy. Fraiwan and Faouri [13] used 13 trans-
fer learning models to detect 7 types of skin cancer. They
achieved the highest 82.9% accuracy for the DenseNet201
model. Swetha et al. [14] compared several transfer learning
models, such as ResNet50, ResNet152, ResNet101, VGG16,
VGG19, MobileNet, and Xception for multiclass skin cancer
detection and obtained 83.69% categorical accuracy. Vishnu
et al. [15] presented augmentation techniques and ensemble
models by integrating InceptionV3 and DenseNet201 weights
and outputs for six types of skin cancer detection. They
achieved 89% accuracy with a validation loss of 0.44. Kaveti et
al. [16] proposed a ResNet101 model for multiclass skin cancer
detection using the HAM1000 dataset and got an accuracy
of 92% for seven skin cancer categories. Arshed et al. [17]
employed a pre-trained vision transformer model for seven
types of skin cancer detection and achieved 92.14% accuracy.
Tuncer et al. [18] presented lightweight CNN-based techniques
for detecting benign and malignant types of skin cancer. They
achieved 92.12% accuracy using the HAM10000 dataset. Yang
et al. [19] proposed attention-weighted transformers for skin
cancer detection using the HAM10000 dataset and achieved
93.75% accuracy. Ashfaq and Ahmad [20] implemented In-
ceptionResNetV2, VGG16, ResNet50, EfficientNetB3, and vi-
sion transformer B32 for multiclass skin cancer classification.
Among these models, EfficientNetB3 obtained the highest
accuracy of 86% with precision 85%, recall 79%, and F1-
score 81%. Sanchez et al. [21] proposed EfficientNet (B0, B1,
B2, and B3) and ViT (base 16, base 32, large 16 and large
32) models and obtained the highest accuracy of 85% by fine-
tuning the number of epochs and learning rate.

Despite considerable progress in skin cancer detection, key
gaps remain that align with this study’s objectives. Existing
research has explored data augmentation to address imbal-
anced datasets; however, more refined techniques are needed
to further enhance model robustness. This study addresses
the scarcity of comprehensive comparisons of multiple trans-
fer learning models’ performances by evaluating 13 models,
thereby providing a clearer insight into their effectiveness.
Moreover, Vision Transformers (ViTs) have shown promise,
but their potential to capture detailed patterns in skin lesion im-
ages remains underexplored. This research advances the field
by implementing and testing two ViT models, demonstrating
their capability to enhance detection accuracy.

III. METHODOLOGY AND DESIGN

Fig. 1 presents the proposed research methodology for
developing and evaluating models for cancer detection us-
ing transfer learning and vision transformer techniques. The
methodology is divided into several key steps. The first step
includes dataset collection from the HAM10000 dataset. We
have conducted several exploratory data analyses, including
analysing the distribution of classes and disease distribution
across genders, to acquire an understanding of the dataset. We
have discovered that the dataset is imbalanced, which can lead
to bias and overfitting issues. Data augmentation techniques
are implemented to resolve these issues and improve model
generalization. The more details of the dataset distribution
are discussed in Section III-A. This study implemented sev-
eral transfer learning models (see Section III-B) and vision
transformer models (see Section III-C) for cancer detection.
Finally, the models are evaluated using evaluation metrics (see
Section III-D).

Algorithm 1 shows the process of our proposed methodol-
ogy. Initially, we read all the images from the directory and
saved them with the corresponding labels (line numbers 23 and
24). After that, image preprocessing is employed to remove
noise from the image, and image augmentation techniques
are applied to balance the number of images for each class
(lines 25 and 26). The function AUGMENTEDPIPELINE
discusses the applied augmentation techniques in this study
(line numbers 1 to 11). Following this, the dataset is split
into training, validation, and testing sets equally (line number
27). Then, the Keras transfer learning pre-trained model is
loaded as a base model and added to a fully connected layer
(FCmodel) (line numbers 29 and 30). The detailed architecture
of a fully connected layer is given from lines numbers 12 to 22.
Furthermore, the FCmodel, Adam optimizer, and entropy loss
function are passed as parameters to the compiler (line number
31). Similarly, PyTorch vision transformer modes (DeepViT
and ViT) are loaded as transformer models (line number 33).
To calculate the training time of the proposed method, a timer
is started in line number 34. Sequentially, the compiled model,
validation, and training set are passed to train the model (line
number 35). After training the model, the model and training
history are saved in h5 format (line number 36). Line number
37 provides the model execution time. Finally, we evaluate our
proposed method by passing the testing set, saved model, and
training history through several evaluation metrics.

A. Dataset

This study used the HAM10000 (Human Against Machine
with 10000 training images) [22] dataset, which was presented
by the International Skin Imaging Collaboration (ISIC) for skin
cancer detection in 2018 [23]. This dataset contains 10,015
dermatoscopic images for seven types of cancer, including
Actinic keratoses and intraepithelial carcinoma (akiec), basal
cell carcinoma (bcc), benign keratosis-like lesions (bkl), der-
matofibroma (df), melanoma (mel), melanocytic nevi (nv) and
vascular lesions (vasc). Fig. 2 presents the distribution of seven
types of skin cancer derived from the HAM10000 dataset.
The image IDs, along with the corresponding patient details,
such as age, sex, and lesion localization, are as follows: akiec
(ISIC 0027930, 60, male, and scalp), bcc (ISIC 0026343,
70, male, and face), bkl (ISIC 0028233, 55, male, and
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Fig. 1. Research methodology and design.

Algorithm 1 Master Algorithm
Input: directory path of mages
Output: skin cancer classification

1: function AUGMENTEDPIPELINE(imgProcess)
2: imgProcess.Sequential([
3: imgProcess.F liplr(0.5), # horizontal flip
4: imgProcess.F lipud(0.5), # vertical flip
5: imgProcess.Crop(percent = (0, 0.1),
6: imgProcess.MultiplyBrightness(0.8, 1.2),
7: imgProcess.GaussianBlur(sigma = (0, 1.0))),
8: imgProcess.Grayscale(alpha = (0.0, 1.0)),
9: imgProcess.CoarseDropout(0.02),

10: imgProcess.CLAHE(clip limit = (1, 4))])
11: end function
12: function FCLAYER(baseModel)
13: A← baseModel.output
14: A← GlobalAveragePooling2D()(A)
15: A← Flatten()(A)
16: A← Dense(128, activation = ”relu”)(A)
17: A← Dropout(0.3)(A)
18: A← Dense(512, activation = ”relu”)(A)
19: A← Dropout(0.3)(A)
20: A← Dense(7, activation = ”softmax”)(A)
21: FCmodel←Model(baseModel.input,A)
22: end function
23: imageDir ← directory path of mages
24: imgPathLabel← readImages (imageDir)
25: imgProcess← imagePreprocessing (imgPathLabel)
26: imgAugment← augmentedP ipeline (imgProcess)
27: train, test, valid← dataset split (imgAugment)
28: # Transfer Learning Models : using Tensorflow,Keras
29: baseModel← pretrainedModel(model)
30: FCmodel← FClayer(baseModel)
31: Model ← compileModel(FCmodel, optimizer =

adam, loss = entropy)
32: # Transformer Models : using PyTorch
33: Model ← transformer(baseModel, parameters,

optimizer = adam, loss = entropy)
34: start← time.time()
35: Fmodel← trainModel(Model, train, validation)
36: savedModel, history ← save(Fmodel)
37: executeT ime← time.time()− start
38: evalMetrics← evaluation(test, savedModel, history)

face), df (ISIC 0028880, 55, male, and lower extremity), nv
(ISIC 0028888, 50, male, and trunk), mel (ISIC 0029241, 70,
male, and face), and vasc (ISIC 0027790, 50, female, and
face).

Table I provides a comprehensive overview of the
HAM10000 dataset, demonstrating the distribution of images
across different classes and dataset splits. Each class includes
a specific number of original and augmented images, as
well as their distribution across training, validation, and test
sets. As the original dataset is imbalanced, we implemented
data augmentation techniques such as horizontal and vertical
flipping, cropping, rotation, adjusting brightness and contrast,
applying Gaussian blur, and adding Gaussian noise to address
the class imbalance and improve the model’s generalization
capability.

TABLE I. DISTRIBUTION OF ORIGINAL, AUGMENTED, AND SPLIT
DATASET IMAGES ACROSS SEVEN DIAGNOSTIC CLASSES

Classes Original
Images

Augmented Im-
ages

Train Valid Test

akiec 327 6705 3747 961 1997
bcc 514 6705 3710 958 2037
bkl 1099 6705 3739 923 2043
df 115 6705 3810 898 1997
mel 1113 6705 3801 925 1979
nv 6705 6705 3751 913 2041
vasc 142 6705 3725 993 1987
Total 10015 46935 26283 6571 14081

After applying data augmentation, a uniform count of 6,705
augmented images per class was generated. We split the data
into training, validation, and test sets, utilizing 26,283 images
for training, 6,571 for validation, and 14,081 for testing. These
splits ensure a balanced representation of each class. This
detailed distribution of images allows the model to be well-
trained and evaluated, with a balanced exposure to each class,
thereby reducing the risk of bias and overfitting.

B. Transfer Learning Model

This study used 13 transfer learning models, such as like
DenseNet (121, 169, and 201), ResNet (50V2, 101V2, and
152V2), VGG (16 and 19), InceptionV3, MobileNetV2, and
NASNet (Mobile and Large). We got the highest accuracy
for the DenseNet121 model. The DenseNet121 architecture,
as illustrated in Fig. 3, is a robust deep learning model
optimized for image classification tasks through its efficient
feature extraction capabilities. The model begins with an input
layer that processes images of size 224x224 with three colour
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Fig. 2. Seven types of skin cancer.

channels (RGB). The next layer is an initial convolutional
layer to capture fundamental features, such as edges. This
layer produces a feature map with 64 channels and a spatial
dimension of 56x56. The core of the model lies in its dense
blocks (D1-D4), where each layer connects to all previous
layers within the same block, ensuring that features are reused
and information flows efficiently through the network. These
dense blocks are interspersed with transition layers (T1-T3),
which use 1x1 convolutions and average pooling to reduce the
size of the feature maps, thereby maintaining computational
efficiency without losing critical information. As the network
progresses, the number of channels increases while the spatial
dimensions decrease, refining the features extracted. The final
layers include a Global Average Pooling (GAP) layer, which
condenses the feature map into a vector, followed by fully con-
nected layers that prepare the model for classification. Dropout
layers are integrated to prevent overfitting, and the model
concludes with a softmax activation function that outputs the
probabilities for each class, making DenseNet121 both robust
and accurate in image classification tasks.

C. Vision Transformer Model

Fig. 4 compares the architectures of the Vision Transformer
(ViT) on the left and DeepViT on the right, highlighting key
differences in their approaches to attention mechanisms and
processing layers. Both models start with patch embedding
and positional embedding to transform input images into a
sequence of vectors, enabling the application of transformer-
like attention mechanisms. In ViT, the architecture employs
a standard multi-head self-attention mechanism followed by
normalization and feed-forward layers. This process is repeated
multiple times (xN), allowing the model to learn and refine
features through self-attention across all patches. The sim-
plicity of ViT lies in its straightforward use of self-attention
without any modifications, relying on the depth of the network
to capture complex patterns. However, DeepViT presents a
modification known as “Re-Attention”. After the initial multi-
head attention, DeepViT applies normalization and a matrix

transformation to refine the attention weights before they are
fed into the next layers. This re-attention mechanism aims to
stabilize and improve the quality of attention by reinforcing the
most critical relationships between patches, potentially leading
to better performance in capturing long-range dependencies.

D. Evaluation Metrics

This study used the following metrics to evaluate the
performance of the classification model: A True Positive (TP)
occurs when a model accurately predicts a positive class,
whereas a True Negative (TN) occurs when it correctly predicts
a negative class. A False Positive (FP) results when a model
erroneously predicts a positive class and a False Negative (FN)
happens when a model wrongly predicts a negative class as
positive. These metrics were used to calculate the accuracy,
precision, recall, and F1-score (see Eq. 1).

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− score =
2 · Precision ·Recall

Precision+Recall

(1)

Each metric is crucial for evaluating the model’s effective-
ness in classifying the lesions accurately. Accuracy indicates
the overall correctness of the model’s predictions. Precision
measures the model’s ability to correctly identify positive
cases, while recall assesses how well the model captures
all actual positive cases. The F1-Score, a harmonic mean
of precision and recall, provides a balanced measure of the
model’s performance.
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Fig. 3. DenseNet121 architecture.

Fig. 4. Comparison between ViT (Left) and DeepViT (Right) model
architecture [24].

1) Experimental Setup: The experiment was implemented
on the following GPU configurations: NVIDIA GeForce RTX
4090, with 24GB memory. We employed the following pa-
rameters to train the transfer learning models: image size
(224 x 224), batch size = 32, loss function: “categori-
cal crossentropy”, optimizer: “adam”, and two callback func-
tions (ReduceLROnPlateau and EarlyStopping). For the deep
vision transformer, we used the following parameters: batch
size = 32, epochs = 100, learning rate = 0.00001, gamma =
0.7 and seed = 42, patch size = 32, and embedding dropout =
0.1.

TABLE II. PERFORMANCE COMPARISON OF VARIOUS DEEP LEARNING
MODELS1

Tr
an

sf
er

L
ea

rn
in

g

Models Ep Time
(Hour)

Acc Pre Re F1-
Score

DenseNet121 16 1.94 0.94 0.94 0.99 0.94
DenseNet169 13 9.87 0.92 0.92 1.00 0.92
DenseNet201 13 10.55 0.92 0.92 1.00 0.92
ResNet50V2 16 3.95 0.92 0.93 0.98 0.93
ResNet101V2 18 5.46 0.93 0.93 0.99 0.93
ResNet152V2 26 11.20 0.93 0.94 0.99 0.93
VGG16 12 5.47 0.89 0.91 0.97 0.90
VGG19 12 5.2 0.87 0.88 0.97 0.87
InceptionResNetV2 15 3.19 0.91 0.92 0.99 0.91
InceptionV3 40 7.44 0.90 0.91 0.99 0.90
MobileNetV2 9 1.49 0.86 0.87 0.98 0.86
NASNetMobile 30 8.68 0.91 0.91 0.99 0.91
NASNetLarge 22 8.01 0.90 0.90 0.97 0.90

T
F ViT 80 8.92 0.91 0.92 0.91 0.92

DeepViT 93 10.56 0.92 0.93 0.92 0.93
Ep = Epochs, Acc = Accuracy, Pre = Precision, Re = Recall

IV. RESULT

Table II compares the performance of various deep-learning
models employed to classify skin cancers. The models re-
port key performance metrics like accuracy (Acc), precision
(Pre), recall (Re), and F1-score, along with the number of
epochs (Ep) and training time in hours. For transfer learning,
DenseNet121 emerges with the highest accuracy, precision,
and F1-score of 0.94 with only 16 epochs and a relatively
short training time of 1.94 hours. Additional variations of
DenseNet, such as DenseNet169 and DenseNet201, exhibit
strong performance while needing longer training durations.
ResNet models exhibit impressive performance, especially
ResNet152V2, which achieves an optimal trade-off between
accuracy (0.93) and precision (0.94) but with the most ex-
tended training duration of 11.20 hours over 26 epochs.
However, VGG models demonstrate the least accuracy, with
VGG16 and VGG19 achieving accuracies of 0.89 and 0.87, re-
spectively. The InceptionV3 and NASNet models demonstrate
satisfactory performance, with NASNetLarge and InceptionV3
achieving an accuracy of 0.90. For the vision transformer, the
ViT model, while requiring a significantly higher number of
epochs (80) and more prolonged training time (8.92 hours),
achieves an F1-score of 0.92, indicating robust performance.
DeepViT slightly outperforms ViT with a higher F1-score of
0.93, albeit with a longer training time of 10.56 hours.

Fig. 5 illustrates the progression of training and validation
loss, as well as accuracy measures, during best 15 epochs
for a DenseNet121 model. The training loss, shown by the
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Fig. 5. Training & validation loss and accuracy (DenseNet121).

blue line, initially begins at a very large value and gradually
drops, suggesting that the model is progressively learning and
improving its performance as time progresses. The validation
loss, shown by the orange line, has a similar trend to the
training loss but consistently maintains a slightly lower value
throughout all epochs. This suggests that the model possesses
high generalization capabilities. The training accuracy, shown
by the green line, exhibits a rapid initial rise, reaching a plateau
by the third epoch, and then maintains a consistently high level
for the remaining epochs. The validation accuracy, shown by
the red line, has a similar pattern to the training accuracy,
indicating that the model consistently performs at a high level
on both the training and validation datasets.

Fig. 6. Confusion matrix (DenseNet121).

Fig. 6 demonstrates the efficacy of a DenseNet121 model
on a multi-class skin lesion dataset. The model has high
accuracy, accurately categorizing the majority of cases in
each category. For example, it accurately recognized 1894
occurrences of akiec, with the majority of misclassifications
happening as bkl (50 occurrences). Similarly, the bcc category
was accurately identified 1912 times, although some cases
of misunderstanding resulted in misclassifications as nv (38

occurrences) and bkl (32 occurrences). The model accurately
predicted 1810 cases of bkl. However, it incorrectly catego-
rized some as mel (113) and akiec (63). The df class achieved
near-perfect classification, with 1959 accurate predictions and
few mistakes. The nv class achieved 1903 accurate classifi-
cations, but the model exhibited confusion in distinguishing
between mel (70 occurrences) and bcc (51 cases). In the mel
class, 1736 occurrences were accurately categorized, whereas
160 were mistakenly classified as nv. Ultimately, the model
successfully categorized 1955 occurrences of vasc, with few
mistakes. In general, the matrix demonstrates a high level of
accuracy in classifying the data; however, there are a few
instances where comparable classes were mistakenly identified,
namely between mel and nv, as well as between akiec and bkl.

Fig. 7. Precision, recall, F1-Score, accuracy (DenseNet121).

Fig. 7 presents the performance metrics—Precision, Recall,
F1-Score, and Accuracy—across different skin lesion classes
(akiec, bcc, bkl, df, nv, mel, vasc) for a DenseNet121 model.
The figure shows consistently high values across all metrics,
demonstrating the model’s strong performance across different
classes, though slight variations suggest areas for potential
improvement in balancing precision and recall for certain
classes.

Fig. 8. Training & validation loss and accuracy (DeepViT).

Fig. 8 displays the training and validation loss and accuracy
curves over the course of training for a DeepViT model,
specifically focusing on the convergence and performance
trends across epochs. The training loss (orange line) decreases
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steadily, indicating effective learning, while the validation
loss (blue line) also decreases but shows more fluctuation,
suggesting variability in model performance on unseen data.
The training accuracy (red line) improves rapidly and plateaus,
reflecting the model’s increasing ability to correctly classify
training samples. The validation accuracy (green line) follows
a similar trend but with smaller fluctuations. This implies
that the model generalizes reasonably well but may still be
prone to some overfitting, as indicated by the gap between the
training and validation losses. Overall, the figure suggests that
the model has learned effectively, but the slight divergence
between training and validation metrics could indicate room
for further tuning to improve generalization.

Fig. 9. Confusion matrix (DeepViT).

Fig. 9 illustrates the performance of the DeepViT trans-
former model in classifying various types of skin cancer.
The diagonal elements represent the correctly classified in-
stances for each class, indicating strong model performance,
particularly for classes such as akiec, bcc, df, and vasc, with
high true positive counts. However, some misclassifications
are observed, especially in classes bkl and mel, where the
model mistakenly predicts other categories. For example, 180
instances of bkl were misclassified as nv, and 82 instances of
mel were also confused with nv.

Fig. 10 presents the performance metrics—Precision, Re-
call, F1-Score, and Accuracy—of the DeepViT transformer
model across different skin cancer classes. The model shows
consistently high performance across most classes, with met-
rics generally above 0.8, indicating effective classification.
Notably, the classes akiec, bcc, and vasc exhibit near-perfect
scores in all metrics, reflecting the model’s strong ability to
distinguish these types. These results demonstrate the potential
of the DeepViT transformer in enhancing the accuracy of
automated skin cancer detection, although further improve-
ments are necessary to address the specific misclassification
challenges observed in certain classes.

V. DISCUSSION

Table III presents a comparison of the accuracy achieved by
different deep-learning models for skin cancer detection. All
the presented articles used the same dataset for multiclass skin

Fig. 10. Precision, recall, F1-Score, accuracy (DeepViT).

cancer classification. It places the DenseNet121 model from
the current study in context with other existing methodologies,
such as ResNet50, MobileNetV2, DenseNet201, Vision Trans-
formers (ViT), EfficientNet, and others. The reported accuracy
ranges from 82.9% to 93.75%. The DenseNet121 model from
this study notably achieved an impressive accuracy of 94%,
surpassing all the other models listed. This outstanding perfor-
mance is likely a result of comprehensive data augmentation
to tackle class imbalance, efficient transfer learning strategies,
and the inherent strengths of the DenseNet121 architecture.
These strengths include its deep layers and dense connections,
which enable effective feature reuse.

TABLE III. ACCURACY COMPARISON WITH PRIOR 7 TYPES OF SKIN
CANCER DETECTION STUDIES

Ref. Methodology Accuracy
(%)

[11], 2020 ResNet50 90
[12], 2022 MobileNetV2 93.11
[13], 2022 DenseNet201 82.9
[17], 2023 ViT 92.14
[20], 2023 EfficientNetB3 86
[15], 2024 InceptionV3 and DenseNet201 89
[16], 2024 ResNet101 92
[18], 2024 CNN 92.12
[19], 2024 ViT 93.75
[21], 2024 EfficientNet 85
This Study DenseNet121 94

VI. CONCLUSION

This study demonstrates the effectiveness of transfer learn-
ing and Vision Transformers (ViTs) in improving the accuracy
of skin cancer detection. By addressing the challenges of
imbalanced data through extensive data augmentation, we
achieved notable results with DenseNet121 and deepViT mod-
els, attaining accuracies of 94% and 92%, respectively. These
findings underscore the potential of these advanced models
in dermatological diagnostics. However, limitations persist,
such as the need for large, diverse datasets to generalize
across various skin tones and cancer types. Additionally, the
computational demands of training ViTs and other deep-
learning models remain significant. Future work will focus on
overcoming these limitations by exploring hybrid approaches
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that integrate the strengths of convolutional neural networks
and transformers.
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